Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(34): 47275-47290, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38990259

ABSTRACT

As a consequence of the tight linkages between plants, soil, and microorganisms, we hypothesized the variations in plant species would change soil and microbial stoichiometry. Here, we examined the plant leaf carbon (C):nitrogen (N):phosphorus (P) ratios of nine species coming from three plant functional groups (PFGs) in the riparian zones of Hulunbuir steppe during near-peak biomass. The soil C:N:P, microbial biomass carbon (MBC):microbial biomass nitrogen (MBN), and extracellular enzyme's C:N:P were also assessed using the soils from each species. We found that plant tissue, soil nutrient, microbial, and enzyme activity stoichiometry significantly differed among different PFGs. Plant leaf and soil nutrient ratios tended to be similar (p > 0.05) between different species within the same PFGs. The variations in leaf C:N:P significantly correlated with the changes in soil C:N:P and MBC:MBN ratios. The homeostatic coefficients (H) < 1 suggested the relationships between plants and their resources C:N:P ratios might be non-homeostatic in the examined riparian zone. By assessing plant tissue and its soil nutrient stoichiometry, this study provided a perspective to understand the linkages of plant community, soil nutrient, and microbial characteristics.


Subject(s)
Carbon , Nitrogen , Phosphorus , Soil Microbiology , Soil , Soil/chemistry , Plants , Biomass , Plant Leaves
2.
Ecol Evol ; 14(3): e10919, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476707

ABSTRACT

The rapid loss of global biodiversity can greatly affect the normal functioning of ecosystems. However, how biodiversity losses affect plant community structure and soil nutrients is unclear. We conducted a field experiment to examine the short- and long-term effects of removing plant functional groups (Gramineae, Cyperaceae, legumes, and forbs) on the interrelationships among the species diversity, productivity, community structure, and soil nutrients in an alpine meadow ecosystem at Menyuan County, Qinghai Province. The variations in the species richness, above- and belowground biomass of the community gradually decreased over time. Species richness and productivity were positively correlated, and this correlation tended to be increasingly significant over time. Removal of the Cyperaceae, legumes, and other forbs resulted in fewer Gramineae species in the community. Soil total nitrogen, phosphorus, organic matter, and moisture contents increased significantly in the legume removal treatment. The removal of other forbs led to the lowest negative cohesion values, suggesting that this community may have difficulty recovering its previous equilibrium state within a short time. The effects of species removal on the ecosystem were likely influenced by the species structure and composition within the community. Changes in the number of Gramineae species indicated that they were more sensitive and less resistant to plant functional group removal. Legume removal may also indirectly cause distinct community responses through starvation and compensation effects. In summary, species loss at the community level led to extensive species niche shifts, which caused community resource redistribution and significant changes in community structure.

3.
Trends Ecol Evol ; 39(1): 23-30, 2024 01.
Article in English | MEDLINE | ID: mdl-37673714

ABSTRACT

Functional trait variation measured on continuous scales has helped ecologists to unravel important ecological processes. However, forest ecologists have recently moved back toward using functional groups. There are pragmatic and biological rationales for focusing on functional groups. Both of these approaches have inherent limitations including binning clearly continuous distributions, poor trait-group matching, and narrow conceptual frameworks for why groups exist and how they evolved. We believe the pragmatic use of functional groups due to data deficiencies will eventually erode. Conversely, we argue that existing conceptual frameworks for why a limited number of tree functional groups may exist is a useful, but flawed, starting point for modeling forests that can be improved through the consideration of unmeasured axes of functional variation.


Subject(s)
Forests , Trees , Phenotype , Ecosystem
4.
Glob Chang Biol ; 29(24): 7072-7084, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37795748

ABSTRACT

Anthropogenic eutrophication is known to impair the stability of aboveground net primary productivity (ANPP), but its effects on the stability of belowground (BNPP) and total (TNPP) net primary productivity remain poorly understood. Based on a nitrogen and phosphorus addition experiment in a Tibetan alpine grassland, we show that nitrogen addition had little impact on the temporal stability of ANPP, BNPP, and TNPP, whereas phosphorus addition reduced the temporal stability of BNPP and TNPP, but not ANPP. Significant interactive effects of nitrogen and phosphorus addition were observed on the stability of ANPP because of the opposite phosphorus effects under ambient and enriched nitrogen conditions. We found that the stability of TNPP was primarily driven by that of BNPP rather than that of ANPP. The responses of BNPP stability cannot be predicted by those of ANPP stability, as the variations in responses of ANPP and BNPP to enriched nutrient, with ANPP increased while BNPP remained unaffected, resulted in asymmetric responses in their stability. The dynamics of grasses, the most abundant plant functional group, instead of community species diversity, largely contributed to the ANPP stability. Under the enriched nutrient condition, the synchronization of grasses reduced the grass stability, while the latter had a significant but weak negative impact on the BNPP stability. These findings challenge the prevalent view that species diversity regulates the responses of ecosystem stability to nutrient enrichment. Our findings also suggest that the ecological consequences of nutrient enrichment on ecosystem stability cannot be accurately predicted from the responses of aboveground components and highlight the need for a better understanding of the belowground ecosystem dynamics.


Subject(s)
Ecosystem , Grassland , Tibet , Nitrogen , Phosphorus , Poaceae
5.
Front Plant Sci ; 14: 1235510, 2023.
Article in English | MEDLINE | ID: mdl-37575909

ABSTRACT

Background: Desert steppe, as an ecotone between desert and grassland, has few species and is sensitive to climate change. Climate change alters species diversity and the stability of functional groups, which may positively or negatively affect community stability. However, the response of plant community stability in the desert steppe to experimental warming and increasing precipitation remains largely unexplored. Methods: In a factorial experiment of warming and increasing precipitation for five to seven years (ambient precipitation (P0), ambient precipitation increased by 25% and 50% (P1 and P2), ambient temperature (W0), ambient temperature increased by 2°C and 4°C (W1 and W2)), we estimated the importance value (IV) of four functional groups (perennial grasses, semi-shrubs, perennial forbs and annual herbs), species diversity and community stability. Results: Compared to W0P0, the IV of perennial grasses was reduced by 37.66% in W2P2, whereas the IV of perennial forbs increased by 48.96%. Although increasing precipitation and experimental warming significantly altered species composition, the effect on species diversity was insignificant (P > 0.05). In addition, increasing precipitation and experimental warming had a significant negative impact on community stability. The stability of perennial grasses significantly explained community stability. Conclusion: Our results suggest that the small number of species in desert steppe limits the contribution of species diversity to regulating community stability. By contrast, maintaining high stability of perennial grasses can improve community stability in the desert steppe.

6.
New Phytol ; 238(5): 1838-1848, 2023 06.
Article in English | MEDLINE | ID: mdl-36891665

ABSTRACT

Despite the vital role in carbon (C) sequestration and nutrient retention, variations and patterns in root C and nitrogen (N) stoichiometry of the first five root orders across woody plant species remains unclear. We compiled a dataset to explore variations and patterns of root C and N stoichiometry in the first five orders of 218 woody plant species. Across the five orders, root N concentrations were greater in deciduous, broadleaf, and arbuscular mycorrhizal species than in evergreen, coniferous species, and ectomycorrhizal association species, respectively. Contrasting trends were found for root C : N ratios. Most root branch orders showed clear latitudinal and altitudinal trends in root C and N stoichiometry. There were opposite patterns in N concentrations between latitude and altitude. Such variations were mainly driven by plant species, and climatic factors together. Our results indicate divergent C and N use strategies among plant types and convergence and divergence in the patterns of C and N stoichiometry between latitude and altitude across the first five root orders. These findings provide important data on the root economics spectrum and biogeochemical models to improve understanding and prediction of climate change effects on C and nutrient dynamics in terrestrial ecosystems.


Subject(s)
Mycorrhizae , Tracheophyta , Ecosystem , Wood , Plants , Nitrogen , Plant Roots
7.
J Environ Manage ; 325(Pt A): 116499, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36257227

ABSTRACT

Over-compensatory growth of plants after disturbance is generally preferred by grassland users and managers because of more forage. How the grassland productivity and the plant growth condition before disturbance affect the compensatory growth are important for grazing management and the understanding of grassland degradation, yet they are not well understood. A clipping experiment was conducted on the Qinghai-Tibetan Plateau to understand the compensatory growth and conditions for the occurrence of over-compensatory at alpine meadows with different degradation status. Results showed the competition for light constrains the plant growth post-clipping at non-degraded and slightly degraded alpine meadows, while the reduction of soil nitrogen limits it at heavily degraded alpine meadow. The biomass accumulated post-clipping was positively correlated with the growing season biomass in unclipped plots and the biomass at clipping in clipped plots. When the aboveground biomass at clipping was less than 40.10 g m-2 and the growing season biomass was between 38 and 97 g m-2, the over-compensatory growth of alpine meadow could occur. Higher clipping rate is required for the alpine meadow with high productivity but the maximum clipping rate should be less than 0.71 to induce the over-compensatory growth. Equal-compensatory occurred at non-degraded and slightly degraded, while over-compensatory growth was observed at moderately degraded and a marginally significant over-compensatory growth at heavily degraded alpine meadow. The over-compensatory growth occurred at moderately degraded alpine meadow is mainly due to the performance of forbs. Our results suggest that grazing at moderately degraded alpine meadow may induce the over-compensatory growth at the community level, but the over-compensatory growth of forbs at moderately degraded alpine meadow may aggravate the alpine meadow degradation.


Subject(s)
Grassland , Soil , Tibet , Biomass , Nitrogen/analysis , Plants/metabolism
8.
Front Plant Sci ; 13: 961692, 2022.
Article in English | MEDLINE | ID: mdl-36176676

ABSTRACT

In grassland ecosystems, the plant functional group (PFG) is an important bridge connecting individual plants to the community system. The grassland ecosystem is the main ecosystem type on the Qinghai-Tibet Plateau. Altun Mountain is located in the key grassland transcontinental belt of the northern Qinghai-Tibet Plateau. The composition and changes in the PFG in this ecosystem reflect the community characteristics in the arid and semi-arid extreme climate regions of the Plateau. The main PFGs were forbs and grasses, and the importance values (IVs) accounted for more than 50%. Plant species diversity of the community was influenced by the IV of the legumes, and the increase in legumes would promote the increase in plant community diversity. The C, N, and P contents of plant communities were mainly influenced by forbs and grasses, and the relationship between forbs and C, N, and P was opposite to that of grasses. However, under the influence of different hydrothermal conditions, forbs and grasses as dominant functional groups had a stronger correlation with community and soil nutrients. This indicates that the dominant PFGs (forbs and grasses) can dominate the C, N, and P contents of the community and soil, and legumes affect community composition and succession. In this study, we analyzed the changing characteristics of functional groups in dry and cold extreme environments and the difference in their impacts on community development compared with other grassland ecosystem functional groups.

9.
J Plant Physiol ; 272: 153671, 2022 May.
Article in English | MEDLINE | ID: mdl-35381492

ABSTRACT

Leaf traits of global plants reveal the fundamental trade-offs in plant resource acquisition to conservation strategies. However, which leaf traits are consistent, converged, or diverged among herbs, shrubs, and subshrubs in an arid environment remains unclear. In the present study, we evaluated the trade-offs in six leaf functional traits (LFTs): leaf fresh mass (LFM), leaf dry mass (LDM), leaf dry matter content (LDMC), leaf area (LA), specific leaf area (SLA), and leaf thickness (LTh) of 37 desert plant species. LFTs differed between different plant life forms; LFM, LDM, and LA were slightly higher in herbs, LDMC and LTh in shrubs, and SLA in subshrubs. Conversely, the correlations among LFTs were inconsistent in different life forms, which may indicate their different adaptation strategies in an arid environment. Legumes and C3 plants exhibited slightly higher LDMC, LA, and SLA than non-legumes and C4 plants, whereas non-legumes and C4 plants showed higher (nonsignificant) LFM, LDM, and LTh than legumes and C3 plants. A significant phylogenetic signal (PS) and maximum K-value were found for SLA (K = 0.32). LFTs exhibited convergent and divergent variations among different life forms. However, these variations in LFTs were not influenced by phylogeny. Together, these findings increase our understanding of the variations in ecological adaptations of desert plants as well as adaption strategies of different life forms in an arid environment.


Subject(s)
Plant Leaves , Plants , Acclimatization , Phenotype , Phylogeny , Plant Leaves/genetics
10.
Front Plant Sci ; 13: 836968, 2022.
Article in English | MEDLINE | ID: mdl-35321443

ABSTRACT

Shifts in the timing, intensity and/or frequency of climate extremes, such as severe drought and heatwaves, can generate sustained shifts in ecosystem function with important ecological and economic impacts for rangelands and managed pastures. The Pastures and Climate Extremes experiment (PACE) in Southeast Australia was designed to investigate the impacts of a severe winter/spring drought (60% rainfall reduction) and, for a subset of species, a factorial combination of drought and elevated temperature (ambient +3°C) on pasture productivity. The experiment included nine common pasture and Australian rangeland species from three plant functional groups (C3 grasses, C4 grasses and legumes) planted in monoculture. Winter/spring drought resulted in productivity declines of 45% on average and up to 74% for the most affected species (Digitaria eriantha) during the 6-month treatment period, with eight of the nine species exhibiting significant yield reductions. Despite considerable variation in species' sensitivity to drought, C4 grasses were more strongly affected by this treatment than C3 grasses or legumes. Warming also had negative effects on cool-season productivity, associated at least partially with exceedance of optimum growth temperatures in spring and indirect effects on soil water content. The combination of winter/spring drought and year-round warming resulted in the greatest yield reductions. We identified responses that were either additive (Festuca), or less-than-additive (Medicago), where warming reduced the magnitude of drought effects. Results from this study highlight the sensitivity of diverse pasture species to increases in winter and spring drought severity similar to those predicted for this region, and that anticipated benefits of cool-season warming are unlikely to be realized. Overall, the substantial negative impacts on productivity suggest that future, warmer, drier climates will result in shortfalls in cool-season forage availability, with profound implications for the livestock industry and natural grazer communities.

11.
Sci Total Environ ; 822: 153380, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35077786

ABSTRACT

European mountain grasslands are increasingly affected by land-use changes and climate, which have been suggested to exert important controls on grassland carbon (C) and nitrogen (N) pools. However, so far there has been no synthetic study on whether and how land-use changes and climate interactively affect the partitioning of these pools amongst the different grassland compartments. We analyzed the partitioning of C and N pools of 36 European mountain grasslands differing in land-use and climate with respect to above- and belowground phytomass, litter and topsoil (top 23 cm). We found that a reduction of management intensity and the abandonment of hay meadows and pastures increased above-ground phytomass, root mass and litter as well as their respective C and N pools, concurrently decreasing the fractional contribution of the topsoil to the total organic carbon pool. These changes were strongly driven by the cessation of cutting and grazing, a shift in plant functional groups and a related reduction in litter quality. Across all grasslands studied, variation in the impact of land management on the topsoil N pool and C/N-ratio were mainly explained by soil clay content combined with pH. Across the grasslands, below-ground phytomass as well as phytomass- and litter C concentrations were inversely related to the mean annual temperature; furthermore, C/N-ratios of phytomass and litter increased with decreasing mean annual precipitation. Within the topsoil compartment, C concentrations decreased from colder to warmer sites, and increased with increasing precipitation. Climate generally influenced effects of land use on C and N pools mainly through mean annual temperature and less through mean annual precipitation. We conclude that site-specific conditions need to be considered for understanding the effects of land use and of current and future climate changes on grassland C and N pools.


Subject(s)
Carbon , Nitrogen , Grassland , Nitrogen/analysis , Plants , Soil/chemistry
12.
Front Plant Sci ; 12: 773676, 2021.
Article in English | MEDLINE | ID: mdl-34917107

ABSTRACT

Urbanization causes alteration in atmospheric, soil, and hydrological factors and substantially affects a range of morphological and physiological plant traits. Correspondingly, plants might adopt different strategies to adapt to urbanization promotion or pressure. Understanding of plant traits responding to urbanization will reveal the capacity of plant adaptation and optimize the choice of plant species in urbanization green. In this study, four different functional groups (herbs, shrubs, subcanopies, and canopies, eight plant species totally) located in urban, suburban, and rural areas were selected and eight replicated plants were selected for each species at each site. Their physiological and photosynthetic properties and heavy metal concentrations were quantified to reveal plant adaptive strategies to urbanization. The herb and shrub species had significantly higher starch and soluble sugar contents in urban than in suburban areas. Urbanization decreased the maximum photosynthetic rates and total chlorophyll contents of the canopies (Engelhardtia roxburghiana and Schima superba). The herbs (Lophatherum gracile and Alpinia chinensis) and shrubs (Ardisia quinquegona and Psychotria rubra) species in urban areas had significantly lower nitrogen (N) allocated in the cell wall and leaf δ15N values but higher heavy metal concentrations than those in suburban areas. The canopy and subcanopy (Diospyros morrisiana and Cratoxylum cochinchinense) species adapt to the urbanization via reducing resource acquisition but improving defense capacity, while the herb and shrub species improve resource acquisition to adapt to the urbanization. Our current studies indicated that functional groups affected the responses of plant adaptive strategies to the urbanization.

13.
New Phytol ; 232(4): 1648-1660, 2021 11.
Article in English | MEDLINE | ID: mdl-34418102

ABSTRACT

Leaf functional traits and their covariation underlie plant ecological adaptations along environmental gradients, but there is limited information on the global covariation patterns of key leaf construction traits. To explore how leaf construction traits co-vary across diverse climate and soil environmental conditions, we compiled a global dataset including cell wall mass per unit leaf mass (CWmass ), leaf carbon (C) and calcium (Ca) concentrations, and specific leaf area (SLA) for 2348 angiosperm species from 340 sites world-wide. Our results demonstrated negative correlations between leaf C and Ca concentrations and between leaf C and SLA across diverse nongraminoid angiosperms. Leaf C concentration increased with increasing mean annual temperature (MAT) and mean annual precipitation (MAP) and with decreasing soil pH and calcium carbonate (CaCO3 ) concentration, whereas leaf Ca concentration and SLA exhibited the opposite responses to these environmental variables. The covariations of leaf Ca-C and of leaf SLA-C were stronger in habitats with lower MAT and MAP, and/or higher soil CaCO3 content. This global-scale analysis demonstrates that the leaf C and Ca concentrations and SLA together govern the C and biomass investment strategies in leaves of nongraminoids. We conclude that environmental conditions strongly shape leaf construction traits and their covariation patterns.


Subject(s)
Climate , Soil , Carbon , Ecosystem , Plant Leaves
14.
Environ Sci Pollut Res Int ; 28(46): 66272-66286, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34333746

ABSTRACT

Soil and litter play important roles in ecosystem nutrient storage and cycling, which both affect plant growth and ecosystem productivity. However, the potential linkages between soil and litter nutrient characteristics and nutrient characteristics of different plant functional groups (PFGs) remain unclear. In this study, we investigated the carbon (C), nitrogen (N), and phosphorus (P) concentrations and stoichiometric ratios in different organs of three PFGs (trees, shrubs, and herbs), litter, and soil in nine natural secondary mixed forests in the Qinling Mountains. Leaves N and P concentrations and N:P ratios, varied from 15.6 to 18.97 mg·g-1, 1.86 to 2.01 mg·g-1, and 7.34 to 8.72, were highest at the organ level, whereas the C:N and C:P values were lowest in leaves. At the PFG level, N and P concentrations of herbaceous were 1.23 to 3.69 and 1.42 to 1.93 times higher than those in same organs of woody species, while the N:P ratio was significantly lower in herb leaves than in tree and shrub leaves. Tree organs had significantly higher C concentrations and C:N and C:P ratios than shrub and herb organs. The leaf N:P ratios of all PFGs were less than 14, suggesting that plant growth was limited by N in the study region. The nutrient contents and stoichiometric ratios in plant organs had different degrees of linkages with those in litter and soil. Soil nutrient characteristics mainly affected (23.9 to 56.4%) the nutrient characteristics of the different PFGs, and litter nutrient characteristics also had important contributions (4.5 to 49.7%) to the nutrient characteristics of PFGs, showing the following order: herbs > trees > shrubs. Our results indicate that the functional difference in plant organs resulted in diverse nutrient concentrations; and varied nutrient connections exist among different ecosystem components. Furthermore, nutrient characteristics of litter and soil can together affect the nutrient characteristics of PFGs.


Subject(s)
Ecosystem , Soil , China , Forests , Nitrogen/analysis , Nutrients , Phosphorus , Plant Leaves/chemistry , Trees
15.
BMC Biol ; 19(1): 50, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33757496

ABSTRACT

BACKGROUND: The anthropogenic increase of atmospheric CO2 concentration (ca) is impacting carbon (C), water, and nitrogen (N) cycles in grassland and other terrestrial biomes. Plant canopy stomatal conductance is a key player in these coupled cycles: it is a physiological control of vegetation water use efficiency (the ratio of C gain by photosynthesis to water loss by transpiration), and it responds to photosynthetic activity, which is influenced by vegetation N status. It is unknown if the ca-increase and climate change over the last century have already affected canopy stomatal conductance and its links with C and N processes in grassland. RESULTS: Here, we assessed two independent proxies of (growing season-integrating canopy-scale) stomatal conductance changes over the last century: trends of δ18O in cellulose (δ18Ocellulose) in archived herbage from a wide range of grassland communities on the Park Grass Experiment at Rothamsted (U.K.) and changes of the ratio of yields to the CO2 concentration gradient between the atmosphere and the leaf internal gas space (ca - ci). The two proxies correlated closely (R2 = 0.70), in agreement with the hypothesis. In addition, the sensitivity of δ18Ocellulose changes to estimated stomatal conductance changes agreed broadly with published sensitivities across a range of contemporary field and controlled environment studies, further supporting the utility of δ18Ocellulose changes for historical reconstruction of stomatal conductance changes at Park Grass. Trends of δ18Ocellulose differed strongly between plots and indicated much greater reductions of stomatal conductance in grass-rich than dicot-rich communities. Reductions of stomatal conductance were connected with reductions of yield trends, nitrogen acquisition, and nitrogen nutrition index. Although all plots were nitrogen-limited or phosphorus- and nitrogen-co-limited to different degrees, long-term reductions of stomatal conductance were largely independent of fertilizer regimes and soil pH, except for nitrogen fertilizer supply which promoted the abundance of grasses. CONCLUSIONS: Our data indicate that some types of temperate grassland may have attained saturation of C sink activity more than one century ago. Increasing N fertilizer supply may not be an effective climate change mitigation strategy in many grasslands, as it promotes the expansion of grasses at the disadvantage of the more CO2 responsive forbs and N-fixing legumes.


Subject(s)
Carbon Dioxide/metabolism , Grassland , Nitrogen/metabolism , Photosynthesis , Plant Stomata/physiology , Cellulose/chemistry , Climate Change , England , Oxygen Isotopes/analysis , Plant Leaves/physiology
16.
Naturwissenschaften ; 107(6): 51, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33241430

ABSTRACT

In tropical dry forests (TDFs), stem-succulent deciduous species produce leaves during the dry season which coincides with the period of lower herbivore abundance. In this study, we evaluated the effects of abiotic factors (precipitation and day length) on the vegetative phenology of three stem-succulent deciduous species (Cochlospermum vitifolium, Commiphora leptophloeos, and Manihot anomala) during 2 years. In addition, we compared leaf damage by herbivores and leaf defensive traits (specific leaf area, thickness, and content of phenolic compounds) on leaf cohorts produced before and during the rainy season by these stem-succulent deciduous species. We also evaluated herbivory and defensive traits on leaves produced during the rainy season by 14 non-succulent deciduous species. There was a positive effect of precipitation and day length on the amount of green leaves exhibited by the three stem-succulent species. The leaf cohort produced during the dry season by stem-succulent species showed lower leaf damage and content of phenolic compounds than the cohort produced during the rainy season by the same species and by non-succulent deciduous species. Leaf damage was only affected (positively) by the content of phenolic compounds, suggesting the production of induced defenses during leaf expansion. In general, herbivory levels were low in this study (0.57-6.37%) when compared with other TDFs, suggesting that a scape from herbivores due to anticipated leaf production is a weak selective force affecting plant fitness. These variations in leaf traits are mostly related to contrasting water conservation strategies among phenological groups. Further studies should evaluate other defensive and nutritional traits, as well as their variations along the leaf lifespan, to unravel herbivory patterns in TDFs.


Subject(s)
Herbivory/physiology , Magnoliopsida/anatomy & histology , Photoperiod , Plant Leaves/anatomy & histology , Rain , Animals , Forests , Magnoliopsida/physiology , Plant Leaves/chemistry , Tropical Climate
17.
J Environ Manage ; 271: 111037, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32778317

ABSTRACT

Riparian ecosystems are shaped by interactions among streamflow, plants, and physical processes. Sustaining functioning riparian ecosystems in the face of climate change, growing human demands for water, and increasing water scarcity requires improved understanding of the sensitivity of riparian ecosystems to shifts in flow regimes and associated adaptive management strategies. We applied projected future flow regimes to an ecogeomorphic model of riparian and channel response to evaluate these interactions. We tested the hypothesis that components of the riparian ecosystem vary in their vulnerabilities to shifts in flow attributes and that changes in the representation of functional groups of plants result from interactions between ecological and physical drivers. Using the Yampa and Green Rivers in northwestern Colorado as our test system, we investigated ecogeomorphic response to (1) synthetic flow regimes representing continuous changes from baseline flows; and (2) future flow scenarios that incorporate changing climate, demand, and water-resource projects. For this region, we showed that riparian plant presence, composition, and cover are highly sensitive to the high flows that occur early in the growing season, but that shifts to low flows are also important, especially for determining the functional diversity of a riparian community. Future flow regimes are likely to induce vegetation encroachment on lower channel surfaces and to increase plant cover, which will be dominated by fewer functional groups. In particular, we predict a decrease in some mesic plants (shrubs and tall herbs) and an increase in presence and cover of late-seral, xeric shrubs, most of which are non-native species. Managing for high flows that occur early in the growing season must complement maintenance of adequate baseflows to maintain ecosystem functioning in the face of hydrologic alterations induced by climate change and human water demand.


Subject(s)
Ecosystem , Rivers , Climate Change , Colorado , Hydrology
18.
Glob Chang Biol ; 26(2): 851-863, 2020 02.
Article in English | MEDLINE | ID: mdl-31486191

ABSTRACT

A major component of climate change is an increase in temperature and precipitation variability. Over the last few decades, an increase in the frequency of extremely warm temperatures and drought severity has been observed across Europe. These warmer and drier conditions may reduce productivity and trigger compositional shifts in forest communities. However, we still lack a robust, biogeographical characterization of the negative impacts of climate extremes, such as droughts on forests. In this context, we investigated the impact of the 2017 summer drought on European forests. The normalized difference vegetation index (NDVI) was used as a proxy of forest productivity and was related to the standardized precipitation evapotranspiration index, which accounts for the temperature effects of the climate water balance. The spatial pattern of NDVI reduction in 2017 was largely driven by the extremely warm summer for parts of the central and eastern Mediterranean Basin (Italian and Balkan Peninsulas). The vulnerability to the 2017 summer drought was heterogeneously distributed over Europe, and topographic factors buffered some of the negative impacts. Mediterranean forests dominated by oak species were the most negatively impacted, whereas Pinus pinaster was the most resilient species. The impact of drought on the NDVI decreased at high elevations and mainly on east and north-east facing slopes. We illustrate how an adequate characterization of the coupling between climate conditions and forest productivity (NDVI) allows the determination of the most vulnerable areas to drought. This approach could be widely used for other extreme climate events and when considering other spatially resolved proxies of forest growth and health.


Subject(s)
Droughts , Hot Temperature , Climate Change , Europe , Forests , Trees
19.
PeerJ ; 7: e6704, 2019.
Article in English | MEDLINE | ID: mdl-30993042

ABSTRACT

On the temperate lowland plain of the lower Tumen River, agricultural development has converted most marshland into paddy fields. However, the locations of old paddy fields in the lowland temperate zone, where the vegetation structure is dominated by herbs adapted to seasonally wet or waterlogged conditions, are poorly known, and the impact of land use history on marshland diversity and shifts in plant functional groups has been scantly researched. In this study, we used a chronosequence approach to investigate herbaceous wetland communities in different recovery phases (<5 years, 5-15 years, and >15 years), as well as natural wetland as a reference. We assessed their ecological characteristics, species composition and diversity to determine how they change during natural succession. Plant species composition and dominance in the abandoned fields changed markedly during natural secondary succession. Initially, the annual weeds Echinochloa crus-galli and Bidens tripartita were dominant. Later, communities gradually became dominated first by Polygonum thunbergii and then by tussock-forming Carex rostrata. Species diversity was higher in abandoned fields than in natural wetlands and decreased with time. The partition of ß-diversity components revealed that replacement was the prominent process structuring plant communities in paddy field at different times since abandonment. Our results suggest that the vegetation of abandoned paddy fields could be restored effectively through natural succession, although there were some differences in plant functional group traits. Abandoned paddy fields may be good sites for restoration of wetland species and conservation of wetland habitat.

20.
Glob Ecol Biogeogr ; 28(2): 78-95, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31007605

ABSTRACT

AIM: Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits. LOCATION: Tundra biome. TIME PERIOD: Data collected between 1964 and 2016. MAJOR TAXA STUDIED: 295 tundra vascular plant species. METHODS: We compiled a database of six plant traits (plant height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We examined the variation in species-level trait expression explained by four traditional functional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether variation explained was dependent upon the traits included in analysis. We further compared the explanatory power and species composition of functional groups to alternative classifications generated using post hoc clustering of species-level traits. RESULTS: Traditional functional groups explained significant differences in trait expression, particularly amongst traits associated with resource economics, which were consistent across sites and at the biome scale. However, functional groups explained 19% of overall trait variation and poorly represented differences in traits associated with plant size. Post hoc classification of species did not correspond well with traditional functional groups, and explained twice as much variation in species-level trait expression. MAIN CONCLUSIONS: Traditional functional groups only coarsely represent variation in well-measured traits within tundra plant communities, and better explain resource economic traits than size-related traits. We recommend caution when using functional group approaches to predict tundra vegetation change, or ecosystem functions relating to plant size, such as albedo or carbon storage. We argue that alternative classifications or direct use of specific plant traits could provide new insights for ecological prediction and modelling.

SELECTION OF CITATIONS
SEARCH DETAIL