Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 736
Filter
1.
Article in English | MEDLINE | ID: mdl-39087595

ABSTRACT

We present a new approach to achieve nanoscale transistors on ultrathin flexible substrates with conventional electron-beam lithography. Full devices are first fabricated on a gold sacrificial layer covering a rigid silicon substrate, and then coated with a polyimide film and released from the rigid substrate. This approach bypasses nanofabrication constraints on flexible substrates: (i) electron-beam surface charging, (ii) alignment inaccuracy due to the wavy substrate, and (iii) restricted thermal budgets. As a proof-of-concept, we demonstrate ∼100 nm long indium tin oxide (ITO) transistors on ∼6 µm thin polyimide. This is achieved with sub-20 nm misalignment or overlap between source (or drain) and gate contacts on flexible substrates for the first time. The estimated transit frequency of our well-aligned devices can be up to 3.3 GHz, which can be further improved by optimizing the device structure and performance.

2.
J Colloid Interface Sci ; 675: 488-495, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986322

ABSTRACT

As a promising sustainable power source in intelligent electronics, Triboelectric Nanogenerators (TENGs) have garnered widespread interest, with various strategies explored to enhance their output performance. However, most optimization methods for triboelectric materials have focused solely on tuning chemical compositions or fabricating surface microstructures. Here, we have prepared amino-functionalized reduced graphene oxide (FRGO)/polyimide (PI) composite films (PI-FRGO) via in-situ polymerization, aimed at enhancing PI materials' nanotribological power generation performance. By varying the doping levels of amino groups and controlling the FRGO proportion during synthesis, we can explore the optimal FRGO/PI composite film ratio. At a p-Phenylenediamine: reduced Graphene Oxide (PPDA: RGO) ratio of 1:1 and an FRGO addition of 0.1 %, the output electrical performance peaks with a voltage of 58 V, a charge of 33 nC and a current of 12 µA, nearly 2 times that of a pure PI film. We have fabricated a TENG with an optimally formulated PI-FRGO composite to explore its application potential. Under a 10 MΩ external load resistance, the TENG can deliver a power density of 3.5 mW/m2 and can be powering small devices. This work presents new effective strategies to significantly enhance TENG output performance and promote their widespread application.

3.
Article in English | MEDLINE | ID: mdl-39042094

ABSTRACT

The development of an artificial ligament with a multifunction of promoting bone formation, inhibiting bone resorption, and preventing infection to obtain ligament-bone healing for anterior cruciate ligament (ACL) reconstruction still faces enormous challenges. Herein, a novel artificial ligament based on a PI fiber woven fabric (PIF) was fabricated, which was coated with a phytic acid-gallium (PA-Ga) network via a layer-by-layer assembly method (PFPG). Compared with PIF, PFPG with PA-Ga coating significantly suppressed osteoclastic differentiation, while it boosted osteoblastic differentiation in vitro. Moreover, PFPG obviously inhibited fibrous encapsulation and bone absorption while accelerating new bone regeneration for ligament-bone healing in vivo. PFPG remarkably killed bacteria and destroyed biofilm, exhibiting excellent antibacterial properties in vitro as well as anti-infection ability in vivo, which were ascribed to the release of Ga ions from the PA-Ga coating. The cooperative effect of the surface characteristics (e.g., hydrophilicity/surface energy and protein absorption) and sustained release of Ga ions for PFPG significantly enhanced osteogenesis while inhibiting osteoclastogenesis, thereby achieving ligament-bone integration as well as resistance to infection. In summary, PFPG remarkably facilitated osteoblastic differentiation, while it suppressed osteoclastic differentiation, thereby inhibiting osteoclastogenesis for bone absorption while accelerating osteogenesis for ligament-bone healing. As a novel artificial ligament, PFPG represented an appealing option for graft selection in ACL reconstruction and displayed considerable promise for application in clinics.

4.
Polymers (Basel) ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000660

ABSTRACT

Negative-tone photosensitive polyimides (PSPIs) with a low coefficient of thermal expansion (CTE) were prepared by dissolving polyimide precursor-poly(amide ester) (PAE) resins, photoinitiators, photocrosslinkers and other additives in organic solvents. Using triamine as a monomer and dianhydride and diamine as polycondensates, tri-branched structure PAE resins with different molecular weights named PAE-1~5 were prepared. A series of corresponding PSPI films named PSPI-1~5 were prepared from PAE-1~5 resins with the same formulation, respectively. The PSPI-1~5 films prepared from resins of this structure have excellent mechanical, thermal and electrical properties after being thermally cured at 350 °C/2 h in nitrogen. The PSPI-1~5 films' coating solution also show good photolithographic performance and are able to obtain photolithographic patterns with a resolution of about 10 µm after homogenization, exposure and development. Among the PSPI-1~5 films, PSPI-2 has the most excellent lithographic properties with a weight average molecular weight (Mw) of 2.9 × 104 g/mol, a CTE of 41 ppk/°C, a glass transition temperature (Tg) of 343 °C and a 5% weight loss temperature (Td5) of 520 °C, making it suitable for industrial scale-up. The mechanical properties of elongation at breakage of 42.4%, tensile moduli of 3.4 GPa and tensile strength of 153.7 MPa were also measured.

5.
Polymers (Basel) ; 16(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000696

ABSTRACT

The constantly evolving electrification also entails an increase in requirements for the effective and efficient distribution of electricity with the lowest possible power losses. Such needs can be met by highly effective electrical devices, and one of them is a transformer whose main component is a magnetic core. Currently, one of the soft magnetic materials used alternatively for the production of transformer cores are amorphous metal strips with competitive losses. However, to successfully use these materials, a key problem must be solved: limited mechanical stability. The presented article describes the development and application of a polyimide-based binder for efficient bonding of an amorphous metal ribbon. The layered binder was characterized using confocal microscopy, scanning electron microscopy and Raman spectroscopy, and its anticorrosion and mechanical properties were examined. As a final step, a prototype of a toroidal magnetic core bonded with the binder was manufactured and subjected to the evaluation of no-load loss and the analysis of the emitted noise. It was confirmed that the proposed polyimide binder tremendously improved the mechanical stability while reducing core losses and audible noise.

6.
Polymers (Basel) ; 16(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000771

ABSTRACT

Quickly sensing humidity changes is required in some fields, such as in fuel cell vehicles. The micro humidity sensor used for the relative humidity (RH) measurement with fast response characteristics, and its numerical model and method are rare. This paper firstly presents a numerical model and method for a parallel plate capacitor and a numerical analysis of its dynamic characteristics. The fabrication of this sensor was carried out based on the numerical results, and, the main characteristics of its moisture-sensitive element are shown. This parallel plate capacitor is made using complementary metal-oxide semiconductor (CMOS)-compatible technology, with a P-type monocrystalline silicon wafer used as the substrate, a thin polyimide film (PI) between the upper grid electrode and the lower parallel plate electrode, and electrodes with a molybdenum-aluminum bilayer structure. The shape of the micro sensor is square with 3 mm on the side of the source field. The humidity sensor has a linearity of 0.9965, hysteresis at 7.408% RH, and a sensitivity of 0.4264 pF/%RH. The sensor displays an average adsorption time of 1 s and a minimum adsorption time of 850 ms when the relative humidity increases from 33.2% RH to 75.8% RH. The sensor demonstrates very good stability during a 240 h test in a 25 °C environment. The numerical model and method provided by this study are very useful for predicting the performance of a parallel plate capacitor.

7.
Anal Chim Acta ; 1317: 342898, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030002

ABSTRACT

BACKGROUND: Nitrofurazone (NFZ) is a widely-used antimicrobial agent in aquaculture. The NFZ residue can be transmitted to humans through the food chain, and cause adverse health effects including carcinogenesis and teratogenesis. Until now, a number of modified electrodes have been developed for NFZ detection, however, there are some issues that need to be improved. For example, the reported detection sensitivity is relatively low, the modification procedure is complicated, and conventional three-electrode system is used. Therefore, it is quite important to develop new NFZ detection method with higher sensitivity, simplicity and practicality. RESULTS: Herein, a kind of integrated three-electrode array consisted with porous graphene is easily prepared through laser engraving of commercial polyimide tape. Five kinds of graphene arrays were prepared at different laser power percentage (i.e. 30 %, 40 %, 50 %, 60 % and 70 %). It is found that their structure, morphology, fluffiness and porosity show great difference, consequently affecting the electrochemical performance of graphene arrays such as conductivity, active area and electron transfer ability. The engraved graphene array at 50 % laser power percentage (LIG-50 array) is superior owing to uniform 3D structure, abundant pores and high stability. More importantly, LIG-50 array is more active for NFZ oxidation, and significantly enhances the detection sensitivity. The linear range of LIG-50 sensor is from 0.2 to 8 µM, and the detection limit is 0.035 µM, which is successfully used in fish meat samples. SIGNIFICANCE: A sensitive, portable and practical electrochemical sensor has been successfully developed for NFZ using laser-engraved graphene array. The demonstration using fish meat samples manifests this new sensor has good accuracy and great potential in application. This study could provide a new possibility for the design and fabrication of other high-performance electrochemical sensor for various applications in the future.


Subject(s)
Electrochemical Techniques , Electrodes , Graphite , Lasers , Nitrofurazone , Nitrofurazone/analysis , Graphite/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Limit of Detection , Animals
8.
Small ; : e2404104, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953403

ABSTRACT

Polyimide aerogels have been extensively used in thermal protection domain because they possess a combination of intrinsic characteristics of aerogels and unique features of polyimide. However, polyimide aerogels still suffer significant thermally induced shrinkage at temperatures above 200 °C, restricting their application at high temperature. Here, a novel "double-phase-networking" strategy is proposed for fabricating a lightweight and mechanically robust polyimide hybrid aerogel by forming silica-zirconia-phase networking skeletons, which possess exceptional dimensional stability in high-temperature environments and superior thermal insulation. The rational mechanism responsible for the formation of double-phase-networking aerogel is further explained, generally attributing to chemical crosslinking reactions and supramolecular hydrogen bond interactions derived from the main chains of polyimide and silane/zirconia precursor/sol. The as-prepared aerogels exhibit excellent high-temperature (270 °C) dimensional stability (5.09% ± 0.16%), anti-thermal-shock properties, and low thermal conductivity. Moreover, the hydrophobic treatment provides aerogels high water resistance with water contact angle of 136.9°, further suggestive of low moisture content of 3.6% after exposure to 70 °C and 85% relative humidity for 64 h. The proposed solution for significantly enhancing high-temperature dimensional stability and thermal insulation provides a great supporting foundation for fabricating high-performance organic aerogels as thermal protection materials in aerospace.

9.
ACS Appl Mater Interfaces ; 16(30): 40069-40076, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39037051

ABSTRACT

Passive radiative cooling technology without electric consumption is an emerging sustainability technology that plays a key role in advancing sustainable development. However, most radiative cooling materials are vulnerable to outdoor contamination and thermal/UV exposure, which leads to decreased performance. Herein, we report a hierarchically structured polyimide/zinc oxide (PINF/ZnO) composite membrane that integrates sunlight reflectance of 91.4% in the main thermal effect of the solar spectrum (0.78-1.1 µm), the mid-infrared emissivity of 90.0% (8-13 µm), UV shielding performance, thermal resistance, and ideal hydrophobicity. The comprehensive performance enables the composite membrane to yield a temperature drop of ∼9.3 °C, compared to the air temperature, under the peak solar irradiance of ∼800 W m-2. In addition, the temperature drop of as-obtained composite membranes after heating at 200 °C for 6 h in a nitrogen/air atmosphere can be well maintained at ∼9.0 °C, demonstrating their ideal radiative cooling effect in a high-temperature environment. Additionally, the PINF/ZnO composite membrane shows excellent chemical durability after exposure to the outdoor environment. This work provides a new strategy to integrate chemical durability and thermal resistance with radiative cooling, presenting great potential for passive radiative cooling materials toward practical applications in harsh environments.

10.
Membranes (Basel) ; 14(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39057662

ABSTRACT

Organic-inorganic hybrid silica materials, incorporating an organic group bridging two silicon atoms, have demonstrated great potential in creating membranes with excellent permselectivity. Yet, the large-scale production of polymer-supported flexible hybrid silica membranes has remained a significant challenge. In this study, we present an easy and scalable approach for fabricating these membranes. By employing a sol-gel ultrasonic spray process with a single-pass method, we deposited a thin and uniform hybrid active layer onto a porous polymer substrate. We first optimized the deposition conditions, including substrate temperature, the binary solvent ratio of the silica sol, and various ultrasonic spray parameters. The resulting flexible hybrid silica membranes exhibited exceptional dehydration performance for isopropanol (IPA)/water solutions (IPA: 90 wt%) in the pervaporation process, achieving a water flux of 0.6 kg/(m2 h) and a separation factor of around 1300. This work demonstrates that the single-pass ultrasonic spray method is an effective strategy for the large-scale production of polymer-supported flexible hybrid silica membranes.

11.
J Colloid Interface Sci ; 676: 1011-1022, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39068833

ABSTRACT

Polyimide (PI) aerogels have various applications in aerospace, national defense, military industry, and rail transit equipment. This paper reports a series of ultra-lightweight, high elasticity, high strength, low thermal conductivity, and high flame retardant rGO/PI nanocomposite aerogels prepared by the ice templating method. The effects of freezing processes (unidirectional freezing and random freezing), chemical composition, and environmental temperature (-196-200 °C) on the morphology, mechanical, and thermal properties of the aerogels were systematically studied. The results indicated that unidirectional aerogels exhibit anisotropic mechanical properties and thermal performance. Compression in the horizontal direction showed high elasticity, high fatigue resistance, and superior thermal insulation. Meanwhile, in the vertical direction, it demonstrated high strength (PI-G-9 reaching 14 MPa). After 10,000 cycles of compression in the horizontal direction (at 50 % strain), the unidirectional PI-G-5 aerogel still retains 90.32 % height retention, and 78.5 % stress retention, and exhibited a low stable energy loss coefficient (22.11 %). It also possessed a low thermal conductivity (32.8 mW m-1 K-1) and demonstrated good thermal insulation performance by sustaining at 200 °C for 30 min. Interestingly, the elasticity of the aerogels was enhanced with decreasing temperatures, achieving a height recovery rate of up to 100 % when compressed in liquid nitrogen. More importantly, the rGO/PI aerogels could be utilized over a wide temperature range (-196-200 °C) and had a high limiting oxygen index (LOI) ranging from 43.3 to 48.1 %. Therefore, this work may provide a viable approach for designing thermal insulation and flame-retardant protective materials with excellent mechanical properties that are suitable for harsh environments.

12.
Heliyon ; 10(11): e31985, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882304

ABSTRACT

Dust removal coatings for polyimide (PI)-based photovoltaic modules used in lunar rovers were fabricated successfully through the blade-coating method using silicon dioxide (SiO2) nanoparticles and γ-aminopropyltriethoxysilane (KH550). The dust removal performance, morphology, transparency, and adhesive force of the coating can be optimized by adjusting the pH and the mass ratios of SiO2 and KH550. The designed coating demonstrates excellent dust removal performance, achieving an percentage of over 85 %. Moreover, the coating has minimal impact on the transparency of the PI substrate and exhibits strong adhesion to it. Additionally, the coating shows remarkable resistance to both high and low temperatures. Even after undergoing five cycles of thermal treatment ranging from -196 to 160 °C, there were no significant changes in the morphology or dust removal performance of the coating. Therefore, this coating exhibits tremendous potential for application in the dust removal of photovoltaic modules in lunar rovers.

13.
Materials (Basel) ; 17(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893803

ABSTRACT

The excellent electrical properties of graphene have received widespread attention. However, the difficulty of electron transfer between layers still restricts the application of graphene composite materials to a large extent. Therefore, in this study, graphene/polyimide films were subjected to a Joule heating treatment to improve the electrical conductivity of the film by ~76.85%. After multiple Joule thermal cycle treatments, the conductivity of the graphene/polyimide film still gradually increased, but the increase in amplitude tended to slow down. Finally, after eight Joule heat treatments, the conductivity of the graphene/polyimide film was improved by ~93.94%. The Joule heating treatment caused the polyimide to undergo atomic rearrangement near the interface bonded to the graphene, forming a new crystalline phase favourable for electron transport with graphene as a template. Accordingly, a model of the bilayer capacitive microstructure of graphene/polyimide was proposed. The experiment suggests that the Joule heating treatment can effectively reduce the distance between graphene electrode plates in the bilayer capacitive micro-nanostructures of graphene/polyimide and greatly increases the number of charge carriers on the electrode plates. The TEM and WAXS characterisation results imply atomic structure changes at the graphene/polyimide bonding interface.

14.
Materials (Basel) ; 17(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893823

ABSTRACT

Carbon-fiber-reinforced polyimide (PI) resin composites have gained significant attention in the field of continuous-fiber-reinforced polymers, in which the interfacial bonding between carbon fiber and matrix resin has been an important research direction. This study designed and prepared a water-soluble thermoplastic polyamide acid sizing agent to improve the wettability of carbon fiber, enhance the van der Waals forces between carbon fiber and resin and strengthen the chemical bonding between the sizing agent and the alkyne-capped polyimide resin by introducing alkyne-containing functional groups into the sizing agent. This study found that the addition of a sizing layer effectively bridged the large modulus difference between the fiber and resin regions, resulting in the formation of an interfacial layer approximately 85 nm thick. This layer facilitated the transfer of stress from the matrix to the reinforced carbon fiber, leading to a significant improvement in the interfacial properties of the composites. Adjusting the concentration of the sizing agent showed that composites treated with 3% had the best interfacial properties. The interfacial shear strength increased from 82.08 MPa to 108.62 MPa (32.33%) compared to unsized carbon fiber. This research is significant for developing sizing agents suitable for carbon-fiber-reinforced polyimide composites.

15.
Polymers (Basel) ; 16(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38891537

ABSTRACT

With the increasing demand for innovative electronic products, LED transparent screens are gradually entering the public eye. Polyimide (PI) materials combine high temperature resistance and high transparency, which can be used to prepare flexible copper-clad laminate substrates. The physical and chemical properties of PI materials differ from copper, such as their thermal expansion coefficients (CTEs), surface energy, etc. These differences affect the formation and stability of the interface between copper and PI films, resulting in a short life for LED transparent screens. To enhance PI-copper interfacial adhesion, aminopropyl-terminated polydimethylsiloxane (PDMS) can be used to increase the adhesive ability. Two diamine monomers with a trifluoromethyl structure and a sulfone group structure were selected in this research. Bisphenol type A diether dianhydride is a dianhydride monomer. All three of the above monomers have non-coplanar structures and flexible structural units. The adhesion and optical properties can be improved between the interface of the synthesized PI films and copper foil. PI films containing PDMS 0, 1, 3, and 5 wt% were analyzed using UV spectroscopy. The transmittance of the PI-1/3%, PI-1/5%, PI-2/3%, and PI-2/5% films were all more than 80% at 450 nm. Meanwhile, the Td 5% and Td 10% heat loss and Tg temperatures decreased gradually with the increase in PDMS. The peel adhesion of PI-copper foil was measured using a 180° peel assay. The effect of PDMS addition on peel adhesion was analyzed. PIs-3% films had the greatest peeling intensities of 0.98 N/mm and 0.85 N/mm.

16.
Macromol Rapid Commun ; : e2400312, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860731

ABSTRACT

Vitrimers, possessing associative covalent adaptable networks, are cross-linked polymers exhibiting malleable (glass-like) feature and recyclable and reprocessable (thermoplastics-like) properties. The dynamic behaviors of vitrimer are dependent on both chain/molecular mobility (glass transition temperature, Tg) and dynamic bond-exchanging reaction rate (topology freezing transition temperature, Tv). This work aims on probing the effect of high Tg on the stress relaxation and physical recyclability of vitrimers, employing a polyimide cross-linked with dynamic ester bonds (Tg: 310 °C) as the example. Due to its high Tg and chain rigidity, the cross-linked polyimide does not exhibit a high extent of stress relaxation behavior at 320 °C (10 °C above its Tg), even though the temperature is much higher than the hypothetical Tv. While raising the processing temperature to 345 °C, the cross-linked polyimide exhibits a stress relaxation time of about 3300 s and physical malleability. Nevertheless, side reactions may occur in the recycling and reprocessing process under the harsh condition (high temperature and high pressure) to alter the thermal properties of the recycled sample. The diffusion control plays a critical role on the topography transition of a vitrimer having a high Tg. The Tg ceiling is noticeable for developments of vitrimers.

17.
ACS Appl Mater Interfaces ; 16(25): 32611-32618, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38864643

ABSTRACT

Membrane with remarkable proton conductance and selectivity plays a key role in obtaining high vanadium flow battery (VFB) performance. In this work, the trade-off effect between proton conductance and vanadium ion blocking was overcome by the introduction of a cross-linking structure to prepare covalent cross-linked fluorine-containing sulfonated polyimide (CFSPI-PVA) membranes. Herein, the CFSPI-PVA-15 membrane possesses excellent comprehensive properties, including acceptable area resistance (0.21 Ω cm2), lower vanadium ion permeability (0.76 × 10-7 cm2 min-1), and remarkable proton selectivity (3.11 × 105 min cm-3) compared with the commercial Nafion 212 membrane. At the same time, the CFSPI-PVA-15 membrane exhibits higher coulomb efficiencies (97.26%-99.34%) and energy efficiencies (68.65%-88.11%) and a longer self-discharge duration (29.2 h) in contrast with the Nafion 212 membrane. Moreover, 500 cycles of the CFSPI-PVA-15 membrane at 160 mA cm-2 are also stably executed. The internal reasons for the improved chemical stability of the CFSPI-PVA-15 membrane are clarified from theoretical calculations with the mean square displacement value and fractional free volume. Therefore, the CFSPI-PVA-15 membrane exhibits great potential for application in VFB.

18.
Polymers (Basel) ; 16(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931974

ABSTRACT

3-nitro-1,2,4-triazol-5-one (NTO) has been widely used as a kind of insensitive single-compound explosive owing to its excellent balance between safety and explosive energy. To reduce its possible acid corrosion and extend its application to insensitive ammunition, acid protection research on NTO-based explosives is significant. Traditionally, the acid protection effect was evaluated by metal corrosion, which is time-consuming and qualitative. An efficient and quantitative method is desirable for evaluating the acid protection effect and exploring novel protection materials. Herein, a polyimide of 4,4'-(hexafluoroisopropene)diphthalic anhydride (6FDA)/2,2-bis(trifluoromethyl)-4,4-diaminobiphenyl (TFMB) was synthesized by replacing the 4,4'-diaminodiphenyl ether (ODA) monomer with a TFMB monomer to act as an acid-protective coating material for NTO-based explosives. Compared with three other coating materials, polyvinylidene fluoride (PVDF), polyetherimide (PEI), and copolyimide (P84), the fluorinated polyimide exhibits the best acid protection effect. Moreover, a new method was constructed to obtain the pH time-dependent curve in order to evaluate efficiently the acid protection effect of the polymer materials. By the virtue of molecular dynamic simulation (Materials Studio 2023), the interfacial effects of the coating materials with NTO-based explosives were obtained. The study provides an interpretation of the acid protection effect on the molecular level, suggesting that the higher content of fluorine atoms is beneficial for stabilizing the active hydrogen atom of the NTO by forming intermolecular hydrogen bonds.

19.
Polymers (Basel) ; 16(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38932066

ABSTRACT

Polymers with a low dielectric constant (Dk) are promising materials for high-speed communication networks, which demand exceptional thermal stability, ultralow Dk and dissipation factor, and minimum moisture absorption. In this paper, we prepared a series of novel low-Dk polyimide films containing an MCM-41-type amino-functionalized mesoporous silica (AMS) via in situ polymerization and subsequent thermal imidization and investigated their morphologies, thermal properties, frequency-dependent dielectric behaviors, and water permeabilities. Incorporating 6 wt.% AMS reduced the Dk at 1 MHz from 2.91 of the pristine fluorinated polyimide (FPI) to 2.67 of the AMS-grafted FPI (FPI-g-AMS), attributed to the free volume and low polarizability of fluorine moieties in the backbone and the incorporation of air voids within the mesoporous AMS particles. The FPI-g-AMS films presented a stable dissipation factor across a wide frequency range. Introducing a silane coupling agent increased the hydrophobicity of AMS surfaces, which inhibited the approaching of the water molecules, avoiding the hydrolysis of Si-O-Si bonds of the AMS pore walls. The increased tortuosity caused by the AMS particles also reduced water permeability. All the FPI-g-AMS films displayed excellent thermooxidative/thermomechanical stability, including a high 5% weight loss temperature (>531 °C), char residue at 800 °C (>51%), and glass transition temperature (>300 °C).

20.
Int J Biol Macromol ; 273(Pt 2): 132640, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825280

ABSTRACT

The high energy density and robust cycle properties of lithium-ion batteries contribute to their extensive range of applications. Polyolefin separators are often used for the purpose of storing electrolytes, hence ensuring the efficient internal ion transport. Nevertheless, the electrochemical performance of lithium-ion batteries is constrained by its limited interaction with electrolytes and poor capacity for cation transport. This work presents the preparation of a new bio-based nanofiber separator by combining oxidized lignin (OL) and halloysite nanotubes (HNTs) with polyimide (PI) using an electrospinning technique. Analysis was conducted to examine and compare the structure, morphology, thermal characteristics, and EIS of the separator with those of commercially available polypropylene separator (PP). The results indicate that the PI@OL and PI-OL@ 10 % HNTs separators exhibit higher lithium ion transference number and ionic conductivity. Moreover, the use of HNTs successfully impeded the proliferation of lithium dendrites, hence exerting a beneficial impact on both the cycle performance and multiplier performance of the battery. Consequently, after undergoing 300 iterations, the battery capacity of LiFePO4|PI-OL@ 10 % HNTs|Li stays at 92.1 %, surpassing that of PP (86.8 %) and PI@OL (89.6 %). These findings indicate that this new bio-based battery separator (PI-OL@HNTs) has the great potential to serve as a substitute for the commonly used PP separator in lithium metal batteries.


Subject(s)
Clay , Electric Power Supplies , Lignin , Lithium , Nanofibers , Nanotubes , Lithium/chemistry , Nanotubes/chemistry , Nanofibers/chemistry , Lignin/chemistry , Clay/chemistry , Oxidation-Reduction , Resins, Synthetic/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL