ABSTRACT
The attribution of 1H and 13C NMR signals of a library of 5-, 6- and 7-substituted 2,2-dimethylchroman-4-one derivatives is reported. Substituent effects were interpreted in terms of the Hammett equation, showing a good correlation for carbons para- to the substituent group, not for the meta- ones. Similarly, the Lynch correlation shows the additivity of the substituent chemical shifts in the case of both H and C nuclei, again with the exception of the carbons in the meta- position. Density Functional Theory (DFT)-predicted 1H and 13C chemical shifts correspond closely with experimentally observed values, with some exceptions for C NMR data; however, the correlation is valid only for the aromatic moiety and cannot be extended to the heterocyclic ring of the chroman-4-one scaffold.
Subject(s)
Carbon Isotopes/analysis , Chemistry/methods , Chromones/chemical synthesis , Magnetic Resonance Spectroscopy/methods , Algorithms , Carbon/chemistry , Chromones/analysis , Electrons , Hydrogen , Linear Models , Normal Distribution , Software , SpectrophotometryABSTRACT
Comparative transcriptional profiling of a ΔbldM mutant of Streptomyces venezuelae with its unmodified progenitor revealed that the expression of a cryptic biosynthetic gene cluster containing both typeâ I and typeâ III polyketide synthase genes is activated in the mutant. The 29.5â kb gene cluster, which was predicted to encode an unusual biaryl metabolite, which we named venemycin, and potentially halogenated derivatives, contains 16 genes including one-vemR-that encodes a transcriptional activator of the large ATP-binding LuxR-like (LAL) family. Constitutive expression of vemR in the ΔbldM mutant led to the production of sufficient venemycin for structural characterisation, confirming its unusual biaryl structure. Co-expression of the venemycin biosynthetic gene cluster and vemR in the heterologous host Streptomyces coelicolor also resulted in venemycin production. Although the gene cluster encodes two halogenases and a flavin reductase, constitutive expression of all three genes led to the accumulation only of a monohalogenated venemycin derivative, both in the native producer and the heterologous host. A competition experiment in which equimolar quantities of sodium chloride and sodium bromide were fed to the venemycin-producing strains resulted in the preferential incorporation of bromine, thus suggesting that bromide is the preferred substrate for one or both halogenases.