Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Polymers (Basel) ; 16(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39065392

ABSTRACT

Starch is a promising polymer for creating novel microparticulate systems with superior biocompatibility and controlled drug delivery capabilities. In this study, we synthesized polyethylene glycol (PEG)-modified starch microparticles and encapsulated folic acid using a solvent-mediated acid-base precipitation method with magnetic stirring, which is a simple and effective method. To evaluate particle degradation, we simulated physiological conditions by employing an enzymatic degradation approach. Our results with FTIR and SEM confirmed the successful synthesis of starch-PEG microparticles encapsulating folic acid. The average size of starch microparticles encapsulating folic acid was 4.97 µm and increased to 6.01 µm upon modification with PEG. The microparticles were first exposed to amylase at pH 6.7 and pepsin at pH 1.5 at different incubation times at physiological temperature with shaking. Post-degradation analysis revealed changes in particle size and morphology, indicating effective enzymatic degradation. FTIR spectroscopy was used to assess the chemical composition before and after degradation. The initial FTIR spectra displayed characteristic peaks of starch, PEG, and folic acid, which showed decreased intensities after enzymatic degradation, suggesting alterations in chemical composition. These findings demonstrate the ongoing development of starch-PEG microparticles for controlled drug delivery and other biomedical applications and provide the basis for further exploration of PEG-starch as a versatile biomaterial for encapsulating bioactive compounds.

2.
J Fluoresc ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777984

ABSTRACT

Aggregation-induced emission (AIE) is a fascinating phenomenon where specific molecules exhibit enhanced fluorescence upon aggregation. This unique property has revolutionized the design and development of new fluorescent materials for different applications, from biosensors and organic light-emitting diodes (OLEDs) to biomedical imaging and diagnostics. Researchers are creating sensitive and selective sensing platforms, opening new avenues in material science and engineering by harnessing the potential of AIE. To expand the knowledge in this field, this study explored the aggregation-induced emission (AIE) properties of two polymers, namely polyethylene glycol (PEG) and polypropylene glycol (PPG) of low molecular weight (MW) using fluorescence spectroscopy and absorbance (UV). PEG-300 and PPG-725 were the most fluorescent polymers at UV of the ten investigated. Interestingly, AIE did not correlate linearly with molecular weight (MW), and monobutyl ether substitution in PEG with a similar MW substantially altered its AIE. Furthermore, fluorescence precisely quantified low polymer concentrations in water, and non-aqueous solvents suppressed AIE, suggesting potential for AIE manipulation. These findings enhance our understanding of AIE in polymers, fostering the development of novel materials for applications such as biosensors.

3.
Plant Physiol Biochem ; 207: 108372, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228015

ABSTRACT

Castor (Ricinus communis) is a relevant industrial oilseed feedstock for many industrial applications, being globally mainly cultivated by smallholder farmers in semiarid areas, where abiotic stresses predominate. Therefore, susceptible to generating reactive oxygen species (ROS) and subsequent oxidative stress, compromising cell metabolism upon seed imbibition and germination, seedling and crop establishment, and yield. The present study evaluated the consequences of water restriction by Polyethylene glycol (PEG) and Sodium chloride (NaCl) on cell cycle and metabolism reactivation on germinability, seedling growth, and vigor parameters in 2 commercial castor genotypes (Nordestina and Paraguaçu). PEG water restriction inhibited germination completely at -0.23 MPa or higher, presumably due to reduced oxygen availability. The restrictive effects of NaCl saline stress on germination were observed only from -0.46 MPa onwards, affecting dry mass accumulation and the production of normal seedlings. In general, superoxide dismutase (SOD) activity increased in NaCl -0.23 MPa, whereas its modulation during the onset of imbibition (24h) seemed to depend on its initial levels in dry seeds in a genotype-specific manner, therefore, resulting in the higher stress tolerance of Nordestina compared to Paraguaçu. Overall, results show that Castor germination and seedling development are more sensitive to the restrictive effects of PEG than NaCl at similar osmotic potentials, contributing to a better understanding of the responses to water restriction stresses by different Castor genotypes. Ultimately, SOD may constitute a potential marker for characterizing castor genotypes in stressful situations during germination, early seedling, and crop establishment, and a target for breeding for Castor-improved stress tolerance.


Subject(s)
Ricinus communis , Seedlings , Seedlings/metabolism , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Ricinus communis/genetics , Polyethylene Glycols/pharmacology , Polyethylene Glycols/metabolism , Germination , Cell Cycle , Seeds/metabolism , Water/metabolism , Superoxide Dismutase/metabolism
4.
Braz. J. Pharm. Sci. (Online) ; 60: e22542, 2024. tab, graf
Article in English | LILACS | ID: biblio-1533990

ABSTRACT

We developed poly-ε-caprolactone (PCL)-based nanoparticles containing D-α-tocopherol polyethylene glycol-1000 succinate (TPGS) or Poloxamer 407 as stabilizers to efficiently encapsulate genistein (GN). Two formulations, referred to as PNTPGS and PNPol, were prepared using nanoprecipitation. They were characterized by size and PDI distribution, zeta potential, nanoparticle tracking analysis (NTA), GN association (AE%), infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC). PNTPGS-GN exhibited a particle size of 141.2 nm, a PDI of 0.189, a zeta potential of -32.9 mV, and an AE% of 77.95%. PNPol-GN had a size of 146.3 nm, a better PDI than PNTPGS-GN (0.150), a less negative zeta potential (-21.0 mV), and an AE% of 68.73%. Thermal and spectrometric analyses indicated that no new compounds were formed, and there was no incompatibility detected in the formulations. Cellular studies revealed that Poloxamer 407 conferred less toxicity to PCL nanoparticles. However, the percentage of uptake decreased compared to the use of TPGS, which exhibited almost 80% cellular uptake. This study contributes to the investigation of stabilizers capable of conferring stability to PCL nanoparticles efficiently encapsulating GN. Thus, the PCL nanoparticle proposed here is an innovative nanomedicine for melanoma therapy and represents a strong candidate for specific pre-clinical and in vivo studie


Subject(s)
Genistein/pharmacology , Nanoparticles/analysis , Melanoma/drug therapy , Particle Size , Spectrum Analysis/classification , Calorimetry, Differential Scanning/methods , Chromatography, High Pressure Liquid/methods
5.
Polymers (Basel) ; 15(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37836009

ABSTRACT

Growing concerns about environmental issues and global warming have garnered increased attention in recent decades. Consequently, the use of materials sourced from renewable and biodegradable origins, produced sustainably, has piqued the interest of scientific researchers. Biodegradable and naturally derived polymers, such as cellulose and polylactic acid (PLA), have consistently been the focus of scientific investigation. The objective is to develop novel materials that could potentially replace conventional petroleum-based polymers, offering specific properties tailored for diverse applications while upholding principles of sustainability and technology as well as economic viability. Against this backdrop, the aim of this review is to provide a comprehensive overview of recent advancements in research concerning the use of polylactic acid (PLA) and the incorporation of cellulose as a reinforcing agent within this polymeric matrix, alongside the application of 3D printing technology. Additionally, a pivotal additive in the combination of PLA and cellulose, polyethylene glycol (PEG), is explored. A systematic review of the existing literature related to the combination of these materials (PLA, cellulose, and PEG) and 3D printing was conducted using the Web of Science and Scopus databases. The outcomes of this search are presented through a comparative analysis of diverse studies, encompassing aspects such as the scale and cellulose amount added into the PLA matrix, modifications applied to cellulose surfaces, the incorporation of additives or compatibilizing agents, variations in molecular weight and in the quantity of PEG introduced into the PLA/cellulose (nano)composites, and the resulting impact of these variables on the properties of these materials.

6.
Polymers (Basel) ; 15(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37514458

ABSTRACT

In this research, novel, organic, solid-liquid phase-change materials (PCMs) derived from methoxy polyethylene glycol (MPEG) and aromatic acyl chlorides (ACs) were prepared through a condensation reaction. The MPEGs were used as phase-change functional chains with different molecular weights (350, 550, 750, 2000, and 5000 g/mol). The aromatic ACs, terephthaloyl chloride (TPC) and isophthaloyl chloride (IPC), were employed as bulky linker cores. Solubility tests demonstrated that this family of PCMs is soluble in protic polar solvents such as H2O and MeOH, and insoluble in nonpolar solvents such as n-hexane. Fourier-ransform infrared spectroscopy (FT-IR UATR) and nuclear magnetic resonance (1H, 13C, DEPT 135°, COSY, HMQC, and HMBC NMR) were used to confirm the bonding of MPEG chains to ACs. The crystalline morphology of the synthesized materials was examined using polarized optical microscopy (POM), revealing the formation of spherulites with Maltese-cross-extinction patterns. Furthermore, it was confirmed that PCMs with higher molecular weights were crystalline at room temperature and exhibited an increased average spherulite size compared to their precursors. Thermal stability tests conducted through thermogravimetric analysis (TGA) indicated decomposition temperatures close to 400 °C for all PCMs. The phase-change properties were characterized by differential scanning calorimetry (DSC), revealing that the novel PCMs melted and crystallized between -23.7 and 60.2 °C and -39.9 and 45.9 °C, respectively. Moreover, the heat absorbed and released by the PCMs ranged from 57.9 to 198.8 J/g and 48.6 to 195.6 J/g, respectively. Additionally, the PCMs exhibited thermal stability after undergoing thermal cycles of melting-crystallization, indicating that energy absorption and release occurred at nearly constant temperatures. This study presents a new family of high-performance organic PCMs and demonstrates that the orientation of substituent groups in the phenylene ring influences supercooling, transition temperatures, and thermal energy storage capacity depending on the MPEG molecular weight.

7.
Pharmaceutics ; 15(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37376043

ABSTRACT

This work proposes a combination of polyethylene glycol 400 (PEG) and trehalose as a surface modification approach to enhance PLGA-based nanoparticles as a drug carrier for neurons. PEG improves nanoparticles' hydrophilicity, and trehalose enhances the nanoparticle's cellular internalization by inducing a more auspicious microenvironment based on inhibiting cell surface receptor denaturation. To optimize the nanoprecipitation process, a central composite design was performed; nanoparticles were adsorbed with PEG and trehalose. PLGA nanoparticles with diameters smaller than 200 nm were produced, and the coating process did not considerably increase their size. Nanoparticles entrapped curcumin, and their release profile was determined. The nanoparticles presented a curcumin entrapment efficiency of over 40%, and coated nanoparticles reached 60% of curcumin release in two weeks. MTT tests and curcumin fluorescence, with confocal imaging, were used to assess nanoparticle cytotoxicity and cell internalization in SH-SY5Y cells. Free curcumin 80 µM depleted the cell survival to 13% at 72 h. Contrariwise, PEG:Trehalose-coated curcumin-loaded and non-loaded nanoparticles preserved cell survival at 76% and 79% under the same conditions, respectively. Cells incubated with 100 µM curcumin or curcumin nanoparticles for 1 h exhibited 13.4% and 14.84% of curcumin's fluorescence, respectively. Moreover, cells exposed to 100 µM curcumin in PEG:Trehalose-coated nanoparticles for 1 h presented 28% fluorescence. In conclusion, PEG:Trehalose-adsorbed nanoparticles smaller than 200 nm exhibited suitable neural cytotoxicity and increased cell internalization proficiency.

8.
Methods Protoc ; 6(2)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37104020

ABSTRACT

A histological examination is an important tool in embryology, developmental biology, and correlated areas. Despite the amount of information available about tissue embedding and different media, there is a lack of information regarding best practices for embryonic tissues. Embryonic tissues are considered fragile structures, usually small in size, and frequently challenging to position correctly in media for the subsequent histological steps. Here, we discuss the embedding media and procedures that provided us with appropriate preservation of tissue and easier orientation of embryos at early development. Fertilized Gallus gallus eggs were incubated for 72 h, collected, fixed, processed, and embedded with paraplast, polyethylene glycol (PEG), or historesin. These resins were compared by the precision of tissue orientation, the preview of the embryos in the blocks, microtomy, contrast in staining, preservation, average time, and cost. Paraplast and PEG did not allow correct embryo orientation, even with agar-gelatin pre-embedded samples. Additionally, structural maintenance was hindered and did not allow detailed morphological assessment, presenting tissue shrinkage and disruption. Historesin provided precise tissue orientation and excellent preservation of structures. Assessing the performance of the embedding media contributes significantly to future developmental research, optimizing the processing of embryo specimens and improving results.

9.
Clinics (Sao Paulo) ; 78: 100172, 2023.
Article in English | MEDLINE | ID: mdl-37019039

ABSTRACT

BACKGROUND: The accuracy of diagnosis and the safety of treatment in colonoscopy depends largely on the quality of bowel cleansing. This study aimed to compare the efficacy and adverse reactions of Polyethylene Glycol (PEG) combined with lactulose with that of PEG alone in bowel preparation before colonoscopy. METHODS: The authors searched a number of databases including EMBASE, MEDLINE, Cochrane Library, and China Academic Journals Full-text Database. The authors screened according to literature inclusion and exclusion criteria, assessed the quality of the included literature, and extracted the data. The meta-analysis of included literature used RevMan 5.3 and Stata 14.0 software. RESULTS: A total of 18 studies, including 2274 patients, were enrolled. The meta-analysis showed that PEG combined with lactulose had a better efficacy (OR = 3.87, 95% CI 3.07‒4.87, p = 0.000, and I2 = 36.2% in the efficiency group; WMD = 0.86, 95% CI 0.69‒1.03, p = 0.032 and I2 = 0% in the BBPS score group) in bowel preparation for patients with or without constipation. Moreover, PEG combined with lactulose had fewer adverse reactions, including abdominal pain (OR = 1.42, 95% CI 0.94‒2.14, p = 0.094), nausea (OR = 1.60, 95% CI 1.13‒2.28, p = 0.009) and vomiting (OR = 1.77, 95% CI 1.14‒2.74, p = 0.011), than PEG alone. No significant reduction in the incidence of abdominal distention was observed. CONCLUSION: PEG combined with lactulose may be a better choice for bowel preparation before colonoscopy compared with PEG alone.


Subject(s)
Lactulose , Polyethylene Glycols , Humans , Polyethylene Glycols/adverse effects , Lactulose/therapeutic use , Cathartics/adverse effects , Constipation/chemically induced , Constipation/drug therapy , Colonoscopy
10.
Rev Alerg Mex ; 69(2): 89-92, 2023 Jan 04.
Article in Spanish | MEDLINE | ID: mdl-36928249

ABSTRACT

BACKGROUND: The Pfizer-BioNTech® BNT162b2 vaccine, provides 95% effectiveness from the second dose onwards. The reported rate of anaphylaxis to COVID-19 vaccines is 4.7 cases/million doses administered. CASE REPORT: 30-year-old female, health professional, history of allergic rhinitis, asthma, reaction to eye cosmetics and adhesive tape: erythema, edema, and local pruritus. Immediately after application of the first dose of Pfizer-BioNTech vaccine, she presented grade III anaphylaxis. The patient was stratified, phenotyped and skin tests with PEG 3350 were positive. A recommendation was issued not to reapply vaccine containing polyethylene glycol and alternatives were offered. CONCLUSIONS: An adequate risk stratification should be performed before applying mRNA-based COVID-19 vaccines for the first time in at-risk groups. In case of anaphylaxis at the first dose, phenotyping and further study with PEG skin tests should be performed and vaccination alternatives should be offered.


INTRODUCCIÓN: La vacuna Pfizer-BioNTech® BNT162b2 proporciona efectividad del 95% a partir de la segunda dosis. La tasa de anafilaxia reportada de vacunas para COVID-19 es de 4.7 casos por millón de dosis administradas. REPORTE DEL CASO: Paciente femenina de 30 años, profesional de la salud, con antecedentes de rinitis alérgica, asma, reacción a productos cosméticos en los párpados y al pegamento de la cinta adhesiva (eritema, edema y prurito local). Posterior a la aplicación de la primera dosis de la vacuna Pfizer-BioNTechÒ tuvo un evento de anafilaxia grado III. Se estratificó, fenotipificó y efectuaron pruebas cutáneas con PEG-3350, que resultaron positivas. Se sugirió no aplicar la aplicar vacuna de refuerzo que contuviera polietilenglicol y se ofrecieron alternativas de tratamiento. CONCLUSIONES: Es importante efectuar la adecuada estratificación de riesgo antes de aplicar las vacunas para COVID-19 basadas en ARNm por primera vez. En caso de anafilaxia es necesario fenotipificar y ampliar el estudio con pruebas cutáneas con PEG, además de otorgar alternativas de vacunación.


Subject(s)
Anaphylaxis , COVID-19 Vaccines , COVID-19 , Vaccines , Adult , Female , Humans , Anaphylaxis/diagnosis , Anaphylaxis/etiology , BNT162 Vaccine , COVID-19 Vaccines/adverse effects
11.
Micromachines (Basel) ; 14(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838151

ABSTRACT

The use of gold nanoparticles as drug delivery systems has received increasing attention due to their unique properties, such as their high stability and biocompatibility. However, gold nanoparticles have a high affinity for proteins, which can result in their rapid clearance from the body and limited drug loading capabilities. To address these limitations, we coated the gold nanoparticles with silica and PEG, which are known to improve the stability of nanoparticles. The synthesis of the nanoparticles was carried out using a reduction method. The nanoparticles' size, morphology, and drug loading capacity were also studied. The SEM images showed a spherical and homogeneous morphology; they also showed that the coatings increased the average size of the nanoparticles. The results of this study provide insight into the potential of gold nanoparticles coated with silica and PEG as drug delivery systems. We used ibuprofen as a model drug and found that the highest drug load occurred in PEG-coated nanoparticles and then in silica-coated nanoparticles, while the uncoated nanoparticles had a lower drug loading capacity. The coatings were found to significantly improve the stability and drug load properties of the nanoparticles, making them promising candidates for further development as targeted and controlled release drug delivery systems.

12.
Rev Gastroenterol Mex (Engl Ed) ; 88(2): 107-117, 2023.
Article in English | MEDLINE | ID: mdl-34961695

ABSTRACT

INTRODUCTION AND AIMS: There are few studies that compare polyethylene glycol (PEG) 3350 and magnesium hydroxide (MH), as long-term treatment of functional constipation (FC) in children, and they do not include infants as young as 6 months of age. Our aim was to determine the efficacy, safety, and acceptability of PEG vs MH in FC, in the long term, in pediatric patients. METHODS: An open-label, parallel, controlled clinical trial was conducted on patients from 6 months to 18 years of age, diagnosed with FC, that were randomly assigned to receive PEG 3350 or MH for 12 months. Success was defined as: ≥ 3 bowel movements/week, with no fecal incontinence, fecal impaction, abdominal pain, or the need for another laxative. We compared adverse events and acceptability, measured as rejected doses of the laxative during the study, in each group and subgroup. RESULTS: Eighty-three patients with FC were included. There were no differences in success between groups (40/41 PEG vs 40/42 MH, p = 0.616). There were no differences in acceptability between groups, but a statistically significant higher number of patients rejected MH in the subgroups > 4 to 12 years and > 12 to 18 years of age (P = .037 and P = .020, respectively). There were no differences regarding adverse events between the two groups and no severe clinical or biochemical adverse events were registered. CONCLUSIONS: The two laxatives were equally effective and safe for treating FC in children from 0.5 to 18 years of age. Acceptance was better for PEG 3350 than for MH in patients above 4 years of age. MH can be considered first-line treatment for FC in children under 4 years of age.


Subject(s)
Laxatives , Magnesium Hydroxide , Humans , Child , Child, Preschool , Laxatives/therapeutic use , Magnesium Hydroxide/therapeutic use , Treatment Outcome , Polyethylene Glycols/adverse effects , Constipation/drug therapy , Electrolytes/therapeutic use
13.
Clinics ; Clinics;78: 100172, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1439912

ABSTRACT

Abstract Background: The accuracy of diagnosis and the safety of treatment in colonoscopy depends largely on the quality of bowel cleansing. This study aimed to compare the efficacy and adverse reactions of Polyethylene Glycol (PEG) combined with lactulose with that of PEG alone in bowel preparation before colonoscopy. Methods: The authors searched a number of databases including EMBASE, MEDLINE, Cochrane Library, and China Academic Journals Full-text Database. The authors screened according to literature inclusion and exclusion criteria, assessed the quality of the included literature, and extracted the data. The meta-analysis of included literature used RevMan 5.3 and Stata 14.0 software. Results: A total of 18 studies, including 2274 patients, were enrolled. The meta-analysis showed that PEG combined with lactulose had a better efficacy (OR = 3.87, 95% CI 3.07‒4.87, p = 0.000, and I2 = 36.2% in the efficiency group; WMD = 0.86, 95% CI 0.69‒1.03, p = 0.032 and I2 = 0% in the BBPS score group) in bowel preparation for patients with or without constipation. Moreover, PEG combined with lactulose had fewer adverse reactions, including abdominal pain (OR = 1.42, 95% CI 0.94‒2.14, p = 0.094), nausea (OR = 1.60, 95% CI 1.13‒2.28, p = 0.009) and vomiting (OR = 1.77, 95% CI 1.14‒2.74, p = 0.011), than PEG alone. No significant reduction in the incidence of abdominal distention was observed. Conclusion: PEG combined with lactulose may be a better choice for bowel preparation before colonoscopy compared with PEG alone.

14.
Polymers (Basel) ; 14(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36433040

ABSTRACT

Grafting polyethylene glycol (PEG) onto a polymer's surface is widely used to improve biocompatibility by reducing protein and cell adhesion. Although PEG is considered to be bioinert, its incorporation onto biomaterials has shown to improve cell viability depending on the amount and molecular weight (MW) used. This phenomenon was studied here by grafting PEG of three MW onto polyurethane (PU) substrata at three molar concentrations to assess their effect on PU surface properties and on the viability of osteoblasts and fibroblasts. PEG formed a covering on the substrata which increased the hydrophilicity and surface energy of PUs. Among the results, it was observed that osteoblast viability increased for all MW and grafting densities of PEG employed compared with unmodified PU. However, fibroblast viability only increased at certain combinations of MW and grafting densities of PEG, suggesting an optimal level of these parameters. PEG grafting also promoted a more spread cell morphology than that exhibited by unmodified PU; nevertheless, cells became apoptotic-like as PEG MW and grafting density were increased. These effects on cells could be due to PEG affecting culture medium pH, which became more alkaline at higher MW and concentrations of PEG. Results support the hypothesis that surface energy of PU substrates can be tuned by controlling the MW and grafting density of PEG, but these parameters should be optimized to promote cell viability without inducing apoptotic-like behavior.

15.
Materials (Basel) ; 15(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36363134

ABSTRACT

Poly(3-hydroxybutyrate) (PHB)-based films containing Poly(ethylene glycol) (PEG), esterified sodium alginate (ALG-e) and polymeric additives loaded with Ag nanoparticles (AgNPs) were obtained by a conventional casting method. AgNPs were produced in aqueous suspension and added to polymeric gels using a phase exchange technique. Composite formation was confirmed by finding the Ag peak in the XRD pattern of PHB. The morphological analysis showed that the inclusion of PEG polymer caused the occurrence of pores over the film surface, which were overshadowed by the addition of ALG-e polymer. The PHB functional groups were dominating the FTIR spectrum, whose bands associated with the crystalline and amorphous regions increased after the addition of PEG and ALG-e polymers. Thermal analysis of the films revealed a decrease in the degradation temperature of PHB containing PEG/AgNPs and PEG/ALG-e/AgNPs, suggesting a catalytic effect. The PHB/PEG/ALG-e/AgNPs film combined the best properties of water vapor permeability and hydrophilicity of the different polymers used. All samples showed good antimicrobial activity in vitro, with the greater inhibitory halo observed for the PEG/PEG/AgNPs against Gram positive S. aureus microorganisms. Thus, the PHB/PEG/ALG-e/AgNPs composite demonstrated here is a promising candidate for skin wound healing treatment.

16.
Polymers (Basel) ; 14(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36080684

ABSTRACT

Mexican oregano (Lippia graveolens) polyphenols have antioxidant and anti-inflammatory potential, but low bioaccessibility. Therefore, in the present work the micro/nano-encapsulation of these compounds in two different matrixes of chitosan (CS) and chitosan-b-poly(PEGMA2000) (CS-b-PPEGMA) is described and assessed. The particle sizes of matrixes of CS (~955 nm) and CS-b-PPEGMA (~190 nm) increased by 10% and 50%, respectively, when the phenolic compounds were encapsulated, yielding loading efficiencies (LE) between 90-99% and 50-60%, correspondingly. The release profiles in simulated fluids revealed a better control of host-guest interactions by using the CS-b-PPEGMA matrix, reaching phenolic compounds release of 80% after 24 h, while single CS retained the guest compounds. The total reducing capacity (TRC) and Trolox equivalent antioxidant capacity (TEAC) of the phenolic compounds (PPHs) are protected and increased (more than five times) when they are encapsulated. Thus, this investigation provides a standard encapsulation strategy and relevant results regarding nutraceuticals stabilization and their improved bioaccessibility.

17.
Molecules ; 27(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36144765

ABSTRACT

One of the most widely used molecules used for photodynamic therapy (PDT) is 5-aminolevulinic acid (5-ALA), a precursor in the synthesis of tetrapyrroles such as chlorophyll and heme. The 5-ALA skin permeation is considerably reduced due to its hydrophilic characteristics, decreasing its local bioavailability and therapeutic effect. For this reason, five different systems containing polymeric particles of poly [D, L-lactic-co-glycolic acid (PLGA)] were developed to encapsulate 5-ALA based on single and double emulsions methodology. All systems were standardized (according to the volume of reagents and mass of pharmaceutical ingredients) and compared in terms of laboratory scaling up, particle formation and stability over time. UV-VIS spectroscopy revealed that particle absorption/adsorption of 5-ALA was dependent on the method of synthesis. Different size distribution was observed by DLS and NTA techniques, revealing that 5-ALA increased the particle size. The contact angle evaluation showed that the system hydrophobicity was dependent on the surfactant and the 5-ALA contribution. The FTIR results indicated that the type of emulsion influenced the particle formation, as well as allowing PEG functionalization and interaction with 5-ALA. According to the 1H-NMR results, the 5-ALA reduced the T1 values of polyvinyl alcohol (PVA) and PLGA in the double emulsion systems due to the decrease in molecular packing in the hydrophobic region. The results indicated that the system formed by single emulsion containing the combination PVA-PEG presented greater stability with less influence from 5-ALA. This system is a promising candidate to successfully encapsulate 5-ALA and achieve good performance and specificity for in vitro skin cancer treatment.


Subject(s)
Aminolevulinic Acid , Polyglycolic Acid , Chlorophyll , Emulsions , Heme , Lactic Acid/chemistry , Particle Size , Polyethylene Glycols/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polyvinyl Alcohol/chemistry , Surface-Active Agents , Tetrapyrroles
18.
Parasitol Res ; 121(10): 2861-2874, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35972545

ABSTRACT

Chagas disease, caused by the protozoan Trypanosoma cruzi, is an important public health problem in Latin America. Nanoencapsulation of anti-T. cruzi drugs has significantly improved their efficacy and reduced cardiotoxicity. Thus, we investigated the in vitro interaction of polyethylene glycol-block-poly(D,L-lactide) nanocapsules (PEG-PLA) with trypomastigotes and with intracellular amastigotes of the Y strain in cardiomyoblasts, which are the infective forms of T. cruzi, using fluorescence and confocal microscopy. Fluorescently labeled nanocapsules (NCs) were internalized by non-infected H9c2 cells toward the perinuclear region. The NCs did not induce significant cytotoxicity in the H9c2 cells, even at the highest concentrations and interacted equally with infected and non-infected cells. In infected cardiomyocytes, NCs were distributed in the cytoplasm and located near intracellular amastigote forms. PEG-PLA NCs and trypomastigote form interactions also occurred. Altogether, this study contributes to the development of engineered polymeric nanocarriers as a platform to encapsulate drugs and to improve their uptake by different intra- and extracellular forms of T. cruzi, paving the way to find new therapeutic strategies to fight the causative agent of Chagas disease.


Subject(s)
Chagas Disease , Nanocapsules , Trypanosoma cruzi , Chagas Disease/drug therapy , Humans , Polyesters , Polyethylene Glycols
19.
Food Technol Biotechnol ; 60(2): 145-154, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35910271

ABSTRACT

Research background: Gallic acid is a polyphenol with antioxidant and antitumor activities; however, its use as a nutraceutical or drug is hindered by its low bioavailability. Zein is a natural protein found in corn and has been applied as nanoparticle drug carrier. In this study, zein nanoparticles were obtained and stabilized with polyethylene glycol (PEG) as gallic acid carriers. Experimental approach: Nanoparticles were obtained by the liquid-liquid method and characterized in terms of mean size, polydispersity index, zeta potential, morphology, solid-state interactions and encapsulation efficiency/drug loading. The stability of nanoparticles was evaluated in simulated gastrointestinal fluids and food simulants, and the antioxidant activity was determined by the scavenging of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. Results and conclusions: Zein nanoparticles containing gallic acid were obtained and stabilized only in the presence of PEG. Under optimal conditions, nanoparticles with mean size <200 nm, low polydispersity index (<0.25) and negative zeta potential (-20 mV) were obtained. The gallic acid encapsulation efficiency was about 40%, loading about 5%, and it was encapsulated in an amorphous state. Fourier transform infrared spectroscopy (FTIR) did not identify chemical interactions after gallic acid nanoencapsulation. Zein nanoparticles were more prone to release the gallic acid in gastric than intestinal simulated medium; however, more than 50% of drug content was protected from premature release. In food simulants, the gallic acid release from nanoparticles was prolonged and sustained. Moreover, the nanoencapsulation did not reduce the antioxidant activity of gallic acid. Novelty and scientific contribution: The results show the importance of PEG in the formation and its effect on the properties of zein nanoparticles obtained by the liquid-liquid dispersion method. This study indicates that PEG-stabilized zein nanoparticles are potential carriers for oral intake of gallic acid, preserving its antioxidant properties and enabling its use in the pharmaceutical and food industries.

20.
J Tradit Complement Med ; 12(2): 123-130, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35528477

ABSTRACT

BACKGROUND AND AIM: Echinodorus macrophyllus (Kunth.) Micheli is popularly used for acute and chronic inflammatory conditions. The anti-inflammatory activity was previously demonstrated for its flavonoid-enriched fractions. The aim of this work assessed the antinociceptive properties of both aqueous extract and its fractions. EXPERIMENTAL PROCEDURE: The antinociceptive activity was determined by acetic acid-induced writhing, formalin test, tail immersion test, hot-plate test, xylene-induced ear edema methods, and the evaluation of its mechanism was performed in the writhing model. The aqueous extract of Echinodorus macrophyllus (AEEm) was fractionated, yielding Fr20, and Fr40. Fr40 composition was determined by HPLC-DAD-ESI-MS. RESULTS AND CONCLUSION: Fr20 (all doses) and Fr40 (100 mg/kg) reduced the nociception in the tail-flick model. Both fractions increased the percentage of maximum possible effect with 25 mg/kg, in the hot-plate assay, at 60 min, while AEEm reduced pain only with 50 and 100 mg/kg. There was a reduction in xylene-edema index, with Fr40 (25 mg/kg), AEEm (50 mg/kg) and Fr20 (50 mg/kg). All doses of AEEm, Fr20, and Fr40 reduced both phases of the formalin model. In the abdominal contortion model, Fr40 presented the highest activity, reducing 96% of contortions and its antinociceptive mechanism was evaluated. The results indicated the involvement of NO and adrenergic activation pathways. The main components of Fr40 are swertisin, swertiajaponin, isoorientin 7,3'-dimethyl ether, swertisin-O-rhamnoside, isoorientin, isovitexin, isovitexin-Orhamnoside, and isovitexin-7-O-glucoside. The aqueous extract of E. macrophyllus leaves and its fractions exhibited significant analgesic effect, mediated through both peripheral and central mechanisms being considered a potentially antinociceptive drug.

SELECTION OF CITATIONS
SEARCH DETAIL