Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Lasers Med Sci ; 39(1): 119, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679671

ABSTRACT

Orofacial nerve injuries may result in temporary or long-term loss of sensory function and decreased quality of life in patients. B vitamins are required for DNA synthesis and the repair and maintenance of phospholipids. In particular, vitamins B1, B6, and B12 are essential for neuronal function. Deficiency in vitamin B complex (VBC) has been linked to increased oxidative stress, inflammation and demyelination. Photobiomodulation (PBM) has antioxidant activity and is neuroprotective. In addition, a growing literature attests to the positive effects of PBM on nerve repair. To assess the effect of PBM and VBC on regenerative process we evaluated the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), myelin basic protein (MBP), laminin and neurofilaments (NFs) using Western blotting to identify regenerative pattern after chronic constriction injury of the infraorbital nerve (CCI IoN) treated by PBM, VBC or its combination. After CCI IoN, the rats were divided into six groups naive, sham, injured (CCI IoN), treated with photobiomodulation (904 nm, 6.23 J/cm2, CCI IoN + PBM), treated with VBC (containing B1, B6 and B12) 5 times, CCI IoN + VBC) and treated with PBM and VBC (CCI IoN + VBC + PBM). The treatments could revert low expression of BDNF, MBP and laminin. Also reverted the higher expression of neurofilaments and enhanced expression of NGF. PBM and VBC could accelerate injured infraorbital nerve repair in rats through reducing the expression of neurofilaments, increasing the expression of BDNF, laminin and MBP and overexpressing NGF. These data support the notion that the use of PBM and VBC may help in the treatment of nerve injuries. This finding has potential clinical applications.


Subject(s)
Brain-Derived Neurotrophic Factor , Disease Models, Animal , Low-Level Light Therapy , Nerve Growth Factor , Nerve Regeneration , Vitamin B Complex , Animals , Rats , Nerve Regeneration/radiation effects , Low-Level Light Therapy/methods , Brain-Derived Neurotrophic Factor/metabolism , Nerve Growth Factor/metabolism , Male , Laminin/metabolism , Facial Nerve Injuries/radiotherapy , Facial Nerve Injuries/therapy , Rats, Wistar , Myelin Basic Protein/metabolism
2.
Genes (Basel) ; 14(12)2023 12 08.
Article in English | MEDLINE | ID: mdl-38137011

ABSTRACT

BACKGROUND: Traumatic spinal cord injury (SCI) is a disabling condition that affects millions of people around the world. Currently, no clinical treatment can restore spinal cord function. Comparison of molecular responses in regenerating to non-regenerating vertebrates can shed light on neural restoration. The axolotl (Ambystoma mexicanum) is an amphibian that regenerates regions of the brain or spinal cord after damage. METHODS: In this study, we compared the transcriptomes after SCI at acute (1-2 days after SCI) and sub-acute (6-7 days post-SCI) periods through the analysis of RNA-seq public datasets from axolotl and non-regenerating rodents. RESULTS: Genes related to wound healing and immune responses were upregulated in axolotls, rats, and mice after SCI; however, the immune-related processes were more prevalent in rodents. In the acute phase of SCI in the axolotl, the molecular pathways and genes associated with early development were upregulated, while processes related to neuronal function were downregulated. Importantly, the downregulation of processes related to sensorial and motor functions was observed only in rodents. This analysis also revealed that genes related to pluripotency, cytoskeleton rearrangement, and transposable elements (e.g., Sox2, Krt5, and LOC100130764) were among the most upregulated in the axolotl. Finally, gene regulatory networks in axolotls revealed the early activation of genes related to neurogenesis, including Atf3/4 and Foxa2. CONCLUSIONS: Immune-related processes are upregulated shortly after SCI in axolotls and rodents; however, a strong immune response is more noticeable in rodents. Genes related to early development and neurogenesis are upregulated beginning in the acute stage of SCI in axolotls, while the loss of motor and sensory functions is detected only in rodents during the sub-acute period of SCI. The approach employed in this study might be useful for designing and establishing regenerative therapies after SCI in mammals, including humans.


Subject(s)
Ambystoma mexicanum , Spinal Cord Injuries , Humans , Animals , Rats , Mice , Ambystoma mexicanum/genetics , RNA-Seq , Rodentia/genetics , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Gene Expression Profiling , Models, Animal
3.
Front Neurosci ; 15: 703783, 2021.
Article in English | MEDLINE | ID: mdl-34504414

ABSTRACT

Since the 1970s, when ATP was identified as a co-transmitter in sympathetic and parasympathetic nerves, it and its active metabolite adenosine have been considered relevant signaling molecules in biological and pathological processes in the central nervous system (CNS). Meanwhile, inosine, a naturally occurring purine nucleoside formed by adenosine breakdown, was considered an inert adenosine metabolite and remained a neglected actor on the purinergic signaling scene in the CNS. However, this scenario began to change in the 1980s. In the last four decades, an extensive group of shreds of evidence has supported the importance of mediated effects by inosine in the CNS. Also, inosine was identified as a natural trigger of adenosine receptors. This evidence has shed light on the therapeutic potential of inosine on disease processes involved in neurological and psychiatric disorders. Here, we highlight the clinical and preclinical studies investigating the involvement of inosine in chronic pain, schizophrenia, epilepsy, depression, anxiety, and in neural regeneration and neurodegenerative diseases, such as Parkinson and Alzheimer. Thus, we hope that this review will strengthen the knowledge and stimulate more studies about the effects promoted by inosine in neurological and psychiatric disorders.

4.
Neural Regen Res ; 14(9): 1626-1634, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31089063

ABSTRACT

Studies have shown that mesenchymal stem cell-derived exosomes can enhance neural plasticity and improve cognitive impairment. The purpose of this study was to investigate the effects of mesenchymal stem cell-derived exosomes on neurogenesis and cognitive capacity in a mouse model of Alzheimer's disease. Alzheimer's disease mouse models were established by injection of beta amyloid 1-42 aggregates into dentate gyrus bilaterally. Morris water maze and novel object recognition tests were performed to evaluate mouse cognitive deficits at 14 and 28 days after administration. Afterwards, neurogenesis in the subventricular zone was determined by immunofluorescence using doublecortin and PSA-NCAM antibodies. Results showed that mesenchymal stem cells-derived exosomes stimulated neurogenesis in the subventricular zone and alleviated beta amyloid 1-42-induced cognitive impairment, and these effects are similar to those shown in the mesenchymal stem cells. These findings provide evidence to validate the possibility of developing cell-free therapeutic strategies for Alzheimer's disease. All procedures and experiments were approved by Institutional Animal Care and Use Committee (CICUAL) (approval No. CICUAL 2016-011) on April 25, 2016.

5.
CNS Neurol Disord Drug Targets ; 18(1): 52-62, 2019.
Article in English | MEDLINE | ID: mdl-30394222

ABSTRACT

BACKGROUND: The chronic phase of Spinal Cord (SC) injury is characterized by the presence of a hostile microenvironment that causes low activity and a progressive decline in neurological function; this phase is non-compatible with regeneration. Several treatment strategies have been investigated in chronic SC injury with no satisfactory results. OBJECTIVE- In this proof-of-concept study, we designed a combination therapy (Comb Tx) consisting of surgical glial scar removal plus scar inhibition, accompanied with implantation of mesenchymal stem cells (MSC), and immunization with neural-derived peptides (INDP). METHODS: This study was divided into three subsets, all in which Sprague Dawley rats were subjected to a complete SC transection. Sixty days after injury, animals were randomly allocated into two groups for therapeutic intervention: control group and animals receiving the Comb-Tx. Sixty-three days after treatment we carried out experiments analyzing motor recovery, presence of somatosensory evoked potentials, neural regeneration-related genes, and histological evaluation of serotoninergic fibers. RESULTS: Comb-Tx induced a significant locomotor and electrophysiological recovery. An increase in the expression of regeneration-associated genes and the percentage of 5-HT+ fibers was noted at the caudal stump of the SC of animals receiving the Comb-Tx. There was a significant correlation of locomotor recovery with positive electrophysiological activity, expression of GAP43, and percentage of 5-HT+ fibers. CONCLUSION: Comb-Tx promotes motor and electrophysiological recovery in the chronic phase of SC injury subsequent to a complete transection. Likewise, it is capable of inducing the permissive microenvironment to promote axonal regeneration.


Subject(s)
Cicatrix/surgery , Combined Modality Therapy/methods , Mesenchymal Stem Cell Transplantation , Recovery of Function/drug effects , Recovery of Function/immunology , Spinal Cord Injuries , 2,2'-Dipyridyl/therapeutic use , Animals , Evoked Potentials/physiology , Female , Freund's Adjuvant/therapeutic use , Gene Expression/drug effects , Motor Activity/drug effects , Nerve Regeneration/drug effects , Rats , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/surgery , Spinal Cord Injuries/therapy , Tryptophan/analogs & derivatives , Tryptophan/therapeutic use
6.
Neural Regen Res ; 13(6): 1046-1053, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29926832

ABSTRACT

In spite of advances in surgical care and rehabilitation, the consequences of spinal cord injury (SCI) are still challenging. Several experimental therapeutic strategies have been studied in the SCI field, and recent advances have led to the development of therapies that may act on the inhibitory microenvironment. Assorted lineages of stem cells are considered a good treatment for SCI. This study investigated the effect of systemic transplantation of mesenchymal stem cells (MSCs) in a compressive SCI model. Here we present results of the intraperitoneal route, which has not been used previously for MSC administration after compressive SCI. We used adult female C57BL/6 mice that underwent laminectomy at the T9 level, followed by spinal cord compression for 1 minute with a 30-g vascular clip. The animals were divided into five groups: sham (anesthesia and laminectomy but without compression injury induction), MSC i.p. (intraperitoneal injection of 8 × 105 MSCs in 500 µL of DMEM at 7 days after SCI), MSC i.v. (intravenous injection of 8 × 105 MSCs in 500 µL of DMEM at 7 days after SCI), DMEM i.p. (intraperitoneal injection of 500 µL of DMEM at 7 days after SCI), DMEM i.v. (intravenous injection of 500 µL of DMEM at 7 days after SCI). The effects of MSCs transplantation in white matter sparing were analyzed by luxol fast blue staining. The number of preserved fibers was counted in semithin sections stained with toluidine blue and the presence of trophic factors was analyzed by immunohistochemistry. In addition, we analyzed the locomotor performance with Basso Mouse Scale and Global Mobility Test. Our results showed white matter preservation and a larger number of preserved fibers in the MSC groups than in the DMEM groups. Furthermore, the MSC groups had higher levels of trophic factors (brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3 and neurotrophin-4) in the spinal cord and improved locomotor performance. Our results indicate that injection of MSCs by either intraperitoneal or intravenous routes results in beneficial outcomes and can be elected as a choice for SCI treatment.

7.
Head Neck ; 40(7): 1489-1497, 2018 07.
Article in English | MEDLINE | ID: mdl-29522265

ABSTRACT

BACKGROUND: Recent studies in invertebrates have taught us that early cell membrane regeneration is determinant for axonal recovery and survival after trauma. Many authors obtained extraordinary results in neural regeneration using polyethylene glycol fusion protocols, which also involved microsutures and antioxidants. METHODS: Sixty rats were evaluated with functional and histological protocol after facial nerve neurotmesis. Groups A and B had their stumps coapted with microsuture after 24 hours of neurotmesis and groups C and D after 72 hours. In addition to the microstructure, groups B and D used the polyethylene glycol-fusion protocol for the modulation of the Ca+2 . RESULTS: At the sixth week, the latency of group D and duration of group B was lower than groups A and C (P = .011). The axonal diameter of the groups that used polyethylene glycol-fusion was higher than those who did not use polyethylene glycol-fusion (P ≤ .001). CONCLUSION: Although not providing a functional improvement, polyethylene glycol-fusion slowed down demyelination.


Subject(s)
Facial Nerve Injuries/drug therapy , Facial Paralysis/drug therapy , Polyethylene Glycols/pharmacology , Action Potentials , Animals , Axons/pathology , Calcium/pharmacology , Facial Nerve Injuries/surgery , Facial Paralysis/etiology , Models, Animal , Nerve Regeneration/drug effects , Rats, Wistar
8.
Neural Regen Res ; 13(1): 100-104, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29451213

ABSTRACT

Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs) can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs) is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs) have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed), Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle), ADSCs (sciatic nerve injury + intravenous MG containing ADSCs), and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs) groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury, increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios) in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for engraftment.

9.
Neural Regen Res ; 9(8): 888-96, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-25206907

ABSTRACT

Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients' brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies.

10.
J Neurosci Res ; 92(8): 1062-70, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24647975

ABSTRACT

In humans, exposure to organic solvents (OS) is frequent in work activities or as a recreational inhalant, inducing severe neuropathy (secondary to demyelization of peripheral nerves). We have previously shown that all-trans retinoic acid (ATRA) increases local content of neural growth factor (NGF), improving peripheral neuropathy of diverse origins. In this study, we evaluated the effect of ATRA on OS-induced peripheral neuropathy in experimental mice. Two simultaneous experiments were performed. The first one aimed to evaluate ATRA for the prevention of damage induced by OS, the second to test ATRA as an OS-induced neuropathy treatment. Nociceptive threshold latency and NGF concentration in serum and in peripheral nerves were determined. Morphological changes and evidence of sciatic nerve regeneration were evaluated. Mice exposed to OS developed neuropathy and axonal degeneration. ATRA diminished the effects of OS inhalation on sensorial changes and nerve morphology. Treatment with ATRA reversed sensorial and nerve morphological changes of OS-induced neuropathy, and this was associated with increased contents of NGF. Similar to previous experiences on diabetic and toxic neuropathy, ATRA reduced and partially reversed the peripheral neuropathy caused by OS exposure. These favorable effects apparently are due to local production of NGF induced by neural regeneration in response to the administration of retinoic acid.


Subject(s)
Nerve Regeneration/drug effects , Pain Threshold/drug effects , Peripheral Nervous System Diseases/drug therapy , Tretinoin/therapeutic use , Animals , Mice , Nerve Growth Factor/blood , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/metabolism , Sciatic Nerve/drug effects , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Solvents , Tretinoin/pharmacology
11.
Rev. AMRIGS ; 57(4): 309-314, out.-dez. 2013. ilus, tab
Article in Portuguese | LILACS | ID: biblio-847553

ABSTRACT

Introdução: Hiperidrose é uma condição idiopática caracterizada por sudorese excessiva generalizada ou restrita a extremidades. O tratamento definitivo e com menor morbidade é a simpatectomia videotoracoscópica. O bloqueio da cadeia simpática com clipe possibilitaria a reversão da cirurgia para pacientes que sofrem de hiperidrose compensatória pós-operatória ­ complicação mais problemática. Como objetivo, este trabalho visa analisar a arquitetura ultraestrutural e morfométrica do nervo isquiático de ratos Wistar machos adultos submetidos à compressão crônica através de um clipe cirúrgico. Os objetivos são identificar se há alteração nervosa com o clipamento e se existe tempo para promover o retorno às atividades neuronais pós-retirada do clipe. Pode-se, portanto, verificar se o clipamento é eficaz como forma de tratamento para hiperidrose, com a vantagem de ser um procedimento reversível. Métodos: Foram selecionados 30 ratos Wistar machos separados em 3 grupos ­ 1, 2 e 3 ­ com n=10, com a retirada do clipe em 1, 2 e 4 semanas, respectivamente. Cada grupo foi dividido em A e B com n=5. Todos os ratos do grupo A eram sacrificados no momento da retirada do clipe e, no B, uma semana após a retirada do clipe. Resultados: O estudo mostrou que, em cada um dos grupos, houve nervos normais e com degeneração, independentemente da retirada do clipe ou de sua manutenção. Conclusão: Simpatectomia com clipe parece não ser um bom método para o tratamento da hiperidrose. O efeito da simpatectomia com clipe e sua remoção devem ser melhor observados em grandes estudos (AU)


Introduction: Hyperhidrosis is an idiopathic condition characterized by excessive sweating that may be generalized or restricted to specific parts of the body. The definitive treatment with less morbidity is endoscopic thoracic sympathectomy. Blockade of the sympathetic chain with a clip enables reversal of surgery for patients suffering from postoperative compensatory sweating ­ the most problematic complication. This work was designed to assess the ultrastructural and morphometric architecture of the sciatic nerve of adult male Wistar rats subjected to chronic compression via surgical clip. The aims were to determine if there are changes to nerve from clipping and if there is time to restore neuronal activity after removal of the clip. One can thus check if clipping is an effective treatment for hyperhidrosis, with the advantage of being a reversible procedure. Methods: Thirty male Wistar rats were selected and divided into 3 groups of ten rats each, with removal of the clip at weeks 1, 2 and 4, respectively. Each group was divided into A and B with n = 5. Rats in group A were sacrificed at the time of clip withdrawal and rats in group B were sacrifi ced one week after clip withdrawal. Results: The study showed that, in each of the groups, there were normal and degenerated nerves regardless of clip removal or maintenance. Conclusion: Sympathectomy with clip does not seem to be a good method for the treatment of hyperhidrosis. The effect of sympathectomy with clip and its removal should be further investigated in larger studies (AU)


Subject(s)
Animals , Rats , Sciatic Nerve/anatomy & histology , Nerve Crush/methods , Sympathectomy/methods , Rats, Wistar/anatomy & histology , Disease Models, Animal , Hyperhidrosis/surgery , Nerve Regeneration
12.
Neural Regen Res ; 8(13): 1236-46, 2013 May 05.
Article in English | MEDLINE | ID: mdl-25206418

ABSTRACT

Aphasic syndromes usually result from injuries to the dominant hemisphere of the brain. Despite the fact that localization of language functions shows little interindividual variability, several brain areas are simultaneously activated when language tasks are undertaken. Mechanisms of language recovery after brain injury to the dominant hemisphere seem to be relatively stereotyped, including activations of perilesional areas in the acute phase and of homologues of language areas in the non-dominant hemisphere in the subacute phase, later returning to dominant hemisphere activation in the chronic phase. Plasticity mechanisms reopen the critical period of language development, more specifically in what leads to disinhibition of the non-dominant hemisphere when brain lesions affect the dominant hemisphere. The non-dominant hemisphere plays an important role during recovery from aphasia, but currently available rehabilitation therapies have shown limited results for efficient language improvement. Large-scale randomized controlled trials that evaluate well-defined interventions in patients with aphasia are needed for stimulation of neuroplasticity mechanisms that enhance the role of the non-dominant hemisphere for language recovery. Ineffective treatment approaches should be replaced by more promising ones and the latter should be evaluated for proper application. The data generated by such studies could substantiate evidence-based rehabilitation strategies for patients with aphasia.

13.
Neural Regen Res ; 8(24): 2290-302, 2013 Aug 25.
Article in English | MEDLINE | ID: mdl-25206539

ABSTRACT

In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selectivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and orthosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopamine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric rinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway.

14.
Neural Regen Res ; 8(26): 2478-83, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-25206558

ABSTRACT

Maintaining standing postural balance is important for walking and handling abilities in patients with cerebral palsy. This study included 23 patients with cerebral palsy (seven with spastic diplegia and 16 with spastic hemiplegia), aged from 7 to 16 years of age. Standing posture balance measurements were performed using an AMTI model OR6-7 force platform with the eyes open and closed. Patients with diplegic cerebral palsy exhibited greater center of pressure displacement areas with the eyes open and greater center of pressure sway in the medial-lateral direction with the eyes open and closed compared with hemiplegic patients. Thus, diplegic patients exhibited weaker postural balance control ability and less standing stability compared with hemiplegic cerebral palsy patients.

15.
Neural Regen Res ; 7(9): 675-9, 2012 Mar 25.
Article in English | MEDLINE | ID: mdl-25745462

ABSTRACT

BALB/c mice were intraperitoneally injected with 10, 5 or 2.5 mg/kg Brazil for 14 days after sciatic nerve injury. Results demonstrate that the spleen T/B lymphocyte stimulation index and serum circulating immune complex concentration were significantly reduced, and the morphology of the soleus muscle was restored in mice with sciatic nerve injury. These effects of Brazil were dose-dependent. Our experimental findings indicate that Brazil can regulate immune responses after nerve injury and promote sciatic nerve repair.

SELECTION OF CITATIONS
SEARCH DETAIL