Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 252
Filter
1.
J Environ Manage ; 370: 122377, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243655

ABSTRACT

Hydraulic conditions exert a comprehensive and vital influence on constructed wetlands (CWs). However, research on this subject is relatively limited. Hydraulic parameters can be categorized into design and operational parameters based on their properties. The design parameters are represented by the hydraulic gradient, substrate porosity, and aspect ratio, while operational parameters are represented by the hydraulic retention time, hydraulic loading rate, and water depth. These parameters directly or indirectly affect the operational lifespan and pollutant removal performance of CWs. Currently, the primary measures for optimizing the hydraulic conditions of CWs involve hydraulic structure and numerical simulation optimization methods. In this review, we aimed to elucidate the impact of hydraulic conditions on CW performance and summarize current optimization strategies. By highlighting the significance of hydraulic parameters in enhancing pollutant removal and extending operational lifespan, this review provides valuable insights for improving CW design and management. The findings will be useful for researchers and practitioners seeking to optimize CW systems and advance the application of nature-based solutions for wastewater treatment.

2.
Front Microbiol ; 15: 1421094, 2024.
Article in English | MEDLINE | ID: mdl-39101038

ABSTRACT

Traditionally constructed wetlands face significant limitations in treating tailwater from wastewater treatment plants, especially those associated with sugar mills. However, the advent of novel modified surface flow constructed wetlands offer a promising solution. This study aimed to assess the microbial community composition and compare the efficiencies of contaminant removal across different treatment wetlands: CW1 (Brick rubble, lignite, and Lemna minor L.), CW2 (Brick rubble and lignite), and CW3 (Lemna minor L.). The study also examined the impact of substrate and vegetation on the wetland systems. For a hydraulic retention time of 7 days, CW1 successfully removed more pollutants than CW2 and CW3. CW1 demonstrated removal rates of 72.19% for biochemical oxygen demand (BOD), 74.82% for chemical oxygen demand (COD), 79.62% for NH4 +-N, 77.84% for NO3 --N, 87.73% for ortho phosphorous (OP), 78% for total dissolved solids (TDS), 74.1% for total nitrogen (TN), 81.07% for total phosphorous (TP), and 72.90% for total suspended solids (TSS). Furthermore, high-throughput sequencing analysis of the 16S rRNA gene revealed that CW1 exhibited elevated Chao1, Shannon, and Simpson indices, with values of 1324.46, 8.8172, and 0.9941, respectively. The most common bacterial species in the wetland system were Proteobacteria, Spirochaetota, Bacteroidota, Desulfobacterota, and Chloroflexi. The denitrifying bacterial class Rhodobacteriaceae also had the highest content ratio within the wetland system. These results confirm that CW1 significantly improves the performance of water filtration. Therefore, this research provides valuable insights for wastewater treatment facilities aiming to incorporate surface flow-constructed wetland tailwater enhancement initiatives.

3.
Polymers (Basel) ; 16(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39125239

ABSTRACT

The development of environmentally friendly technology is vital to effectively address the issues related to environmental deterioration. This work integrates ZnO-decorated MoS2 (MZ) to create a high-performing PVDF-based PVDF/MoS2-ZnO (PMZ) hybrid polymer composite film for sonocatalytic organic pollutant degradation. An efficient synergistic combination of MZ was identified by altering the ratio, and its influence on PVDF was assessed using diverse structural, morphological, and sonocatalytic performances. The PMZ film demonstrated very effective sonocatalytic characteristics by degrading rhodamine B (RhB) dye with a degradation efficiency of 97.23%, whereas PVDF only degraded 17.7%. Combining MoS2 and ZnO reduces electron-hole recombination and increases the sonocatalytic degradation performance. Moreover, an ideal piezoelectric PVDF polymer with MZ enhances polarization to improve redox processes and dye degradation, ultimately increasing the degradation efficiency. The degradation efficiency of RhB was seen to decrease while employing isopropanol (IPA) and p-benzoquinone (BQ) due to the presence of reactive oxygen species. This suggests that the active species •O2- and •OH are primarily responsible for the degradation of RhB utilizing PMZ2 film. The PMZ film exhibited improved reusability without substantially decreasing its catalytic activity. The superior embellishment of ZnO onto MoS2 and effective integration of MZ into the PVDF polymer film results in improved degrading performance.

4.
Water Sci Technol ; 90(3): 731-757, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141032

ABSTRACT

Artificial intelligence (AI) is increasingly being applied to wastewater treatment to enhance efficiency, improve processes, and optimize resource utilization. This review focuses on objectives, advantages, outputs, and major findings of various AI models in the three key aspects: the prediction of removal efficiency for both organic and inorganic pollutants, real-time monitoring of essential water quality parameters (such as pH, COD, BOD, turbidity, TDS, and conductivity), and fault detection in the processes and equipment integral to wastewater treatment. The prediction accuracy (R2 value) of AI technologies for pollutant removal has been reported to vary between 0.64 and 1.00. A critical aspect explored in this review is the cost-effectiveness of implementing AI systems in wastewater treatment. Numerous countries and municipalities are actively engaging in pilot projects and demonstrations to assess the feasibility and effectiveness of AI applications in wastewater treatment. Notably, the review highlights successful outcomes from these initiatives across diverse geographical contexts, showcasing the adaptability and positive impact of AI in revolutionizing wastewater treatment on a global scale. Further, insights on the ethical considerations and potential future directions for the use of AI in wastewater treatment plants have also been provided.


Subject(s)
Artificial Intelligence , Wastewater , Waste Disposal, Fluid/methods , Water Purification/methods
5.
Bioresour Technol ; 410: 131293, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153688

ABSTRACT

Microalgae photobioreactor (PBR) is a kind of efficient wastewater treatment system for nitrogen removal. However, there is still an urgent need for process optimization of PBR. Especially, the synergistic effect and optimization of light and flow state poses a challenge. In this study, the computational fluid dynamics is employed for simulating the optimization of the number and length of the internal baffles, as well as the aeration rate of PBR, which in turn leads to the optimal growth of microalgae and efficient nitrogen removal. After optimization, the Light/Dark cycle of the reactor B is shortened by 51.6 %, and the biomass increases from 0.06 g/L to 3.94 g/L. In addition, the removal rate of NH4+-N increased by 106.0 % to 1.56 mg L-1 h-1. This work provides a feasible method for optimizing the design and operational parameters of PBR aiming the engineering application.


Subject(s)
Hydrodynamics , Microalgae , Nitrogen , Photobioreactors , Microalgae/metabolism , Microalgae/growth & development , Computer Simulation , Biomass , Light , Photoperiod
6.
Nanomaterials (Basel) ; 14(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39195377

ABSTRACT

Currently, there is an increasing need to find new ways to purify water by eliminating bacterial biofilms, textile dyes, and toxic water pollutants. These contaminants pose significant risks to both human health and the environment. To address this issue, in this study, we have developed an eco-friendly approach that involves synthesizing a cobalt-doped cerium iron oxide (CCIO) nanocomposite (NC) using an aqueous extract of Gossypium arboreum L. stalks. The resulting nanoparticles can be used to effectively purify water and tackle the challenges associated with these harmful pollutants. Nanoparticles excel in water pollutant removal by providing a high surface area for efficient adsorption, versatile design for the simultaneous removal of multiple contaminants, catalytic properties for organic pollutant degradation, and magnetic features for easy separation, offering cost-effective and sustainable water treatment solutions. A CCIO nanocomposite was synthesized via a green co-precipitation method utilizing biomolecules and co-enzymes extracted from the aqueous solution of Gossypium arboreum L. stalk. This single-step synthesis process was accomplished within a 5-h reaction period. Furthermore, the synthesis of nanocomposites was confirmed by various characterization techniques such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and energy dispersive X-ray (EDX) technology. CCIO NCs were discovered to have a spherical shape and an average size of 40 nm. Based on DLS zeta potential analysis, CCIO NCs were found to be anionic. CCIO NCs also showed significant antimicrobial and antioxidant activity. Overall, considering their physical and chemical properties, the application of CCIO NCs for the adsorption of various dyes (~91%) and water pollutants (chromium = ~60%) has been considered here since they exhibit great adsorption capacity owing to their microporous structure, and represent a step forward in water purification.

7.
J Hazard Mater ; 478: 135501, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39153298

ABSTRACT

A promising water treatment technology involves inducing the polymerization of organic pollutants to form corresponding polymers, enabling rapid, efficient, and low CO2 emission removal of these pollutants. However, there is currently limited research on utilizing polymerization treatment technology for removing tetracyclines from water. In this study, we synthesized a laccase-mimic nanozyme (Cu-ATZ) with a high Cu+ ratio using 2-amino-1,3,4-thiadiazole as a ligand inspired by natural laccase. The Cu-ATZ exhibited enhanced resistance to more severe application conditions and improved stability compared to natural laccase, thereby demonstrating a broader range of potential applications. The excellent catalytic properties of Cu-ATZ enabled the nanozyme to be used in the polymerization process to remove tetracyclines from water. In order to simulate actual antibiotic pollution of water bodies, tetracyclines were added to the water from sewage treatment plants. Following Cu-ATZ treatment of the water sample, the chemical oxygen demand (COD) content was found to have decreased by over 80 %. In conclusion, this study presented a novel approach for tetracycline elimination from water.


Subject(s)
Copper , Laccase , Polymerization , Tetracyclines , Thiadiazoles , Water Pollutants, Chemical , Water Purification , Laccase/chemistry , Laccase/metabolism , Tetracyclines/chemistry , Water Pollutants, Chemical/chemistry , Copper/chemistry , Ligands , Water Purification/methods , Thiadiazoles/chemistry , Anti-Bacterial Agents/chemistry , Nanostructures/chemistry
8.
Chempluschem ; : e202400246, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39215748

ABSTRACT

Waste, often overlooked, stands out as a prime source of valuable products, meeting the demand for natural resources. In the face of environmental challenges, this study explores the crucial role of waste-derived catalysts in sustainable practices, emphasizing the transformative potential of solid waste materials. Carbon-based catalysts sourced from agricultural, municipal, and industrial waste streams can be transformed into activated carbon, biochar, and hydrochar which are extensively used adsorbents. Furthermore, the paper also highlights the potential of transition metal-based catalysts derived from spent batteries, electronic waste, and industrial byproducts, showcasing their efficacy in environmental remediation processes. Calcium-based catalysts originating from food waste, including seashells, eggshells, bones, as well as industrial and construction waste also find an extensive application in biodiesel production, providing a comprehensive overview of their promising role in sustainable and eco-friendly practices. From mitigating pollutants to recovering valuable resources, waste-derived catalysts exhibit a versatile role in addressing waste management challenges and promoting resource sustainability. By transforming waste into valuable catalysts, this study champions a paradigm shift towards a more sustainable and resource-efficient future.

9.
Environ Res ; 262(Pt 1): 119831, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39208977

ABSTRACT

Regarded as a superior urban stormwater management solution, rain gardens can effectively store rainfall runoff and purify water quality. However, the efficiency of traditional rain gardens (TRG) in regulating runoff and removing nitrogen and phosphorus varies under different hydrological conditions. In this study, the TRG was retrofitted to construct a two-stage tandem rain garden (TTRG). Based on the experimental monitoring of rain gardens under natural rainfall from 2011 to 2013, results indicated a significantly higher runoff reduction capacity for the TTRG compared to the traditional garden (p < 0.05), with average runoff and peak flow reduction rates increasing by 42.8% and 36.2%, respectively. Rainfall characteristics significantly impacted the runoff reduction of the TRG (p < 0.05), but not the TTRG (p > 0.05), demonstrating the enhanced control and stability of the TTRG in managing rainfall runoff. The concentration removal efficiency of nitrate nitrogen (NO3--N) was significantly improved (p < 0.05), whereas the total phosphorus (TP), ammonium nitrogen (NH3-N) and total nitrogen (TN) were not significantly changed (p > 0.05). The first-order kinetic model was used to fit the removal effect of different pollutants before and after retrofitting the rain garden, and the removal of NO3--N by the TTRG was better than that of the TRG. The TTRG showed significantly higher load removal efficiencies for TP, NO3--N, and NH3-N compared to TRG (p < 0.05), with average load removal rates increasing by 49.92%, 75.02%, and 14.81%, respectively. The TTRG can regulate urban rainfall runoff more efficiently and stably. By changing the water flow path in the rain garden, the TTRG has a better runoff reduction ability and pollutant purification effect.

10.
Water Sci Technol ; 89(12): 3226-3236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39150422

ABSTRACT

This study examines the influence of planting mixture variations on the quality of the percolated water of the rain garden with and without plants. Six planting mixtures in experimental rain gardens have been used. It has been noted that pollutant removal efficiency of RG can exhibit variations based on specific parameters. Notably, RG6, utilizing a planting mix of 75% topsoil and 25% compost, demonstrated the highest performance. These results draw attention to the critical role of the specific planting mixtures in influencing the performance of vital parameters related to pollutant removal. The observation shows that RG5 exhibits exceptional removal efficiency in pH, Total Suspended Solids (TSS), Biological Oxygen Demand (BOD), and Chemical Oxygen Demand (COD), and RG6 performs best in electrical conductivity (EC), Total Dissolved Solids (TDS), Total Nitrogen (TN), and Total Phosphorus (TP) removal. In particular, when analyzing pollutant removal on a surface with Madagascar periwinkle plants, RG6 emerges as the most effective, achieving an impressive efficiency of approximately 49%. For the bare surface, pollutant removal efficiency is 40%. The study outcome will be useful in deciding the composition of the planting mixture, which will keep the rain garden to improve quality and quantitatively hydrological performance, lowering urban flooding magnitude.


Subject(s)
Rain , Phosphorus , Water Pollutants, Chemical , Nitrogen , Biological Oxygen Demand Analysis , Soil/chemistry
11.
J Environ Manage ; 366: 121792, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002459

ABSTRACT

Signal transduction is an important mode of algae-bacteria interaction, in which bacterial quorum sensing (QS) may affect microalgal growth and metabolism. Currently, little is known whether acyl homoserine lactones (AHLs) released by bacteria can affect the pollutant removal by algae-bacteria consortia (ABC). In this study, we constructed ABC using Chlorella vulgaris (Cv) with two AHLs-producing bacteria and investigated their performance in the removal of multiple pollutants, including chemical oxygen demand (COD), total nitrogen (TN), phosphorus (P), and cadmium (Cd). The AHLs-producing bacteria, namely Agrobacterium sp. (Ap) and Ensifer adherens (Ea), were capable of forming a symbiosis with C. vulgaris. Consortia of Cv and Ap with ratio of 2:1 (Cv2-Ap1) showed the optimal growth promotion and higher removal of Cd, COD, TN, and P compared to the C. vulgaris monoculture. Cv2-Ap1 ABC removed 36.1-47.5% of Cd, 94.5%-94.6% COD, 37.1%-56.0% TN, and 90.4%-93.5% P from the culture medium. In addition, increase of intracellular neutral lipids and extracellular protein, as well as the types of functional groups on cell surface contributed to Cd removal and tolerance in the Cv2-Ap1 ABC. Six AHLs were detected in the Cv2-Ap1 culture. Among these, 3OC8-HSL and 3OC12-HSL additions promoted the ABC growth and enhanced their Cd accumulation. These findings may contribute to further understanding of AHL-mediated communication between algae and bacteria and provide support bioremediation efforts of metal-containing wastewater.


Subject(s)
Acyl-Butyrolactones , Cadmium , Cadmium/metabolism , Acyl-Butyrolactones/metabolism , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Bacteria/metabolism , Biodegradation, Environmental , Quorum Sensing , Phosphorus/metabolism , Nitrogen/metabolism
12.
J Environ Manage ; 366: 121879, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043086

ABSTRACT

Environmental electrochemistry and water resource recovery are covered in this review. The study discusses the growing field's scientific basis, methods, and applications, focusing on innovative remediation tactics. Environmental electrochemistry may solve water pollution and extract resources. Electrochemical methods may effectively destroy or convert pollutants. This method targets heavy metals, organic compounds, and emerging water contaminants such as pharmaceuticals and microplastics, making it versatile. Environmental electrochemistry and resource recovery synergize to boost efficiency and sustainability. Innovative electrochemical methods can extract or synthesise metals, nutrients, and energy from wastewater streams, decreasing treatment costs and environmental effect. The study discusses electrocoagulation, electrooxidation, and electrochemical advanced oxidation processes and their mechanics and performance. Additionally, it discusses current electrode materials, reactor designs, and process optimisation tactics to improve efficiency and scalability. Resource recovery in electrochemical remediation methods is also examined for economic and environmental feasibility. Through critical examination of case studies and techno-economic evaluations, it explains the pros and cons of scaling up these integrated techniques. This study covers environmental electrochemistry and resource recovery's fundamental foundations, technology advances, and sustainable water management consequences.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Wastewater/chemistry , Electrochemical Techniques , Metals, Heavy/chemistry
13.
Molecules ; 29(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893421

ABSTRACT

Efficient boron removal from irrigation waters is crucial for sustainable agriculture, as elevated levels of boron can be toxic to many plants, limiting growth and crop productivity. In this context, the present study investigated the sorption equilibrium of boron using zeolites in two types of aqueous matrices: a synthetic solution containing only boron and natural irrigation waters. Through the application of various isothermal sorption models (Langmuir, Freundlich, Sips, Toth, Jovanovic, Temkin, Dubinin-Radushkevich, and Redlich-Peterson), the efficacy of zeolite for boron removal under controlled and real conditions was evaluated. The results indicated a notable difference in sorption behavior between the two matrices, reflecting the complexity and heterogeneity of interactions in the boron-zeolite system. In the synthetic solution, the Freundlich model provided the best fit (R2 = 0.9917), suggesting heterogeneous and multilayer sorption, while the Sips model showed high efficacy in describing the sorption in both matrices, evidencing its capability to capture the complex nature of the interaction between boron and zeolite under different environmental conditions. However, in natural irrigation waters, the Jovanovic model demonstrated the most accurate fit (R2 = 0.999), highlighting the importance of physical interactions in boron sorption. These findings underscore the significant influence of the water matrix on the efficacy of zeolite as a boron removal agent, emphasizing the need to consider the specific composition of irrigation water in the design of removal treatments. Additionally, the results stress the importance of selecting the appropriate isothermal model to predict boron sorption behavior, which is crucial for developing effective and sustainable treatment strategies. This study provides a basis for optimizing boron removal in various agricultural and industrial applications, contributing to the design of more efficient and specific water treatment processes.

14.
Int J Biol Macromol ; 273(Pt 2): 132895, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848850

ABSTRACT

Developing eco-friendly, cost-effective, and efficient methods for treating water pollutants has become paramount in recent years. Biopolyelectrolytes (BPEs), comprising natural polymers like chitosan, alginate, and cellulose, have emerged as versatile tools in this pursuit. This review offers a comprehensive exploration of the diverse roles of BPEs in combating water contamination, spanning coagulation-flocculation, adsorption, and filtration membrane techniques. With ionizable functional groups, BPEs exhibit promise in removing heavy metals, dyes, and various pollutants. Studies showcase the efficacy of chitosan, alginate, and pectin in achieving notable removal rates. BPEs efficiently adsorb heavy metal ions, dyes, and pesticides, leveraging robust adsorption capacity and exceptional mechanical properties. Furthermore, BPEs play a pivotal role in filtration membrane techniques, offering efficient separation systems with high removal rates and low energy consumption. Despite challenges related to production costs and property variability, their environmentally friendly, biodegradable, renewable, and recyclable nature positions BPEs as compelling candidates for sustainable water treatment technologies. This review delves deeper into BPEs' modification and integration with other materials; these natural polymers hold substantial promise in revolutionizing the landscape of water treatment technologies, offering eco-conscious solutions to address the pressing global issue of water pollution.


Subject(s)
Wastewater , Water Purification , Water Purification/methods , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Chitosan/chemistry , Adsorption , Metals, Heavy/chemistry , Metals, Heavy/isolation & purification , Filtration/methods
15.
Int J Biol Macromol ; 274(Pt 1): 133318, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917917

ABSTRACT

The presence of tetracycline and dye as organic contaminants has led to the poisoning of wastewater. The aim of this study is to synthesize a novel biocomposite material by decorating natural starch polymer granules with metal-organic framework (MIL100) and cobalt ferrite magnetic (CoFe2O4) nanoparticles. The synthesized ternary magnetic biocomposite (Starch/MIL100/CoFe2O4) was used for the photocatalytic degradation of methylene blue (MB) and tetracycline (TCN) using LED visible light. The synthesis of the biocomposite was confirmed through comprehensive analyses (XRD, SEM, FTIR, BET, EDX, MAP, DRS, pHzpc, TGA, and Raman). The evaluation examined the influence of initial pollutant concentration, catalyst dosage, pH, and the impact of anions on pollutant removal. The results show that the pollutant degradation ability of biocomposite has been significantly improved, so that the base biopolymer, starch, achieved 18% tetracycline degradation, but when decorated with MIL100 and cobalt ferrite, it increased to 91.2%. It was observed that the degradation for methylene blue improved from 12% for starch to 96.6% for the magnetic biocomposite. The tetracycline degradation decreased by more than 20% in the presence of NaCl, NaNO3, and Na2SO4. The finding shows that the biocomposite adheres to first-order kinetics for both pollutants. The scavengers test identified hydroxyl radicals as the most effective active species in the degradation process. High stability, even after passing 5 cycles of recycling was observed for the biocomposite. The results indicated that the facile and green synthesized Starch/MIL100/CoFe2O4 magnetic biocomposite could be used as an effective photocatalyst for the degradation of Tetracycline and dye at room temperature.


Subject(s)
Cobalt , Ferric Compounds , Starch , Tetracycline , Water Pollutants, Chemical , Starch/chemistry , Cobalt/chemistry , Tetracycline/chemistry , Catalysis , Ferric Compounds/chemistry , Water Pollutants, Chemical/chemistry , Coloring Agents/chemistry , Methylene Blue/chemistry , Green Chemistry Technology/methods , Metal-Organic Frameworks/chemistry , Photolysis
16.
Environ Sci Pollut Res Int ; 31(26): 38399-38415, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805135

ABSTRACT

In this paper, a novel CeO2/Co3[Co(CN)6]2 (CeO2/PBACo-Co) composite was prepared with co-precipitation and utilized to activate peroxymonosulfate (PMS) to eliminate tetracycline hydrochloride (TCH). Catalyst screening showed that the composite with a CeO2:PBACo-Co mass ratio of 1:5 (namely, 0.2-CeO2/PBACo-Co) had the best performance. The degradation efficiency of TCH in 0.2-CeO2/PBACo-Co/Oxone system was investigated. The experimental results illustrated that 98% of 50 mg/L TCH and 48.5% of TOC were degraded by 50 mg/L 0.2-CeO2/PBACo-Co and 400 mg/L Oxone within 120 min at 25 °C and initial pH 5.3. Recycling studies showed that the elimination rate of TCH can still achieve 85.8% after five cycles, suggesting that 0.2-CeO2/PBACo-Co composite processes good reusability. Trapping experiments and EPR tests revealed that the reaction system produced multiple active species (1O2, O2•-, SO4•-, and •OH). We proposed the catalytic mechanism of 0.2-CeO2/PBACo-Co for PMS activation, which mainly involves the promoted Co3+/Co2+ cycle by Ce3+ donated electrons. These results indicate that CeO2/PBACo-Co composite is an effective catalyst for wastewater remediation.


Subject(s)
Cerium , Tetracycline , Water Pollutants, Chemical , Cerium/chemistry , Catalysis , Tetracycline/chemistry , Water Pollutants, Chemical/chemistry , Cobalt/chemistry , Peroxides/chemistry , Water Purification/methods
17.
Heliyon ; 10(9): e30326, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726140

ABSTRACT

With increasing demand for meat and dairy products, the volume of wastewater generated from the livestock industry has become a significant environmental concern. The treatment of livestock wastewater (LWW) is a challenging process that involves removing nutrients, organic matter, pathogens, and other pollutants from livestock manure and urine. In response to this challenge, researchers have developed and investigated different biological, physical, and chemical treatment technologies that perform better upon optimization. Optimization of LWW handling processes can help improve the efficacy and sustainability of treatment systems as well as minimize environmental impacts and associated costs. Response surface methodology (RSM) as an optimization approach can effectively optimize operational parameters that affect process performance. This review article summarizes the main steps of RSM, recent applications of RSM in LWW treatment, highlights the advantages and limitations of this technique, and provides recommendations for future research and practice, including its cost-effectiveness, accuracy, and ability to improve treatment efficiency.

18.
ACS Appl Mater Interfaces ; 16(20): 26685-26712, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722359

ABSTRACT

The ubiquitous presence of pharmaceutical pollutants in the environment significantly threatens human health and aquatic ecosystems. Conventional wastewater treatment processes often fall short of effectively removing these emerging contaminants. Therefore, the development of high-performance adsorbents is crucial for environmental remediation. This research utilizes molecular simulation to explore the potential of novel modified metal-organic frameworks (MOFs) in pharmaceutical pollutant removal, paving the way for the design of efficient wastewater treatment strategies. Utilizing UIO-66, a robust MOF, as the base material, we developed UIO-66 functionalized with chitosan (CHI) and oxidized chitosan (OCHI). These modified MOFs' physical and chemical properties were first investigated through various characterization techniques. Subsequently, molecular dynamics simulation (MDS) and Monte Carlo simulation (MCS) were employed to elucidate the adsorption mechanisms of rosuvastatin (ROSU) and simvastatin (SIMV), two prevalent pharmaceutical pollutants, onto these nanostructures. MCS calculations demonstrated a significant enhancement in the adsorption energy by incorporating CHI and OCHI into UIO-66. This increased ROSU from -14,522 to -16,459 kcal/mol and SIMV from -17,652 to -21,207 kcal/mol. Moreover, MDS reveals ROSU rejection rates in neat UIO-66 to be at 40%, rising to 60 and 70% with CHI and OCHI. Accumulation rates increase from 4 Å in UIO-66 to 6 and 9 Å in UIO-CHI and UIO-OCHI. Concentration analysis shows SIMV rejection surges from 50 to 90%, with accumulation rates increasing from 6 to 11 Å with CHI and OCHI in UIO-66. Functionalizing UIO-66 with CHI and OCHI significantly enhanced the adsorption capacity and selectivity for ROSU and SIMV. Abundant hydroxyl and amino groups facilitated strong interactions, improving performance over that of unmodified UIO-66. Surface functionalization plays a vital role in customizing the MOFs for pharmaceutical pollutant removal. These insights guide next-gen adsorbent development, offering high efficiency and selectivity for wastewater treatment.


Subject(s)
Chitosan , Metal-Organic Frameworks , Molecular Dynamics Simulation , Nanostructures , Rosuvastatin Calcium , Simvastatin , Water Pollutants, Chemical , Chitosan/chemistry , Metal-Organic Frameworks/chemistry , Simvastatin/chemistry , Rosuvastatin Calcium/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Nanostructures/chemistry , Oxidation-Reduction , Phthalic Acids
19.
J Environ Manage ; 359: 121058, 2024 May.
Article in English | MEDLINE | ID: mdl-38714036

ABSTRACT

Water pollution remains a pressing environmental issue, with diverse pollutants such as heavy metals, pharmaceuticals, dyes, and aromatic hydrocarbon compounds posing a significant threat to clean water access. Historically, biomass-derived activated carbons (ACs) have served as effective adsorbents for water treatment, owing to their inherent porosity and expansive surface area. Nanocomposites have emerged as a means to enhance the absorption properties of ACs, surpassing conventional AC performance. Biomass-based activated carbon nanocomposites (ACNCs) hold promise due to their high surface area and cost-effectiveness. This review explores recent advancements in biomass-based ACNCs, emphasizing their remarkable adsorption efficiencies and paving the way for future research in developing efficient and affordable ACNCs. Leveraging real-time communication for ACNC applications presents a viable approach to addressing cost concerns.


Subject(s)
Charcoal , Fruit , Nanocomposites , Vegetables , Water Purification , Nanocomposites/chemistry , Charcoal/chemistry , Water Purification/methods , Fruit/chemistry , Adsorption , Vegetables/chemistry , Water Pollutants, Chemical/chemistry , Biomass
20.
Bioresour Technol ; 403: 130866, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777231

ABSTRACT

Attachment of microalgae on the inner surfaces of photobioreactors impacts the efficiency of swine wastewater treatment by reducing the light intensity, which has been overlooked in previous studies. This study investigated the relationship between microalgal attachment biomass and light intensity in photobioreactors, determined the optimal attachment time for effective pollutant removal, and clarified the mechanisms of microalgal attachment in swine wastewater. After 9 days of treatment, the attached biomass in the photobioreactor increased from 0 to 6.4 g/m2, decreasing the light intensity from 2,000 to 936 lux. At the 24 h optimal attachment time, the concentrations of chemical oxygen demand, ammonia nitrogen, and total phosphorus decreased from 2725.1, 396.4, and 87.2 mg/L to 361.2, 4.9, and 0.8 mg/L, respectively. Polysaccharides in the extracellular polymeric substances released by microalgae play a significant role in facilitating microalgae attachment. Optimizing the microalgal attachment time within photobioreactors effectively mitigates pollutant concentrations in swine wastewater.


Subject(s)
Microalgae , Photobioreactors , Wastewater , Animals , Wastewater/chemistry , Microalgae/metabolism , Swine , Water Purification/methods , Biomass , Phosphorus , Nitrogen , Biological Oxygen Demand Analysis , Light
SELECTION OF CITATIONS
SEARCH DETAIL