Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Glob Chang Biol ; 30(8): e17467, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39168490

ABSTRACT

Antarctica's unique marine ecosystems are threatened by the arrival of non-native marine species on rafting ocean objects. The harsh environmental conditions in Antarctica prevent the establishment of many such species, but warming around the continent and the opening up of ice-free regions may already be reducing these barriers. Although recent genomic work has revealed that rafts-potentially carrying diverse coastal passengers-reach Antarctica from sub-Antarctic islands, Antarctica's vulnerability to incursions from Southern Hemisphere continents remains unknown. Here we use 0.1° global ocean model simulations to explore whether drift connections exist between more northern, temperate landmasses and the Antarctic coastline. We show that passively floating objects can drift to Antarctica not only from sub-Antarctic islands, but also from continental locations north of the Subtropical Front including Australia, South Africa, South America and Zealandia. We find that the Antarctic Peninsula is the region at highest risk for non-native species introductions arriving by natural oceanic dispersal, highlighting the vulnerability of this region, which is also at risk from introductions via ship traffic and rapid warming. The widespread connections with sub-Antarctic and temperate landmasses, combined with an increasing abundance of marine anthropogenic rafting vectors, poses a growing risk to Antarctic marine ecosystems, especially as environmental conditions around Antarctica are projected to become more suitable for non-native species in the future.


Subject(s)
Introduced Species , Antarctic Regions , Ecosystem , Models, Theoretical , Aquatic Organisms/physiology , Animals , Oceans and Seas
2.
Evol Appl ; 17(3): e13649, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38463749

ABSTRACT

Characterizing patterns of genetic connectivity in marine species is of critical importance given the anthropogenic pressures placed on the marine environment. For sessile species, population connectivity can be shaped by many processes, such as pelagic larval duration, oceanographic boundaries and currents. This study combines restriction-site associated DNA sequencing (RADseq) and passive particle dispersal modelling to delineate patterns of population connectivity in the pink sea fan, Eunicella verrucosa, a temperate octocoral. Individuals were sampled from 20 sites covering most of the species' northeast Atlantic range, and a site in the northwest Mediterranean Sea to inform on connectivity across the Atlantic-Mediterranean transition. Using 7510 neutral SNPs, a geographic cline of genetic clusters was detected, partitioning into Ireland, Britain, France, Spain (Atlantic), and Portugal and Spain (Mediterranean). Evidence of significant inbreeding was detected at all sites, a finding not detected in a previous study of this species based on microsatellite loci. Genetic connectivity was characterized by an isolation by distance pattern (IBD) (r 2 = 0.78, p < 0.001), which persisted across the Mediterranean-Atlantic boundary. In contrast, exploration of ancestral population assignment using the program ADMIXTURE indicated genetic partitioning across the Bay of Biscay, which we suggest represents a natural break in the species' range, possibly linked to a lack of suitable habitat. As the pelagic larval duration (PLD) is unknown, passive particle dispersal simulations were run for 14 and 21 days. For both modelled PLDs, inter-annual variations in particle trajectories suggested that in a long-lived, sessile species, range-wide IBD is driven by rare, longer dispersal events that act to maintain gene flow. These results suggest that oceanographic patterns may facilitate range-wide stepping-stone genetic connectivity in E. verrucosa and highlight that both oceanography and natural breaks in a species' range should be considered in the designation of ecologically coherent MPA networks.

3.
Mol Ecol ; 27(23): 4657-4679, 2018 12.
Article in English | MEDLINE | ID: mdl-30378207

ABSTRACT

The abyssal demosponge Plenaster craigi inhabits the Clarion-Clipperton Zone (CCZ) in the northeast Pacific, a region with abundant seafloor polymetallic nodules with potential mining interest. Since P. craigi is a very abundant encrusting sponge on nodules, understanding its genetic diversity and connectivity could provide important insights into extinction risks and design of marine protected areas. Our main aim was to assess the effectiveness of the Area of Particular Environmental Interest 6 (APEI-6) as a potential genetic reservoir for three adjacent mining exploration contract areas (UK-1A, UK-1B and OMS-1A). As in many other sponges, COI showed extremely low variability even for samples ~900 km apart. Conversely, the 168 individuals of P. craigi, genotyped for 11 microsatellite markers, provided strong genetic structure at large geographical scales not explained by isolation by distance (IBD). Interestingly, we detected molecular affinities between samples from APEI-6 and UK-1A, despite being separated ~800 km. Although our migration analysis inferred very little progeny dispersal of individuals between areas, the major differentiation of OMS-1A from the other areas might be explained by the occurrence of predominantly northeasterly transport predicted by the HYCOM hydrodynamic model. Our study suggests that although APEI-6 does serve a conservation role, with species connectivity to the exploration areas, it is on its own inadequate as a propagule source for P. craigi for the entire eastern portion of the CCZ. Our new data suggest that an APEI located to the east and/or the south of the UK-1, OMS-1, BGR, TOML and NORI areas would be highly valuable.


Subject(s)
Animal Distribution , Conservation of Natural Resources , Genetics, Population , Porifera/genetics , Animals , DNA, Mitochondrial/genetics , Genotype , Microsatellite Repeats , Mining , Pacific Ocean , Water Movements
4.
Mol Ecol ; 24(8): 1742-57, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25782085

ABSTRACT

The large-scale population genetic structure of northern shrimp, Pandalus borealis, was investigated over the species' range in the North Atlantic, identifying multiple genetically distinct groups. Genetic divergence among sample localities varied among 10 microsatellite loci (range: FST = -0.0002 to 0.0475) with a highly significant average (FST = 0.0149; P < 0.0001). In contrast, little or no genetic differences were observed among temporal replicates from the same localities (FST = 0.0004; P = 0.33). Spatial genetic patterns were compared to geographic distances, patterns of larval drift obtained through oceanographic modelling, and temperature differences, within a multiple linear regression framework. The best-fit model included all three factors and explained approximately 29% of all spatial genetic divergence. However, geographic distance and larval drift alone had only minor effects (2.5-4.7%) on large-scale genetic differentiation patterns, whereas bottom temperature differences explained most (26%). Larval drift was found to promote genetic homogeneity in parts of the study area with strong currents, but appeared ineffective across large temperature gradients. These findings highlight the breakdown of gene flow in a species with a long pelagic larval phase (up to 3 months) and indicate a role for local adaptation to temperature conditions in promoting evolutionary diversification and speciation in the marine environment.


Subject(s)
Adaptation, Physiological/genetics , Genetics, Population , Pandalidae/classification , Temperature , Animal Distribution , Animals , Atlantic Ocean , Gene Flow , Microsatellite Repeats , Models, Genetic , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL