Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
Add more filters











Publication year range
1.
2.
J Anat ; 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39245788

ABSTRACT

Biomechanical studies in sauropod dinosaurs are mainly focused on neck posture and feeding strategy. Few works investigate other aspects such as tail movement and function, especially in the clade Titanosauria, the most diverse within Neosauropoda. This study applied biomechanical concepts of neutral pose (cartilaginous neutral pose) and range of motion to verify the shape and direction of the caudal region of the advanced titanosaurs Adamantisaurus mezzalirai and Baurutitan britoi, in addition to comparing it with other titanosaurs (e.g., Arrudatitan maximus, Lirainosaurus astibiae, and Trigonosaurus pricei). As a result, the tails analyzed have a sigmoidal-convex shape, probably close to the ground (but not touching it). The sigmoidal-convex shape could increase the moment arm for the M. caudofemoralis longus, making it possible to use the tail as a fifth stabilizing member. This work expands our knowledge about sauropod dinosaurs by exposing a diversity of shapes for the tails of titanosaur sauropods and brings new possibilities for how these dinosaurs could use their tails.

3.
Nature ; 633(8029): 257, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39232235
4.
Nature ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090277
5.
Nature ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107576
8.
R Soc Open Sci ; 11(7): 231827, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021769

ABSTRACT

Fossils constitute an inestimable archive of past life on the Earth. However, the stochastic processes driving decay and fossilization and overwhelmingly distorting this archive, are challenging to interpret. Consequently, concepts of exceptional or poor preservation are often subjective or arbitrarily defined. Here, we offer an alternative way to think about fossilization. We propose a mathematical description of decay and fossilization relying on the change in the relative frequency and characteristics of biogenic objects (e.g. atoms, functional groups, molecules, body parts and organisms) within an organism-fossil system. This description partitions taphonomic changes into three categories: gain, loss and alteration of state. Although the changes undergone by organisms through decay, preservation and alteration vary a lot for different organisms under different conditions, we provide a unified formalism which can be applied directly in the comparison of different assemblages, experiments and fossils. Our expression is closely related to George R. Price's famous equation for the change in evolutionary traits and can be adapted to the study of palaeontological systems and many others.

10.
Nature ; 631(8021): 508-509, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961212
11.
15.
Animals (Basel) ; 14(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791691

ABSTRACT

Paleo-oncology studies neoplastic diseases in fossilised animals, including human remains. Recent advancements have enabled more accurate diagnoses of ancient pathologies despite the inherent challenges in identifying tumours in fossils-such as the rarity of well-preserved specimens, the predominance of bone remains, and the difficulty in distinguishing neoplastic from non-neoplastic lesions. This study compiles reports of tumours in fossilised animals, highlighting that neoplasms are present in a wide range of vertebrates and drawing comparisons to modern instances of similar diseases. The findings underscore the multifactorial aetiology of tumours, which involves genetic, environmental, and lifestyle factors, and suggest that tumours have been around for at least 350 million years.

16.
iScience ; 27(5): 109598, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38799075

ABSTRACT

The Longxiang tracksite (lower Upper Cretaceous, Shanghang Basin) includes twelve didactyl deinonychosaur tracks that fall into two morphologies, differentiated by both size and form. The smaller tracks (∼11 cm long) are referable to the ichnogenus Velociraptorichnus. The larger tracks (∼36 cm long) establish the ichnotaxon Fujianipus yingliangi. Based on the size of the tracks, F. yingliangi has an estimated hip height of over 1.8 m, a size comparable to that of the largest known deinonychosaurs, i.e., Austroraptor and Utahraptor. The reduced form of digit IV, relative to digit III, indicates that F. yingliangi is a probable troodontid. Gigantism evidently evolved independently at least four times within the Deinonychosauria and within at least three major lineages: the Eudromaeosauria, Unenlagiidae, and Troodontidae. In the mid-Cretaceous of Asia, the evolution of F. yingliangi overlapped with that of early large-bodied tyrannosauroids and with previously established large allosaurids (although the latter may have been in decline).

17.
18.
Biol Lett ; 20(3): 20240010, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38471564

ABSTRACT

Overkill of large mammals is recognized as a key driver of Pleistocene megafaunal extinctions in the Americas and Australia. While this phenomenon primarily affected mega-mammals, its impact on large Quaternary reptiles has been debated. Freshwater turtles, due to the scarcity of giant forms in the Quaternary record, have been largely neglected in such discussions. Here we present a new giant podocnemidid turtle, Peltocephalus maturin sp. nov., from the Late Pleistocene Rio Madeira Formation in the Brazilian Amazon, that challenges this assumption. Morphological and phylogenetic analyses of the holotype, a massive partial lower jaw, reveal close affinities to extant Amazonian species and suggest an omnivorous diet. Body size regressions indicate Pe. maturin possibly reached about 180 cm in carapace length and is among the largest freshwater turtles ever found. This finding presents the latest known occurrence of giant freshwater turtles, hinting at coexistence with early human inhabitants in the Amazon.


Subject(s)
Turtles , Animals , Humans , Phylogeny , Brazil , Reptiles , Fresh Water , Mammals
20.
Nature ; 627(8005): 738-740, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38503881
SELECTION OF CITATIONS
SEARCH DETAIL