Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.081
Filter
1.
J Environ Sci (China) ; 148: 489-501, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095183

ABSTRACT

The chemistry of sulfur cycle contributes significantly to the atmospheric nucleation process, which is the first step of new particle formation (NPF). In the present study, cycloaddition reaction mechanism of sulfur trioxide (SO3) to hydrogen sulfide (H2S) which is a typical air pollutant and toxic gas detrimental to the environment were comprehensively investigate through theoretical calculations and Atmospheric Cluster Dynamic Code simulations. Gas-phase stability and nucleation potential of the product thiosulfuric acid (H2S2O3, TSA) were further analyzed to evaluate its atmospheric impact. Without any catalysts, the H2S + SO3 reaction is infeasible with a barrier of 24.2 kcal/mol. Atmospheric nucleation precursors formic acid (FA), sulfuric acid (SA), and water (H2O) could effectively lower the reaction barriers as catalysts, even to a barrierless reaction with the efficiency of cis-SA > trans-FA > trans-SA > H2O. Subsequently, the gas-phase stability of TSA was investigated. A hydrolysis reaction barrier of up to 61.4 kcal/mol alone with an endothermic isomerization reaction barrier of 5.1 kcal/mol under the catalytic effect of SA demonstrates the sufficient stability of TSA. Furthermore, topological and kinetic analysis were conducted to determine the nucleation potential of TSA. Atmospheric clusters formed by TSA and atmospheric nucleation precursors (SA, ammonia NH3, and dimethylamine DMA) were thermodynamically stable. Moreover, the gradually decreasing evaporation coefficients for TSA-base clusters, particularly for TSA-DMA, suggests that TSA may participate in NPF where the concentration of base molecules are relatively higher. The present new reaction mechanism may contributes to a better understanding of atmospheric sulfur cycle and NPF.


Subject(s)
Air Pollutants , Hydrogen Sulfide , Models, Chemical , Hydrogen Sulfide/chemistry , Air Pollutants/chemistry , Cycloaddition Reaction , Atmosphere/chemistry , Sulfur Oxides/chemistry , Kinetics , Sulfur/chemistry
2.
Neural Netw ; 180: 106589, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39217864

ABSTRACT

Thin pancake-like neuronal networks cultured on top of a planar microelectrode array have been extensively tried out in neuroengineering, as a substrate for the mobile robot's control unit, i.e., as a cyborg's brain. Most of these attempts failed due to intricate self-organizing dynamics in the neuronal systems. In particular, the networks may exhibit an emergent spatial map of steady nucleation sites ("n-sites") of spontaneous population spikes. Being unpredictable and independent of the surface electrode locations, the n-sites drastically change local ability of the network to generate spikes. Here, using a spiking neuronal network model with generative spatially-embedded connectome, we systematically show in simulations that the number, location, and relative activity of spontaneously formed n-sites ("the vitals") crucially depend on the samplings of three distributions: (1) the network distribution of neuronal excitability, (2) the distribution of connections between neurons of the network, and (3) the distribution of maximal amplitudes of a single synaptic current pulse. Moreover, blocking the dynamics of a small fraction (about 4%) of non-pacemaker neurons having the highest excitability was enough to completely suppress the occurrence of population spikes and their n-sites. This key result is explained theoretically. Remarkably, the n-sites occur taking into account only short-term synaptic plasticity, i.e., without a Hebbian-type plasticity. As the spiking network model used in this study is strictly deterministic, all simulation results can be accurately reproduced. The model, which has already demonstrated a very high richness-to-complexity ratio, can also be directly extended into the three-dimensional case, e.g., for targeting peculiarities of spiking dynamics in cerebral (or brain) organoids. We recommend the model as an excellent illustrative tool for teaching network-level computational neuroscience, complementing a few benchmark models.

3.
Article in English | MEDLINE | ID: mdl-39222040

ABSTRACT

Lithium is a promising anode material for advanced batteries because of its high capacity and low redox potential. However, its practical use is hindered by nonuniform Li deposition and dendrite formation, leading to safety concerns in Li metal batteries. Our study shows that Ag-based materials enhance the uniformity of Li deposition on Ag-modified Li (AgLi) surfaces, thereby addressing these key challenges. This improvement is due to the strong affinity of Ag for Li, which promotes uniform deposition and dissolution. Additionally, the AgLi surface demonstrated an improved cycling stability, which is crucial for long-term battery reliability. Emphasizing our analytical approach, we utilized comprehensive techniques such as Kelvin probe force microscopy (KPFM) and electrochemical atomic force microscopy (EC-AFM) to locally analyze the electrical properties and unravel the Li deposition/dissolution mechanisms. KPFM analysis provided crucial insights into surface potential variations, while EC-AFM highlighted topographical changes during the Li deposition and dissolution processes, contributing significantly to the development of safer and more efficient Li metal batteries.

4.
Int J Biol Macromol ; 279(Pt 1): 135137, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39208885

ABSTRACT

Aberrant aggregation of amyloid-ß (Aß) and islet amyloid polypeptide (IAPP) into amyloid fibrils underlies the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes (T2D), respectively. T2D significantly increases AD risk, with evidence suggesting that IAPP and Aß co-aggregation and cross-seeding might contribute to the cross-talk between two diseases. Experimentally, preformed IAPP fibril seeds can accelerate Aß aggregation, though the cross-seeding mechanism remains elusive. Here, we computationally demonstrated that Aß monomer preferred to bind to the elongation ends of preformed IAPP fibrils. However, due to sequence mismatch, the Aß monomer could not directly grow onto IAPP fibrils by forming multiple stable ß-sheets with the exposed IAPP peptides. Conversely, in our control simulations of self-seeding, the Aß monomer could axially grow on the Aß fibril, forming parallel in-register ß-sheets. Additionally, we showed that the IAPP fibril could catalyze Aß fibril nucleation by promoting the formation of parallel in-register ß-sheets in the C-terminus between bound Aß peptides. This study enhances our understanding of the molecular interplay between Aß and IAPP, shedding light on the cross-seeding mechanisms potentially linking T2D and AD. Our findings also underscore the importance of clearing IAPP deposits in T2D patients to mitigate AD risk.

5.
Angew Chem Int Ed Engl ; : e202409992, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129217

ABSTRACT

The concept of a lithiophilic electrode proves inadequate in describing carbon-based electrode materials due to their substantial mismatch in surface energy with lithium metal. However, their notable capacity for lithium chemisorption can increase active lithium concentration required for nucleation and growth, thereby enhancing the electrochemical performance of lithium metal anodes (LMAs). In this study, we elucidate the effects of the supersaturated electrode which has high active lithium capacity around equilibrium lithium potential on LMAs through an in-depth electrochemical comparison using two distinct carbon electrode platforms with differing carbon structures but similar two-dimensional morphologies. In the supersaturated electrode, both the dynamics and thermodynamic states involved in lithium nucleation and growth mechanisms are significantly improved, particularly under continuous current supply conditions. Furthermore, the chemical structures of the solid-electrolyte-interface layers (SEIs) are greatly influenced by the elevated surface lithium concentration environment, resulting in the formation of more conductive lithium-rich SEI layers. The improved dynamics and thermodynamics of surface lithium, coupled with the formation of enhanced SEI layers, contribute to higher power capabilities, enhanced Coulombic efficiencies, and improved cycling performances of LMAs. These results provide new insight into understanding the enhancements in heterogeneous lithium nucleation and growth kinetics on the supersaturated electrode.

6.
Small ; : e2402690, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39165055

ABSTRACT

Nucleation and growth of calcium carbonate on surfaces is of broad importance in nature and technology, being essential to the calcification of organisms, while negatively impacting energy conversion through crystallization fouling, also called scale formation. Previous work studied how confinements, surface energies, and functionalizations affect nucleation and polymorph formation, with surface-water interactions and ion mobility playing important roles. However, the influence of surface nanostructures with nanocurvature-through pit and bump morphologies-on scale formation is unknown, limiting the development of scalephobic surfaces. Here, it is shown that nanoengineered surfaces enhance the nucleation rate by orders of magnitude, despite expected inhibition through effects like induced lattice strain through surface nanocurvature. Interfacial and holographic microscopy is used to quantify crystallite growth and find that nanoengineered interfaces experience slower individual growth rates while collectively the surface has 18% more deposited mass. Reconstructions through nanoscale cross-section imaging of surfaces coupled with classical nucleation theory-utilizing local nanocurvature effects-show the collective enhancement of nano-pits.

7.
J Phys Condens Matter ; 36(46)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39111342

ABSTRACT

The final structure and properties of layers grown by epitaxy techniques are determined in the very early stage of the process. This review describes one-dimensional models for epitaxial growth, emphasizing the basic theoretical concepts employed to analyze nucleation and aggregation phenomena in the submonolayer regime. The main findings regarding the evolution of quantities that define the properties of the system, such as monomer and island densities, and the associated island size, gap length, and capture zone distributions are discussed, as well as the analytical tools used to evaluate them. This review provides a concise overview of the most widely used algorithms for simulating growth processes, discusses relevant experimental results, and establishes connections with existing theoretical studies.

8.
Nano Lett ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177953

ABSTRACT

Ice, one of the most enigmatic materials on Earth, exhibits diverse polymorphism, with research mainly focusing on the most commonly observed phases: hexagonal ice (Ih), cubic ice (Ic), and stacking-disordered ice (Isd). While their formation or structural changes are crucial for advancements in cloud science, climate modeling, and cryogenic technology, the molecular mechanisms driving these phenomena remain unexplored. Herein, utilizing cryogenic transmission electron microscopy, we investigate the formation of ice at two different temperatures, demonstrating a size-dependent phase shift from Ic to Isd. Furthermore, a relatively metastable cubic phase in Isd transitions to a hexagonal phase under electron beam radiation. This transition, facilitated by crystal defects, contrasts with perfect crystalline Ic, which maintains its original phase, emphasizing the importance of defects in polymorphic phase transitions. Our findings provide novel insights on phase control during the ice growth processes and polymorphic phase transitions from the cubic-to-hexagonal phases.

9.
ACS Nano ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189348

ABSTRACT

This study unveils the "green" metal-organic framework (MOF) structuring mechanism by decoding proton transfer in water during ZIF-8 synthesis. Combining in situ small- to wide-angle X-ray scattering, multiscale simulations, and quantum calculations, we reveal that the ZIF-8 early-stage nucleation and crystallization process in aqueous solution unfolds in three distinct stages. In stage I, imidazole ligands replace water in zinc-water cages, triggering an "acidity flip" that promotes proton transfer. This leads to the assembly of structures from single zinc ions to 3D amorphous cluster nuclei. In stage II, amorphous nuclei undergo a critical transformation, evolving into crystalline nuclei and subsequently forming mesoscale-ordered structures and crystallites. The process proceeds until the amorphous precursors are completely consumed, with the transformation kinetics governed by an energy barrier that determines the rate-limiting step. In stage III, stable crystallite nanoparticles form in solution, characterized by a temperature-dependent thermal equilibrium of molecular interactions at the crystal-solution interface. Beyond these core advancements, we explore the influence of encapsulated pepsin and nonencapsulated lysozyme on ZIF-8 formation, finding that their amino acid proton transfer capacity and concentration influence the resulting biomolecule-MOF composite's shape and encapsulation efficiency. The findings contribute to understanding the molecular mechanisms behind biomimetic mineralization and have potential implications for engineering proteins within amorphous MOF nuclei as protein embryo growth sites.

10.
ACS Nano ; 18(34): 23032-23046, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39136274

ABSTRACT

The development of Li metal batteries requires a detailed understanding of complex nucleation and growth processes during electrodeposition. In situ techniques offer a framework to study these phenomena by visualizing structural dynamics that can inform the design of uniform plating morphologies. Herein, we combine scanning electrochemical cell microscopy (SECCM) with in situ interference reflection microscopy (IRM) for a comprehensive investigation of Li nucleation and growth on lithiophilic thin-film gold electrodes. This multimicroscopy approach enables nanoscale spatiotemporal monitoring of Li plating and stripping, along with high-throughput capabilities for screening experimental conditions. We reveal the accumulation of inactive Li nanoparticles in specific electrode regions, yet these regions remain functional in subsequent plating cycles, suggesting that growth does not preferentially occur from particle tips. Optical-electrochemical correlations enabled nanoscale mapping of Coulombic Efficiency (CE), showing that regions prone to inactive Li accumulation require more cycles to achieve higher CE. We demonstrate that electrochemical nucleation time (tnuc) is a lagging indicator of nucleation and introduce an optical method to determine tnuc at earlier stages with nanoscale resolution. Plating at higher current densities yielded smaller Li nanoparticles and increased areal density, and was not affected by heterogeneous topographical features, being potentially beneficial to achieve a more uniform plating at longer time scales. These results enhance the understanding of Li plating on lithiophilic surfaces and offer promising strategies for uniform nucleation and growth. Our multimicroscopy approach has broad applicability to study nanoscale metal plating and stripping phenomena, with relevance in the battery and electroplating fields.

11.
Entropy (Basel) ; 26(8)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39202170

ABSTRACT

Nucleation is a fundamental and general process at the initial stage of first-order phase transition. Although various models based on the classical nucleation theory (CNT) have been proposed to explain the energetics and kinetics of nucleation, detailed understanding at nanoscale is still required. Here, in view of the homogeneous bubble nucleation, we focus on cavity formation, in which evaluation of the size dependence of free energy change is the key issue. We propose the application of a formula in stochastic thermodynamics, the Jarzynski equality, for data analysis of molecular dynamics (MD) simulation to evaluate the free energy of cavity formation. As a test case, we performed a series of MD simulations with a Lennard-Jones (LJ) fluid system. By applying an external spherical force field to equilibrated LJ liquid, we evaluated the free energy change during cavity growth as the Jarzynski's ensemble average of required works. A fairly smooth free energy curve was obtained as a function of bubble radius in metastable liquid of mildly negative pressure conditions.

12.
ACS Nano ; 18(32): 21184-21197, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39094098

ABSTRACT

Rechargeable aqueous zinc-ion batteries (AZIBs) are gaining recognition as promising next-generation energy storage solution, due to their intrinsic safety and low cost. Nevertheless, the advancement of AZIBs is greatly limited by the abnormal growth of zinc dendrites during cycling. Electrolyte additives are effective at suppressing zinc dendrites, but there is currently no effective additive screening criterion. Herein, we propose employing the interfacial electrostatic adsorption strength of zinc ions for the initial screening of additives. Subsequently, dendrite-free plating is achieved by employing the anionic surfactant sodium dodecyl benzenesulfonate (SDBS) to enhance electrostatic adsorption. The cycled zinc anode exhibited a dense plating morphology and a high (002) orientation (I002/I101 = 22). The Zn||MnO2 full cell with SDBS exhibited a capacity retention of 85% after 1000 cycles at 1 A g-1. Furthermore, an instantaneous nucleation model and continuous nucleation model (CNM) are constructed to reveal the microscale plating/stripping dynamics under the scenarios of weak adsorption and strong adsorption. The CNM accurately explains the self-optimizing reconstruction of electrodes resulting from enhanced electrostatic adsorption. Our exploration was extended to other anionic surfactants (sodium dodecyl sulfate and disodium laureiminodipropionate), confirming the effectiveness of strong electrostatic adsorption in the screening of electrolyte additives.

13.
ACS Nano ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177501

ABSTRACT

The preparation of artificial diamonds has a long history driven by decreased costs compared to naturally occurring diamonds and ethical issues. However, fabrication of diamonds in the laboratory from readily available biomass has not been extensively investigated. This work demonstrates a convenient method for producing nanodiamonds from biopolymer lignin at ambient pressure. Lignin was extracted from Douglas Fir sawdust using a butanosolv pretreatment and was pyrolyzed in N2 at 1000 °C, followed by a second thermal treatment in 5% H2/Ar at 1050 °C, both at ambient pressure. This led to the formation of nanodiamonds embedded in an amorphous carbon substrate. The changes occurring at various stages of the pyrolysis process were monitored by scanning electron microscopy, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. High resolution transmission electron microscopy revealed that nanodiamond crystallites, 4 nm in diameter on average, formed via multiple nucleation events in some carbon-containing high density spheres. It is proposed that highly defected graphene-like flakes form during the pyrolysis of lignin as an intermediate phase. These flakes are more deformable with more localized π electrons in comparison with graphene and join together face-to-face in different manners to form cubic or hexagonal nanodiamonds. This proposed mechanism for the formation of nanodiamonds is relevant to the future fabrication of diamonds from biomass under relatively mild conditions.

14.
Environ Sci Technol ; 58(35): 15711-15721, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39172764

ABSTRACT

Recent research has shown that microplastics are widespread in the atmosphere. However, we know little about their ability to nucleate ice and their impact on ice formation in clouds. Ice nucleation by microplastics could also limit their long-range transport and global distribution. The present study explores the heterogeneous ice-nucleating ability of seven microplastic samples in immersion freezing mode. Two polypropylene samples and one polyethylene terephthalate sample froze heterogeneously with median freezing temperatures of -20.9, -23.2, and -21.9 °C, respectively. The number of ice nucleation sites per surface area, ns(T), ranged from 10-1 to 104 cm-2 in a temperature interval of -15 to -25 °C, which is comparable to that of volcanic ash and fungal spores. After exposure to ozone or a combination of UV light and ozone, simulating atmospheric aging, the ice nucleation activity decreased in some cases and remained unchanged in others. Our freezing data suggest that microplastics may promote ice formation in cloud droplets. In addition, based on a comparison of our freezing results and previous simulations using a global transport model, ice nucleation by microplastics will impact their long-range transport to faraway locations and global distribution.


Subject(s)
Atmosphere , Ice , Microplastics , Atmosphere/chemistry , Ozone/chemistry , Freezing , Ultraviolet Rays , Air Pollutants/chemistry , Polyethylene Terephthalates/chemistry , Polypropylenes/chemistry
15.
ACS Nano ; 18(35): 24269-24282, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39175187

ABSTRACT

Combining cryoablation and immunotherapy presents a promising approach to revert immunosuppressive responses to solid tumors. However, challenges such as postablated residual tumors and insufficient immune activity contribute to recurrence after cryo-immunotherapy. Herein, we investigated metallic supra-structured cryo-nanocatalyst (MSCN), which features numerous ice nucleation sites and interspace loading of therapeutic agents. MSCN elevates the freezing point and enhances ice nucleation, facilitating effective ice formation during cryotreatment. MSCN-loaded tumor cells showed a 2-fold increase in cryo-cytotoxicity and undergo osmotic-related cell damage, primarily necroptosis rather than other regulated cell death mechanisms. In prostate cancer models, RNA sequencing reveals that MSCN-cryoablation promoted antitumor inflammatory pathways, including necroptosis, compared to cryoablation alone. Additionally, following programmed death-ligand 1 (PD-L1) upregulation postcryoablation, synergistic effects with PD-L1 blockade were confirmed. Given the interspace of MSCN for aPD-L1 loading, we compared the intratumoral delivery of PD-L1 blockade against systemic injection. Enhanced necrosis and necroptosis from MSCN-cryoablation and PD-L1 blockade effectively eradicated tumors and triggered antitumor and memory immune responses locally and systemically. Lastly, a spatial landscape of tumor-infiltrating immune cells was analyzed to gain insight into heterogeneous tumor responses, leading to the limitations of conventional focal ablation techniques. Our findings highlight the potential of advanced cryo-immunotherapy using cryo-nanocatalysis to promote ice formation and necroptosis, stimulating antitumor immunogenic responses.


Subject(s)
B7-H1 Antigen , Immunotherapy , Necroptosis , Necroptosis/drug effects , Mice , Animals , Humans , Male , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Cryosurgery , Cell Line, Tumor , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/immunology
16.
Adv Sci (Weinh) ; : e2406861, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116315

ABSTRACT

Understanding the ice nucleation mechanism in the catalyst layers (CLs) of proton exchange membrane (PEM) fuel cells and inhibiting icing by designing the CLs can optimize the cold start strategies, which can enhance the performance of PEM fuel cells. Herein, mitigating the structural matching and templating effects by adjusting the surface morphology and wettability can inhibit icing on the platinum (Pt) catalyst surface effectively. The Pt(211) surface can inhibit icing because the atomic spacing of (211) crystalline surface is much larger than the characteristic distance of ice crystal, thereby mitigating the structural matching effects. A water overlayer on the Pt surface induced by the strong attraction of Pt can act as a template for ice layers and plays an important role in the icing process. Buckling of water overlayer due to the larger atomic spacing of (211) crystalline surface mitigates the templating effect and inhibits icing. Moreover, the water overlayer on the hydrophobic Pt(211) surface with fewer water molecules also mitigates the templating effect, which makes ice nucleation more difficult than homogeneous nucleation. These findings reveal the ice nucleation mechanisms on the Pt catalyst surface from the molecular level and are valuable for catalyst designs to inhibit icing in CL.

17.
Cryobiology ; : 104954, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151874

ABSTRACT

Present study analyzed four cations (K+, Ca2+, Mg2+, Fe2+) in leachate from freeze-injured spinach (Spinacia oleracea L. 'Reflect') leaves exposed for four freezing-durations (FDs) (0.5, 3.0, 5.5, 10.5 h) at -4.8°C. Comparison of electrolyte leakage from right-after-thaw with that after 6-d recovery revealed that injury at 0.5 or 3 h FDs was recoverable but irreversible at 5.5 or 10.5 h FDs. Data suggests leakage of K+, most abundant cation in leachate, can serve as proxy for total electrolyte-leakage in determining plant freezing-tolerance and an ionic marker discerning moderate vs. severe injury. Quantitative correspondence between Ca2+- and K+-leakage supports earlier proposition that leaked K+ induces loss of membrane-Ca2+, which, in turn, promotes further K+-leakage due to weakened membrane. Reduced / undetectable Fe2+ in leachate at longer FDs suggests activation of Fenton reaction converting soluble Fe2+ into insoluble Fe3+. Enhanced Mg2+-leakage at greater freeze-injury suggests structural/functional impairment of chlorophyll / chloroplast complex.

18.
Adv Sci (Weinh) ; : e2404916, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39159070

ABSTRACT

Understanding the mechanisms underlying amyloid-ß (Aß) aggregation is pivotal in the context of Alzheimer's disease. This study aims to elucidate the secondary nucleation process of Aß42 peptides by combining experimental and computational methods. Using a newly developed nanopipette-based amyloid seeding and translocation assay, confocal fluorescence spectroscopy, and molecular dynamics simulations, the influence of the seed properties on Aß aggregation is investigated. Both fragmented and unfragmented seeds played distinct roles in the formation of oligomers, with fragmented seeds facilitating the formation of larger aggregates early in the incubation phase. The results show that secondary nucleation leads to the formation of oligomers of various sizes and structures as well as larger fibrils structured in ß-sheets. From these findings a mechanism of secondary nucleation involving two types of aggregate populations, one released and one growing on the mother fiber is proposed.

19.
Chemphyschem ; : e202400397, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960874

ABSTRACT

Freeze desalination is an appealing method for seawater desalination through freezing seawater. The percentage of ions in the liquid phase, which is termed ion rejection rate, is a critical factor affecting the performance of freeze desalination. Improving the ion rejection rate is an important topic for freeze desalination. In this work, we investigate the effects of electric fields on the ion rejection rate during the freezing of seawater through molecular dynamics simulations. It is found that the ion rejection rate increases with increasing electric field strength. The enhanced ion rejection rate is due to the reduction of the energy barrier at the ice-water interface caused by the electric field, which affects the orientation of water molecules and ion-water interactions. However, the electric field hinders the ice growth rate, which affects the productivity of freeze desalination. Nevertheless, the finding in this work offers a new idea to improve the ion rejection rate. Practically, a trade-off needs to be found to optimize the overall performance of freeze desalination.

20.
Bioessays ; 46(9): e2400117, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39044599

ABSTRACT

In cells, microtubules (MTs) assemble from α/ß-tubulin subunits at nucleation sites containing the γ-tubulin ring complex (γ-TuRC). Within the γ-TuRC, exposed γ-tubulin molecules act as templates for MT assembly by interacting with α/ß-tubulin. The vertebrate γ-TuRC is scaffolded by γ-tubulin-interacting proteins GCP2-6 arranged in a specific order. Interestingly, the γ-tubulin molecules in the γ-TuRC deviate from the cylindrical geometry of MTs, raising the question of how the γ-TuRC structure changes during MT nucleation. Recent studies on the structure of the vertebrate γ-TuRC attached to the end of MTs came to varying conclusions. In vitro assembly of MTs, facilitated by an α-tubulin mutant, resulted in a closed, cylindrical γ-TuRC showing canonical interactions between all γ-tubulin molecules and α/ß-tubulin subunits. Conversely, native MTs formed in a frog extract were capped by a partially closed γ-TuRC, with some γ-tubulin molecules failing to align with α/ß-tubulin. This review discusses these outcomes, along with the broader implications.


Subject(s)
Microtubules , Tubulin , Microtubules/metabolism , Tubulin/metabolism , Tubulin/chemistry , Animals , Humans , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL