Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Language
Publication year range
1.
IUCrJ ; 9(Pt 1): 11-20, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35059205

ABSTRACT

This article summarizes developments attained in oral vaccine formulations based on the encapsulation of antigen proteins inside porous silica matrices. These vaccine vehicles show great efficacy in protecting the proteins from the harsh acidic stomach medium, allowing the Peyer's patches in the small intestine to be reached and consequently enhancing immunity. Focusing on the pioneering research conducted at the Butantan Institute in Brazil, the optimization of the antigen encapsulation yield is reported, as well as their distribution inside the meso- and macroporous network of the porous silica. As the development of vaccines requires proper inclusion of antigens in the antibody cells, X-ray crystallography is one of the most commonly used techniques to unveil the structure of antibody-combining sites with protein antigens. Thus structural characterization and modelling of pure antigen structures, showing different dimensions, as well as their complexes, such as silica with encapsulated hepatitis B virus-like particles and diphtheria anatoxin, were performed using small-angle X-ray scattering, X-ray absorption spectroscopy, X-ray phase contrast tomography, and neutron and X-ray imaging. By combining crystallography with dynamic light scattering and transmission electron microscopy, a clearer picture of the proposed vaccine complexes is shown. Additionally, the stability of the immunogenic complex at different pH values and temperatures was checked and the efficacy of the proposed oral immunogenic complex was demonstrated. The latter was obtained by comparing the antibodies in mice with variable high and low antibody responses.

2.
Methods Mol Biol ; 2410: 503-537, 2022.
Article in English | MEDLINE | ID: mdl-34914065

ABSTRACT

Giardia lamblia is the only known parasite that can inhabit the harsh upper gastrointestinal tract, where most of the digestive proteases are secreted. Intestinal and free-living protozoa express surface proteins containing an extraordinarily high percentage of cysteine. These cysteine-rich variant-specific surface proteins (VSPs) form a dense coat on the entire surface of Giardia trophozoites, that coat protects the parasite inside the host intestine. VSPs not only are resistant to proteolytic digestion, extreme pH and temperatures, but also stimulate host immune responses. These properties can be used to protect as well as to increase the immunogenicity of vaccine antigens for oral administration. The incorporation of VSPs onto virus-like particles bearing viral antigens allows oral administration of these vaccines, protecting the antigens from degradation and generating robust and protective immune responses. In this chapter we describe the development of this versatile vaccine platform for the generation of safe, stable, and efficient oral vaccines, including their production and validation, as well as the characterization of immune response to oral immunization.


Subject(s)
Protozoan Vaccines , Administration, Oral , Antigens, Protozoan/genetics , Cysteine , Membrane Proteins , Protozoan Proteins/genetics , Vaccines
3.
IUCrJ, v. 9, n. 1, p. 11-20, jan. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4110

ABSTRACT

This article summarizes developments attained in oral vaccine formulations based on the encapsulation of antigen proteins inside porous silica matrices. These vaccine vehicles show great efficacy in protecting the proteins from the harsh acidic stomach medium, allowing the Peyer's patches in the small intestine to be reached and consequently enhancing immunity. Focusing on the pioneering research conducted at the Butantan Institute in Brazil, the optimization of the antigen encapsulation yield is reported, as well as their distribution inside the meso- and macroporous network of the porous silica. As the development of vaccines requires proper inclusion of antigens in the antibody cells, X-ray crystallography is one of the most commonly used techniques to unveil the structure of antibody-combining sites with protein antigens. Thus structural characterization and modelling of pure antigen structures, showing different dimensions, as well as their complexes, such as silica with encapsulated hepatitis B virus-like particles and diphtheria anatoxin, were performed using small-angle X-ray scattering, X-ray absorption spectroscopy, X-ray phase contrast tomography, and neutron and X-ray imaging. By combining crystallography with dynamic light scattering and transmission electron microscopy, a clearer picture of the proposed vaccine complexes is shown. Additionally, the stability of the immunogenic complex at different pH values and temperatures was checked and the efficacy of the proposed oral immunogenic complex was demonstrated. The latter was obtained by comparing the antibodies in mice with variable high and low antibody responses.

4.
Vaccines (Basel) ; 8(2)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295153

ABSTRACT

The emergence of new pathogenic viral strains is a constant threat to global health, with the new coronavirus strain COVID-19 as the latest example. COVID-19, caused by the SARS-CoV-2 virus has quickly spread around the globe. This pandemic demands rapid development of drugs and vaccines. Plant-based vaccines are a technology with proven viability, which have led to promising results for candidates evaluated at the clinical level, meaning this technology could contribute towards the fight against COVID-19. Herein, a perspective in how plant-based vaccines can be developed against COVID-19 is presented. Injectable vaccines could be generated by using transient expression systems, which offer the highest protein yields and are already adopted at the industrial level to produce VLPs-vaccines and other biopharmaceuticals under GMPC-processes. Stably-transformed plants are another option, but this approach requires more time for the development of antigen-producing lines. Nonetheless, this approach offers the possibility of developing oral vaccines in which the plant cell could act as the antigen delivery agent. Therefore, this is the most attractive approach in terms of cost, easy delivery, and mucosal immunity induction. The development of multiepitope, rationally-designed vaccines is also discussed regarding the experience gained in expression of chimeric immunogenic proteins in plant systems.

5.
Trends Parasitol ; 36(1): 7-10, 2020 01.
Article in English | MEDLINE | ID: mdl-31362858

ABSTRACT

The Global Vaccine Action Plan of the World Health Organization (WHO) calls for nonsyringe delivery mechanisms, thermostable vaccines, and new bioprocessing technologies as priority research areas. Here we discuss the use of protozoan surface proteins to develop a safe, stable, and efficient versatile oral vaccine platform.


Subject(s)
Administration, Oral , Membrane Proteins/immunology , Protozoan Proteins/immunology , Vaccines/immunology , Humans , Vaccination/trends , Vaccine Potency , World Health Organization
6.
mSphere ; 3(6)2018 11 28.
Article in English | MEDLINE | ID: mdl-30487152

ABSTRACT

Enteric fever is caused by three Salmonella enterica serovars: Typhi, Paratyphi A, and Paratyphi B sensu stricto Although vaccines against two of these serovars are licensed (Typhi) or in clinical development (Paratyphi A), as yet there are no candidates for S. Paratyphi B. To gain genomic insight into these serovars, we sequenced 38 enteric fever-associated strains from Chile and compared these with reference genomes. Each of the serovars was separated genomically based on the core genome. Genomic comparisons identified loci that were aberrant between serovars Paratyphi B sensu stricto and Paratyphi B Java, which is typically associated with gastroenteritis; however, the majority of these were annotated as hypothetical or phage related and thus were not ideal vaccine candidates. With the genomic information in hand, we engineered a live attenuated S. Paratyphi B sensu stricto vaccine strain, CVD 2005, which was capable of protecting mice from both homologous challenge and heterologous challenge with S. Paratyphi B Java. These findings extend our understanding of S. Paratyphi B and provide a viable vaccine option for inclusion in a trivalent live attenuated enteric fever vaccine formulation.IMPORTANCE We developed a live attenuated Salmonella enterica serovar Paratyphi B vaccine that conferred protection in mice against challenge with S Paratyphi B sensu stricto and S Paratyphi B Java, which are the causes of enteric fever and gastroenteritis, respectively. Currently, the incidence of invasive S. Paratyphi B sensu stricto infections is low; however, the development of new conjugate vaccines against other enteric fever serovars could lead to the emergence of S. Paratyphi B to fill the niche left by these other pathogens. As such, an effective S. Paratyphi B vaccine would be a useful tool in the armamentarium against Salmonella infections. Comparative genomics confirmed the serovar-specific groupings of these isolates and revealed that there are a limited number of genetic differences between the sensu stricto and Java strains, which are mostly hypothetical and phage-encoded proteins. The observed level of genomic similarity likely explains why we observe some cross-protection.


Subject(s)
Paratyphoid Fever/prevention & control , Salmonella paratyphi B/immunology , Typhoid-Paratyphoid Vaccines/immunology , Animals , Chile , Disease Models, Animal , Mice , Salmonella paratyphi B/genetics , Salmonella paratyphi B/pathogenicity , Survival Analysis , Treatment Outcome , Typhoid-Paratyphoid Vaccines/administration & dosage , Typhoid-Paratyphoid Vaccines/genetics , Typhoid-Paratyphoid Vaccines/isolation & purification , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Attenuated/isolation & purification , Whole Genome Sequencing
7.
J Clin Microbiol ; 55(7): 2162-2171, 2017 07.
Article in English | MEDLINE | ID: mdl-28468861

ABSTRACT

Oral poliovirus vaccine can mutate to regain neurovirulence. To date, evaluation of these mutations has been performed primarily on culture-enriched isolates by using conventional Sanger sequencing. We therefore developed a culture-independent, deep-sequencing method targeting the 5' untranslated region (UTR) and P1 genomic region to characterize vaccine-related poliovirus variants. Error analysis of the deep-sequencing method demonstrated reliable detection of poliovirus mutations at levels of <1%, depending on read depth. Sequencing of viral nucleic acids from the stool of vaccinated, asymptomatic children and their close contacts collected during a prospective cohort study in Veracruz, Mexico, revealed no vaccine-derived polioviruses. This was expected given that the longest duration between sequenced sample collection and the end of the most recent national immunization week was 66 days. However, we identified many low-level variants (<5%) distributed across the 5' UTR and P1 genomic region in all three Sabin serotypes, as well as vaccine-related viruses with multiple canonical mutations associated with phenotypic reversion present at high levels (>90%). These results suggest that monitoring emerging vaccine-related poliovirus variants by deep sequencing may aid in the poliovirus endgame and efforts to ensure global polio eradication.


Subject(s)
High-Throughput Nucleotide Sequencing , Mutation , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus/classification , Poliovirus/isolation & purification , Child, Preschool , Feces/virology , Female , Genetic Variation , Humans , Infant , Male , Mexico , Poliovirus/genetics , Prospective Studies
8.
J Fish Dis ; 38(11): 937-55, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25287254

ABSTRACT

There is a rapidly increasing literature pointing to the success of probiotics, immunostimulants, plant products and oral vaccines in immunomodulation, namely stimulation of the innate, cellular and/or humoral immune response, and the control of bacterial fish diseases. Probiotics are regarded as live micro-organisms administered orally and leading to health benefits. However, in contrast with the use in terrestrial animals, a diverse range of micro-organisms have been evaluated in aquaculture with the mode of action often reflecting immunomodulation. Moreover, the need for living cells has been questioned. Also, key subcellular components, including lipopolysaccharides, have been attributed to the beneficial effect in fish. Here, there is a link with immunostimulants, which may also be administered orally. Furthermore, numerous plant products have been reported to have health benefits, namely protection against disease for which stimulation of some immune parameters has been reported. Oral vaccines confer protection against some diseases, although the mode of action is usually linked to humoral rather than the innate and cellular immune responses. This review explores the relationship between probiotics, immunostimulants, plant products and oral vaccines.


Subject(s)
Adjuvants, Immunologic , Bacterial Infections/veterinary , Bacterial Vaccines/immunology , Dietary Supplements , Fish Diseases/prevention & control , Plant Extracts/immunology , Probiotics , Administration, Oral , Animals , Bacterial Infections/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL