Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56.483
Filter
1.
Front Plant Sci ; 15: 1373318, 2024.
Article in English | MEDLINE | ID: mdl-39086911

ABSTRACT

Coffee Breeding programs have traditionally relied on observing plant characteristics over years, a slow and costly process. Genomic selection (GS) offers a DNA-based alternative for faster selection of superior cultivars. Stacking Ensemble Learning (SEL) combines multiple models for potentially even more accurate selection. This study explores SEL potential in coffee breeding, aiming to improve prediction accuracy for important traits [yield (YL), total number of the fruits (NF), leaf miner infestation (LM), and cercosporiosis incidence (Cer)] in Coffea Arabica. We analyzed data from 195 individuals genotyped for 21,211 single-nucleotide polymorphism (SNP) markers. To comprehensively assess model performance, we employed a cross-validation (CV) scheme. Genomic Best Linear Unbiased Prediction (GBLUP), multivariate adaptive regression splines (MARS), Quantile Random Forest (QRF), and Random Forest (RF) served as base learners. For the meta-learner within the SEL framework, various options were explored, including Ridge Regression, RF, GBLUP, and Single Average. The SEL method was able to predict the predictive ability (PA) of important traits in Coffea Arabica. SEL presented higher PA compared with those obtained for all base learner methods. The gains in PA in relation to GBLUP were 87.44% (the ratio between the PA obtained from best Stacking model and the GBLUP), 37.83%, 199.82%, and 14.59% for YL, NF, LM and Cer, respectively. Overall, SEL presents a promising approach for GS. By combining predictions from multiple models, SEL can potentially enhance the PA of GS for complex traits.

2.
Front Plant Sci ; 15: 1367121, 2024.
Article in English | MEDLINE | ID: mdl-39086912

ABSTRACT

Introduction: The research on plant leaf morphology is of great significance for understanding the development and evolution of plant organ morphology. As a relict plant, the G. biloba leaf morphology typically exhibits bifoliate and peltate forms. However, throughout its long evolutionary history, Ginkgo leaves have undergone diverse changes. Methods: This study focuses on the distinct "trumpet" leaves and normal fan-shaped leaves of G. biloba for analysis of their phenotypes, photosynthetic activity, anatomical observations, as well as transcriptomic and metabolomic analyses. Results: The results showed that trumpet-shaped G. biloba leaves have fewer cells, significant morphological differences between dorsal and abaxial epidermal cells, leading to a significantly lower net photosynthetic rate. Additionally, this study found that endogenous plant hormones such as GA, auxin, and JA as well as metabolites such as flavonoids and phenolic acids play roles in the formation of trumpet-shaped G. biloba leaves. Moreover, the experiments revealed the regulatory mechanisms of various key biological processes and gene expressions in the trumpet-shaped leaves of G. biloba. Discussion: Differences in the dorsal and abdominal cells of G. biloba leaves can cause the leaf to curl, thus reducing the overall photosynthetic efficiency of the leaves. However, the morphology of plant leaves is determined during the primordia leaf stage. In the early stages of leaf development, the shoot apical meristem (SAM) determines the developmental morphology of dicotyledonous plant leaves. This process involves the activity of multiple gene families and small RNAs. The establishment of leaf morphology is complexly regulated by various endogenous hormones, including the effect of auxin on cell walls. Additionally, changes in intracellular ion concentrations, such as fluctuations in Ca2+ concentration, also affect cell wall rigidity, thereby influencing leaf growth morphology.

3.
J Environ Manage ; 367: 121979, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39088904

ABSTRACT

Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 µM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.

4.
Microbiol Res ; 287: 127860, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39089083

ABSTRACT

Plants shape and interact continuously with their rhizospheric microbiota, which play a key role in plant health and resilience. However, plant-associated microbial community can be shaped by several factors including plant phenotype and cropping system. Thus, understanding the interplay between microbiome assembly during the onset of plant-pathogen interactions and long-lasting resistance traits in ligneous plants remains a major challenge. To date, such attempts were mainly investigated in herbaceous plants, due to their phenotypic characteristics and their short life cycle. However, only few studies have focused on the microbial structure, dynamic and their drivers in perennial ligneous plants. Ligneous plants coevolved in interaction with specific fungal and bacterial communities that differ from those of annual plants. The specificities of such ligneous plants in shaping their own functional microbial communities could be dependent on their high heterozygosis, physiological and molecular status associated to seasonality and their aging processes, root system and above-ground architectures, long-lasting climatic variations, and specific cultural practices. This article provides an overview of the specific characteristics of perennial ligneous plants that are likely to modulate symbiotic interactions in the rhizosphere, thus affecting the plant's fitness and systemic immunity. Plant and microbial traits contributing to the establishment of plant-microbiome interactions and the adaptation of this holobiont are also discussed.

5.
EMBO J ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090438

ABSTRACT

The phenylpropanoid pathway is one of the plant metabolic pathways most prominently linked to the transition to terrestrial life, but its evolution and early functions remain elusive. Here, we show that activity of the t-cinnamic acid 4-hydroxylase (C4H), the first plant-specific step in the pathway, emerged concomitantly with the CYP73 gene family in a common ancestor of embryophytes. Through structural studies, we identify conserved CYP73 residues, including a crucial arginine, that have supported C4H activity since the early stages of its evolution. We further demonstrate that impairing C4H function via CYP73 gene inactivation or inhibitor treatment in three bryophyte species-the moss Physcomitrium patens, the liverwort Marchantia polymorpha and the hornwort Anthoceros agrestis-consistently resulted in a shortage of phenylpropanoids and abnormal plant development. The latter could be rescued in the moss by exogenous supply of p-coumaric acid, the product of C4H. Our findings establish the emergence of the CYP73 gene family as a foundational event in the development of the plant phenylpropanoid pathway, and underscore the deep-rooted function of the C4H enzyme in embryophyte biology.

6.
Forensic Sci Int Genet ; 68: 102971, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39090851

ABSTRACT

Cannabis sativa can be classified in two main types, according to psychotropic cannabinoid ∆9-tetrahydrocannabinol (∆9-THC) content: the drug-type and the fiber-type. According to the European Monitoring Center for Drugs and Drug Addiction, most of the European Union countries consider the possession of cannabis, for personal use, a minor offense with possibility of incarceration. Despite of the model of legal supply (i.e., Spanish cannabis clubs, Netherlands coffee shops) or medical use (i.e., Italy), cannabis remains the most used and trafficked illicit plant in the European Union. Differentiating cannabis crops or tracing the biogeographical origin is crucial for law enforcement purposes. Chloroplast DNA (cpDNA) markers may assist to determine biogeographic origin and to differentiate hemp from marijuana. This research aims: to identify and to evaluate nine C. sativa cpDNA polymorphic SNP sites to differentiate crop type and to provide information about its biogeographical origin. Five SNaPshot™ assays for nine chloroplast markers were developed and conducted in marijuana samples seized in Chile, the USA-Mexico border and Spain, and hemp samples grown in Spain and in Italy. The SNapShot™ assays were tested on 122 cannabis samples, which included 16 blind samples, and were able to differentiate marijuana crop type from hemp crop type in all samples. Using phylogenetic analysis, genetic differences were observed between marijuana and hemp samples. Moreover, principal component analysis (PCA) supported the relationship among hemp samples, as well as for USA-Mexico border, Spanish, and Chilean marijuana samples. Genetic differences between groups based on the biogeographical origin and their crop type were observed. Increasing the number of genetic markers, including the most recently studied ones, and expanding the sample database will provide more accurate information about crop differentiation and biogeographical origin.


Subject(s)
Cannabis , DNA, Chloroplast , Polymorphism, Single Nucleotide , Cannabis/genetics , Genetic Markers , DNA, Chloroplast/genetics , Mexico , Polymerase Chain Reaction , Europe , Italy , Chile , Spain
7.
Ann Bot ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39091208

ABSTRACT

BACKGROUND AND AIMS: Not all plant-pollinator interactions are mutualistic, and in fact, deceptive pollination systems are widespread in nature. The genus Arisaema has a pollination system known as lethal deceptive pollination, in which plants not only attract pollinating insects without providing any rewards, but also trap them until they die. Many Arisaema species are endangered from various disturbances including reduction in forest habitat, modification of the forest understory owing to increasing deer abundance, and plant theft for horticultural cultivation. We aimed to theoretically investigate how lethal deceptive pollination can be maintained from a demographic perspective and how plant and pollinator populations respond to different types of disturbance. METHODS: We developed and analysed a mathematical model to describe the population dynamics of a deceptive plant species and its victim pollinator. Calibrating the model based on empirical data, we assessed the conditions under which plants and pollinators could coexist, while manipulating relevant key parameters. KEY RESULTS: The model exhibited qualitatively distinct behaviours depending on certain parameters. The plant becomes extinct when it has a low capability for vegetative reproduction and slow transition from male to female, and plant-insect co-extinction occurs especially when the plant is highly attractive to male insects. Increasing deer abundance has both positive and negative effects because of removal of other competitive plants and diminishing pollinators, respectively. Theft for horticultural cultivation can readily threaten plants whether male or female plants are frequently collected. The impact of forest habitat reduction may be limited compared to that of other disturbance types. CONCLUSIONS: Our results have emphasised that the demographic vulnerability of lethal deceptive pollination systems would differ qualitatively from that of general mutualistic pollination systems. It is therefore important to consider the demographics of both victim pollinators and deceptive plants to estimate how endangered Arisaema populations respond to various disturbances.

8.
Se Pu ; 42(8): 731-739, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39086241

ABSTRACT

Edible plant oils are a key component of the daily human diet, and the quality and safety of plant oils are related to human health. Perfluorinated and polyfluoroalkyl substances (PFASs) are pollutants that can contaminate plant oil through the processing of raw materials or exposure to materials containing these substances. Thus, establishing a sensitive and accurate analytical method for the determination of PFASs is critical for ensuring the safety of plant oils. In this study, a method based on acetonitrile extraction and solid phase extraction purification combined with ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS) was developed for the simultaneous determination of 21 PFASs, including perfluorocarboxylic acids, perfluoroalkyl sulfonic acids, and fluorotelomer sulfonic acids, in edible plant oils. The chromatographic conditions and MS parameters were optimized, and the influences of the extraction solvents and purification method were systematically studied. Plant oil samples were directly extracted with acetonitrile and purified using a weak anion-exchange (WAX) column. The 21 target PFASs were separated on a reversed-phase C18 chromatographic column and detected using a triple quadrupole mass spectrometer with an electrospray ionization source. The mass spectrometer was operated in negative-ion mode. The target compounds were analyzed in multiple reaction monitoring (MRM) mode and quantified using an internal standard method. The results demonstrated that the severe interference observed during the detection of PFASs in the co-extracted substances was completely eliminated after the extraction mixture was purified using a WAX column. The 21 target PFASs showed good linearity in their corresponding ranges, with correlation coefficients greater than 0.995. The limits of detection (LODs) and limits of quantification (LOQs) of the method were in the range of 0.004-0.015 and 0.015-0.050 µg/kg, respectively. The recoveries ranged from 95.6% to 115.8%, with relative standard deviations (RSDs) in the range of 0.3%-10.9% (n=9). The established method is characterized by simple sample pretreatment, good sensitivity, high immunity to interferences, and good stability, rendering it suitable for the rapid analysis and accurate determination of typical PFASs in edible plant oils.


Subject(s)
Fluorocarbons , Food Contamination , Plant Oils , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Fluorocarbons/analysis , Tandem Mass Spectrometry/methods , Food Contamination/analysis , Plant Oils/chemistry , Plant Oils/analysis
9.
Sci Total Environ ; 949: 175184, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39089386

ABSTRACT

Artificial regulation of plant rhizosphere microbial communities through the synthesis of microbial communities is one of the effective ways to improve plant stress resistance. However, the process of synthesizing stress resistant microbial communities with excellent performance is complex, time-consuming, and costly. To address this issue, we proposed a novel strategy for preparing functional microbial communities. We isolated a cultivable cold tolerant bacterial community (PRCBC) from the rhizosphere of peas, and studied its effectiveness in assisting rice to resist stress. The results indicate that PRCBC can not only improve the ability of rice to resist cold stress, but also promote the increase of rice yield after cold stress relieved. This is partly because PRCBC increases the nitrogen content in the rhizosphere soil, and promotes rice's absorption of nitrogen elements, thereby promoting rice growth and enhancing its ability to resist osmotic stress. More importantly, the application of PRCBC drives the succession of rice rhizosphere microbial communities, and promotes the succession of rice rhizosphere microbial communities towards stress resistance. Surprisingly, PRCBC drives the succession of rice rhizosphere microbial communities towards a composition similar to PRCBC. This provides a feasible novel method for artificially and directionally driving microbial succession. In summary, we not only proposed a novel and efficient strategy for preparing stress resistant microbial communities to promote plant stress resistance, but also unexpectedly discovered a possible directionally driving method for soil microbial community succession.

10.
Curr Res Microb Sci ; 7: 100241, 2024.
Article in English | MEDLINE | ID: mdl-39091295

ABSTRACT

Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.

11.
Ecol Evol ; 14(8): e70086, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091336

ABSTRACT

Rodents can cause considerable changes in plant community composition. However, relationships between shifts in species dominance and plant functional traits caused by rodents have seldom been investigated, especially for belowground functional traits. In this study, a set of enclosures was constructed to analyze the effects of 10 years of Brandt's voles' activities on the defense strategies and dominant position changes of three gramineous plants (Leymus chinensis, Stipa krylovii, and Cleistogenes squarrosa) in Inner Mongolia. Here, we measured the dominance, biomass, and fourteen functional traits of three plants. The effects of Brandt's voles on dominance, biomass, and functional traits were analyzed, and then we explored the effect of functional traits on plant dominance by using the structural equation model. Results showed that long-term feeding by Brandt's voles resulted in a significant decrease in the dominance of L. chinensis and S. krylovii, whereas C. squarrosa was positively affected. The belowground biomass of L. chinensis and S. krylovii was higher in the vole treatment, which showed that they were increasing their escape characteristics. The leaf thickness of L. chinensis and the leaf C:N ratio of S. krylovii significantly increased, while the specific leaf area of C. squarrosa significantly decreased. All three gramineous showed increased resistance traits in response to Brandt's voles, which positively affected their dominance. Tolerance-related traits of S. krylovii significantly increased, with the increasing growth rate of root length contributing to enhancing its dominance. We highlight that selective feeding by rodents led to the selection of different defense strategies by three gramineous plants, and that changes in biomass allocation and functional traits in the different species affected plant dominance, driving changes in the plant communities.

12.
3 Biotech ; 14(8): 188, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091408

ABSTRACT

Abiotic factors, including heat stress, significantly impact the growth and development of lentil across the globe. Although these stresses impact the plant's phenotypic, genotypic, metabolic, and yield development, predicting those traits in lentil is challenging. This study aimed to construct a machine learning-based yield prediction model for lentil using various yield attributes under two different sowing conditions. Twelve genotypes were planted in open-field conditions, and images were captured 45 days after sowing (DAS) and 60 DAS to make predictions for agro-morphological traits with the assessment for the influence of high-temperature stress on lentil growth. Greening techniques like Excess Green, Modified Excess Green (ME × G), and Color Index of Plant Extraction (CIVE) were used to extract 35 vegetative indices from the crop image. Random forest (RF) regression and artificial neural network (ANN) models were developed for both the normal-sown and late-sown lentils. The ME × G-CIVE method with Otsu's thresholding provided superior performance in image segmentation, while the RF model showed the highest level of model generalization. This study demonstrated that yield per plant and number of pods per plant were the most significant attributes for early prediction of lentil production in both conditions using the RF models. After harvesting, various yield parameters of the selected genotypes were measured, showing significant reductions in most traits for the late-sown plants. Heat-tolerant genotypes like RLG-05, Kota Masoor-1, and Kota Masoor-2 depicted decreased yield and harvest index (HI) reduction than the heat-sensitive HUL-57. These findings warrant further study to correlate the data with more stress-modulating attributes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04031-5.

13.
Heliyon ; 10(13): e33322, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39091953

ABSTRACT

The study aims to analyze and decompose the qualitative parameters of wood chips in Poland. The European Green Deal brings the new framework to support sustainability and elimination of emissions. The Wavelet coherence and Wavelet Discrete Decomposition are used for determination of relations among significant qualitative parameters. Thus, the possible uses are discussed. For the obvious relationship between moisture and calorific value there is evidence of strong correlation. The behaviour of these interrelations are different at frequencies in the long and short time. The wood chip price is inter-transmitter from moisture parameter to calorific value in a positive (in-phase) relationship. At both low and high frequencies there is evidence that the variables of moisture and calorific value are highly correlated. The transient effect of linkage is presented at values between 0.1 and 0.3 in coherence map. The empirical findings provide implication for local producers and policymakers.

14.
Int J Biol Macromol ; : 134361, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097070

ABSTRACT

The plum seed protein isolates (PSPI) were used to prepare a gel by probiotics fermentation. The effects of fermentation time (from 0 to 12 h) on the physicochemical properties of PSPI gel were evaluated. The results showed that PSPI started to form a gel after 6 h of fermentation, as evidenced by a decrease in pH from 6.6 to 5.2, an increase in particle size from 10 µm to 40 µm, appearance of a new peak with retention time of 10 min in gel filtration high-performance liquid chromatography, and formation of aggregation and porous structure observed by fluorescence and scanning electron microscope. The PSPI gel from 9 h of fermentation exhibited the highest viscosity (318 Pa.s), storage modulus (18,000 Pa), water holding capacity (37 %), and gel strength (21.5 g) due to stronger molecular interactions such as hydrogen bond, electrostatic, hydrophobic interaction and disulfide bond. However, increasing fermentation time over 9 h led to disrupture of PSPI gel. Furthermore, the subunit around 15 kDa of PSPI disappeared after fermentation, indicating that the formation of PSPI gel was induced by both acidification and partial hydrolysis. Our results suggest that PSPI can provide an alternative for developing plant-based gel products.

15.
Ann Bot ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097776

ABSTRACT

BACKGROUND AND AIMS: Freshwater nitrogen inputs are increasing globally, altering the structure and function of wetland ecosystems adapted to low nutrient conditions. Carnivorous wetland plants, Utricularia spp., are hypothesised to reduce their reliance on carnivory and increase their assimilation of environmental nutrients when the supply of ambient nutrients increases. Despite success in using stable isotope approaches to quantify carnivory of terrestrial carnivorous plants, quantifying carnivory of aquatic Utricularia requires improvement. METHODS: We developed stable isotope mixing models to quantify aquatic plant carnivory and used these models to measure dietary changes of three Utricularia species: Utricularia australis, U. gibba, and U. uliginosa in 11 wetlands across a 794 km gradient in eastern Australia. Diet was assessed using multiple models that compared variations in the natural abundance nitrogen isotope composition (δ15N) of Utricularia spp. with that of non-carnivorous plants, and environmental and carnivorous nitrogen sources. KEY RESULTS: Carnivory supplied 40 - 100 % of plant nitrogen. The lowest carnivory rates coincided with the highest availability of ammonium and dissolved organic carbon. CONCLUSIONS: Our findings suggest that Utricularia populations may adapt to high nutrient environments by shifting away from energetically costly carnivory. This has implications for species conservation as anthropogenic impacts continue to affect global wetland ecosystems.

16.
Plant Cell Environ ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087790

ABSTRACT

Cold stress negatively impacts the growth, development, and quality of Camellia sinensis (Cs, tea) plants. CBL-interacting protein kinases (CIPK) comprise a pivotal protein family involved in plant development and response to multiple environmental stimuli. However, their roles and regulatory mechanisms in tea plants (Camellia sinensis (L.) O. Kuntze) remain unknown. Here we show that CsCBL-interacting protein kinase 11 (CsCIPK11), whose transcript abundance was significantly induced at low temperatures, interacts and phosphorylates tau class glutathione S-transferase 23 (CsGSTU23). CsGSTU23 was also a cold-inducible gene and has significantly higher transcript abundance in cold-resistant accessions than in cold-susceptible accessions. CsCIPK11 phosphorylated CsGSTU23 at Ser37, enhancing its stability and enzymatic activity. Overexpression of CsCIPK11 in Arabidopsis thaliana resulted in enhanced cold tolerance under freezing conditions, while transient knockdown of CsCIPK11 expression in tea plants had the opposite effect, resulting in decreased cold tolerance and suppression of the C-repeat-binding transcription factor (CBF) transcriptional pathway under freezing stress. Furthermore, the transient overexpression of CsGSTU23 in tea plants increased cold tolerance. These findings demonstrate that CsCIPK11 plays a central role in the signaling pathway to cold signals and modulates antioxidant capacity by phosphorylating CsGSTU23, leading to improved cold tolerance in tea plants.

17.
Microb Ecol ; 87(1): 103, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088119

ABSTRACT

Plants thrive in diverse environments, where root-microbe interactions play a pivotal role. Date palm (Phoenix dactylifera L.), with its genetic diversity and resilience, is an ideal model for studying microbial adaptation to different genotypes and stresses. This study aimed to analyze the bacterial and fungal communities associated with traditional date palm cultivars and the widely cultivated "Deglet Nour" were explored using metabarcoding approaches. The microbial diversity analysis identified a rich community with 13,189 bacterial and 6442 fungal Amplicon Sequence Variants (ASVs). Actinobacteriota, Proteobacteria, and Bacteroidota dominated bacterial communities, while Ascomycota dominated fungal communities. Analysis of the microbial community revealed the emergence of two distinct clusters correlating with specific date palm cultivars, but fungal communities showed higher sensitivity to date palm genotype variations compared to bacterial communities. The commercial cultivar "Deglet Nour" exhibited a unique microbial composition enriched in pathogenic fungal taxa, which was correlated with its genetic distance. Overall, our study contributes to understanding the complex interactions between date palm genotypes and soil microbiota, highlighting the genotype role in microbial community structure, particularly among fungi. These findings suggest correlations between date palm genotype, stress tolerance, and microbial assembly, with implications for plant health and resilience. Further research is needed to elucidate genotype-specific microbial interactions and their role in enhancing plant resilience to environmental stresses.


Subject(s)
Bacteria , Fungi , Microbiota , Phoeniceae , Soil Microbiology , Phoeniceae/microbiology , Phoeniceae/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Fungi/physiology , Genotype , Plant Roots/microbiology , Soil/chemistry
18.
Sci Rep ; 14(1): 17821, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090093

ABSTRACT

Wild edible plants (WEPs) are important food sources globally due to their accessibility and affordability. In Ethiopia, where diverse cultural groups consume WEPs, this systematic review explores their diversity, edible parts, and role in supporting food security. The review examined 38 original studies on the ethnobotany of WEPs in Ethiopia from 2000 to 2022. It identified a total of 651 WEP species from 343 genera and 94 families, with the Fabaceae family having the most species (51). Herbs and shrubs were the predominant growth habits, and fruits were the most consumed plant parts. The review prioritized nine WEP species for cultivation and promotion. However, threats such as overgrazing, agricultural expansion, and the use of woody species for construction, firewood, and charcoal have depleted WEP resources and eroded traditional knowledge about their use. The review suggests that WEPs have the potential to contribute to food and nutritional security in Ethiopia if these threats are effectively managed. However, the limited coverage of ethnobotanical studies on WEPs requires further investigation. The study recommends integrating the prioritized WEPs into the national food system for promotion, cultivation, and nutrient analysis to evaluate their nutritional bioavailability.


Subject(s)
Ethnobotany , Food Security , Plants, Edible , Ethiopia , Humans , Food Supply , Biodiversity
19.
BMC Biotechnol ; 24(1): 51, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090578

ABSTRACT

This study explores the potential antibacterial applications of zinc oxide nanoparticles (ZnO NPs) enhanced with silver (Ag) using plant gel (ZnO-AgO NPs). The problem addressed is the increasing prevalence of pathogenic bacteria and the need for new, effective antimicrobial agents. ZnO NPs possess distinctive physicochemical properties that enable them to selectively target bacterial cells. Their small size and high surface area-to-volume ratio allow efficient cellular uptake and interaction with bacterial cells. In this study, the average size of the synthesized ZnO-Ag nanoparticles was 77.1 nm, with a significant standard deviation of 33.7 nm, indicating a wide size distribution. The nanoparticles demonstrated remarkable antibacterial efficacy against gram-negative and gram-positive bacteria, with inhibition zones of 14.33 mm for E. coli and 15.66 mm for B. subtilis at a concentration of 300 µg/ml. Minimum inhibitory concentrations (MIC) were determined to be 100 µg/ml for E. coli and 75 µg/ml for S. saprophyticus. Additionally, ZnO-Ag NPs exhibited excellent biocompatibility, making them appropriate for various pharmacological uses. This study utilizes Ferula latisecta gels, offering a sustainable and eco-friendly approach to nanoparticle synthesis. Incorporating of Ag into ZnO NPs significantly enhances their antimicrobial properties, with the combined results showing great inhibition effects on pathogenic microbes. The findings suggest that ZnO-Ag NPs could be a promising candidate for addressing the challenges posed by drug-resistant bacterial infections and enhancing antimicrobial treatments.


Subject(s)
Anti-Bacterial Agents , Ferula , Gram-Negative Bacteria , Gram-Positive Bacteria , Metal Nanoparticles , Microbial Sensitivity Tests , Silver , Zinc Oxide , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Gram-Positive Bacteria/drug effects , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Gram-Negative Bacteria/drug effects , Ferula/chemistry , Gels/chemistry , Gels/pharmacology , Escherichia coli/drug effects
20.
Sci Total Environ ; 949: 175141, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094649

ABSTRACT

Molybdenum (Mo) contamination of farmland soils poses health risks due to Mo accumulation in crops like rice. However, the mechanisms regulating soil availability and plant uptake of Mo remain poorly understood. This study investigated Mo uptake by rice plants, focusing on Mo speciation and isotope fractionation in soil and rice plants. Soil Mo species were identified as sorbed Mo(VI) and Fe-Mo(VI) using X-ray absorption spectroscopy (XAS). Soil submergence during rice cultivation led to the reductive dissolution of Fe-associated Mo(VI) while increasing sorbed Mo(VI) and Ca-Mo(VI). Soil Mo release to soil solution was a dynamic process involving continuous dissolution/desorption and re-precipitation/sorption. Mo isotope analysis showed soil solution was consistently enriched in heavier isotopes during rice growth, attributed to re-sorption of released Mo and the uptake of Mo by rice plants. Mo was significantly associated with Fe in rice rhizosphere as sorbed Mo(VI) and Fe-Mo(VI), and around 60 % of Mo accumulated in rice roots was sequestrated by Fe plaque of the roots. The desorption of Mo from Fe hydroxides to soil solution and its subsequent diffusion to the root surface were the key rhizosphere processes regulating root Mo uptake. Once absorbed by roots, Mo was efficiently transported to shoots and then to grains, resulting in heavier isotope fractionation during the translocation within plants. Although Mo translocation to rice grains was relatively limited, human exposure via rice consumption remains a health concern. This study provides insights into the temporal dynamics of Mo speciation in submerged paddy soil and the uptake mechanisms of Mo by rice plants.

SELECTION OF CITATIONS
SEARCH DETAIL