Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.320
Filter
1.
Front Microbiol ; 15: 1439630, 2024.
Article in English | MEDLINE | ID: mdl-39252833

ABSTRACT

Introduction: Microorganisms exhibit intricate interconnections with tea plants; however, despite the well-established role of microorganisms in crop growth and development, research on microbes within the tea plant remains insufficient, particularly regarding endophytic microorganisms. Methods: In this study, we collected samples of leaves and rhizosphere soils from 'Zhuyeqi', 'Baojing Huangjincha#1', 'Baiye#1', and 'Jinxuan' varieties planted. Results: Our analyses revealed significant variations in tea polyphenol contents among tea varieties, particularly with the 'Zhuyeqi' variety exhibiting higher levels of tea polyphenols (>20% contents). Microbiome studies have revealed that endophytic microbial community in tea plants exhibited higher host specificity compared to rhizospheric microbial community. Analyses of across-ecological niches of the microbial community associated with tea plants revealed that soil bacteria serve as a significant reservoir for endophytic bacteria in tea plants, Bacillus may play a crucial role in shaping the bacterial community across-ecological niche within the tea plants with higher tea polyphenol levels. In the aforementioned analyses, the microbial community of 'Zhuyeqi' exhibited a higher degree of host specificity for leaf endophytic microorganisms, the topological structure of the co-occurrence network is also more intricate, harboring a greater number of potential core microorganisms within its nodes. A closer examination was conducted on the microbial community of 'Zhuyeqi', further analyses of its endophytic bacteria indicated that its endophytic microbial community harbored a greater abundance of biomarkers, particularly among bacteria, and the enriched Methylobacterium and Sphingomonas in 'Zhuyeqi' may play distinct roles in disease resistance and drought resilience in tea plants. Conclusion: In summary, this study has shed light on the intricate relationships of tea plant varieties with their associated microbial communities, unveiling the importance of microorganisms and tea varieties with higher tea polyphenols, and offering valuable insights to the study of microorganisms and tea plants.

2.
Carbohydr Polym ; 346: 122615, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245495

ABSTRACT

This study investigates the complexation between tea seed starch (TSS) and tea polyphenols (TPs) at varying concentrations (2.5, 5.0, 7.5, and 10.0 %). The objectives can expand the knowledge of TSS, which is a novel starch, and to examine how TPs influence the structure and physicochemical properties of the complexes. Results indicate that TPs interact with TSS through hydrogen bonding, altering granule morphology and disrupting ordered structure of starch. Depending on the concentration, TPs induce either V-type or non-V-type crystal structures within TSS, which had bearing on iodine binding capacity, swelling, pasting, gelatinization, retrogradation, rheology, and gel structure. In vitro digestibility analysis reveals that TSS-TPs complexes tend to reduce readily digestible starch while increasing resistant starch fractions with higher TP concentrations. Thus, TSS-TPs complexes physicochemical and digestibility properties can be modulated, providing a wide range of potential applications in the food industry.


Subject(s)
Polyphenols , Seeds , Starch , Tea , Polyphenols/chemistry , Starch/chemistry , Seeds/chemistry , Tea/chemistry , Hydrogen Bonding , Rheology
3.
Curr Aging Sci ; 17(3): 180-188, 2024.
Article in English | MEDLINE | ID: mdl-39248031

ABSTRACT

The natural process of skin aging is influenced by a variety of factors, including oxidative stress, inflammation, collagen degradation, and UV radiation exposure. The potential of polyphenols in controlling skin aging has been the subject of much investigation throughout the years. Due to their complex molecular pathways, polyphenols, a broad class of bioactive substances present in large quantities in plants, have emerged as attractive candidates for skin anti-aging therapies. This review aims to provide a comprehensive overview of the molecular mechanisms through which polyphenols exert their anti-aging effects on the skin. Various chemical mechanisms contribute to reducing skin aging signs and maintaining a vibrant appearance. These mechanisms include UV protection, moisturization, hydration, stimulation of collagen synthesis, antioxidant activity, and anti-inflammatory actions. These mechanisms work together to reduce signs of aging and keep the skin looking youthful. Polyphenols, with their antioxidant properties, are particularly noteworthy. They can neutralize free radicals, lessening oxidative stress that might otherwise cause collagen breakdown and DNA damage. The anti-inflammatory effects of polyphenols are explored, focusing on their ability to suppress pro-inflammatory cytokines and enzymes, thereby alleviating inflammation and its detrimental effects on the skin. Understanding these mechanisms can guide future research and development, leading to the development of innovative polyphenol-based strategies for maintaining healthy skin.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Oxidative Stress , Polyphenols , Skin Aging , Skin , Skin Aging/drug effects , Polyphenols/pharmacology , Polyphenols/therapeutic use , Humans , Skin/drug effects , Skin/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Oxidative Stress/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Ultraviolet Rays/adverse effects , Inflammation Mediators/metabolism
4.
Food Chem X ; 23: 101720, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39229611

ABSTRACT

In this study, tea polyphenol oxidase (PPO) was purified via three-phase partitioning (TPP) using a deep eutectic solvent (DES) instead of t-butanol. First, the properties of 13 types of synthesized DESs were characterized, and DES-7 (thymol/dodecanoic acid) was selected as the best alternative solvent. The process parameters were optimized using response surface methodology. The experimental results revealed that when the (NH4)2SO4 concentration, DES to crude extract ratio, extraction time, and pH were 41%, 0.5:1, 75 min, and 5.6, respectively, the recovery and purification fold of tea PPO were 78.44% and 8.26, respectively. SDS-PAGE and native-PAGE were used to analyze the PPO before and after purification of the TTP system, and the molecular weight and purification effect of PPO were detected. Moreover, the DES could be recovered and recycled. The results indicate an environmentally friendly and stable DES, and provide a reference for the large-scale application of TPP to extract PPO.

5.
Int J Biol Macromol ; 279(Pt 2): 135257, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233167

ABSTRACT

Starch is a fundamental material in the food industry. However, the inherent structural constraints of starch impose limitations on its physicochemical properties, including thermal instability, viscosity, and retrogradation. To address these obstacles, polyphenols are extensively employed for starch modification owing to their distinctive structural characteristics and potent antioxidant capabilities. Interaction between the hydroxyl groups of polyphenols and starch results in the formation of inclusion or non-inclusion complexes, thereby inducing alterations in the multiscale structure of starch. These modifications lead to changes in the physicochemical properties of starch, while simultaneously enhancing its nutritional value. Recent studies have demonstrated that both thermal and non-thermal processing exert a significant influence on the formation of starch-polyphenol complexes. This review meticulously analyzes the techniques facilitating complex formation, elucidating the critical factors that dictate this process. Of noteworthy importance is the observation that thermal processing significantly boosts these interactions, whereas non-thermal processing enables more precise modifications. Thus, a profound comprehension and precise regulation of the production of starch-polyphenol complexes are imperative for optimizing their application in various starch-based food products. This in-depth study is dedicated to providing a valuable pathway for enhancing the quality of starchy foods through the strategic integration of suitable processing technologies.

6.
Adv Mater ; : e2407409, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235391

ABSTRACT

Surface coatings are designed to mitigate pervasive biofouling herald, a new era of surface protection in complex biological environments. However, existing strategies are plagued by persistent and recurrent biofilm attachment, despite the use of bactericidal agents. Herein, a chiral metal-organic framework (MOF)-based coating with conformal microstructures to enable a new anti-biofouling mode that involves spontaneous biofilm disassembly followed by bacterial eradication is developed. A facile and universal metal-polyphenol network (MPN) is designed to robustly anchor the MOF nanoarmor of biocidal Cu2+ ions and anti-biofilm d-amino acid ligands to a variety of substrates across different material categories and surface topologies. Incorporating a diverse array of chiral amino acids endows the resultant coatings with widespread signals for biofilm dispersal, facilitating copper-catalyzed chemodynamic reactions and inherent mechano-bactericidal activities. This synergistic mechanism yields unprecedented anti-biofouling efficacy elucidated by RNA-sequencing transcriptomics analysis, enhancing broad-spectrum antibacterial activities, preventing biofilm formation, and destroying mature biofilms. Additionally, the chelation-directed amorphous/crystalline coatings can activate photoluminescent properties to inhibit the settlement of microalgae biofilms. This study provides a distinctive perspective on chirality-enhanced antimicrobial behaviors and pioneers a rational pathway toward developing next-generation anti-biofouling coatings for diverse applications.

7.
Int J Biol Macromol ; 279(Pt 4): 135224, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218179

ABSTRACT

Polyphenol-functionalized biomaterials are significant in the field of bone tissue engineering (BTE) due to their antioxidant, anti-inflammatory, and osteoinductive properties. In this study, a gelatin (Gel)-based scaffold was functionalized with phloridzin (Ph), the primary polyphenol in apple by-products, to investigate its influence on physicochemical and morphological, properties of the scaffold for BTE application. A preliminary assessment of the biological properties of the functionalized scaffold was also undertaken. The Ph-functionalized scaffold (Gel/Ph) exhibited a porous structure with high porosity (71.3 ±â€¯0.3 %), a pore size of 206.5 ±â€¯1.7 µm, and a radical scavenging activity exceeding 70 %. This scaffold with Young's modulus of 10.8 MPa was determined to support cell proliferation and exhibited cytocompatibility with mesenchymal stem cells (MSCs). Incorporating hydroxyapatite nanoparticle (HA) in the Gel/Ph scaffold stimulated the osteogenic differentiation of key osteogenic genes, including Runx2, ALPL, COL1A1, and OSX ultimately promoting mineralization. This research highlights the promising potential of utilizing polyphenolic compounds derived from fruit waste to functionalize scaffolds for BTE applications.

8.
Front Plant Sci ; 15: 1418585, 2024.
Article in English | MEDLINE | ID: mdl-39220008

ABSTRACT

Introduction: Dandelion is widely used in clinical practice due to its beneficial effects. Polyphenolic compounds are considered the main anti-inflammatory active ingredient of dandelion, but the gene expression patterns of polyphenolic compounds in different dandelion tissues are still unclear. Methods: In this study, we combined a nontargeted metabolome, PacBio Iso-seq transcriptome, and Illumina RNA-seq transcriptome to investigate the relationship between polyphenols and gene expression in roots, flowers, and leaves of flowering dandelion plants. Results: Eighty-eight flavonoids and twenty-five phenolic acids were identified, and 64 candidate genes involved in flavonoid biosynthesis and 63 candidate genes involved in chicoric acid biosynthesis were identified. Most flavonoid and chicoric acid-related genes demonstrated the highest content in flowers. RNA-seq analysis revealed that genes involved in polyphenol biosynthesis pathways, such as CHS, CHI, F3H, F3'H, FLS, HQT, and CAS, which are crucial for the accumulation of flavonoids and chicoric acid, were upregulated in flowers. Discussion: The combination of transcriptomic and metabolomic data can help us better understand the biosynthetic pathways of polyphenols in dandelion. These results provide abundant genetic resources for further studying the regulatory mechanism of dandelion polyphenol biosynthesis.

9.
Nat Prod Res ; : 1-10, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222473

ABSTRACT

The variability of phenolic compounds among grape varieties has an important role in selecting winemaking techniques, but the use of phenolic profiles for quality control is still fragmented and incomplete. Given the recent climate change and global warming, biochemical characterisation of secondary metabolites in autochthonous grape varieties is a very important factor for their preservation and sustainable agriculture. Two autochthonous grape varieties from the western Herzegovina region in Bosnia and Herzegovina have been selected for the research targeting at the evaluation of their phenolic profiles, antioxidant activities, and the correlation with oxidoreductase enzymes polyphenol oxidase and Class III peroxidase, in different berry tissues. The obtained results indicate a similar qualitative profile of phenolic compounds in exocarp and mesocarp in both varieties, but their concentrations and antioxidant activity vary significantly. The correlation between phenolic compounds and oxidoreductase enzyme activities in different grape berry tissues is discussed in this article.

10.
Food Res Int ; 194: 114869, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232508

ABSTRACT

Genistein could interact with starch to slow starch digestion by forming starch-genistein complexes. However, genistein had low solubility in water, which hindered the interaction with starch and therefore the formation of the complexes. This study presented a pathway to promote the formation of starch-genistein complexes using an antisolvent method in two steps: (i) adding ethanol to the solution containing starch and genistein to increase genistein solubility, and (ii) evaporating ethanol from the solution to promote genistein interaction with starch. The complexes prepared using this antisolvent method had higher crystallinity (9.45 %), complex index (18.17 %), and higher content of resistant starch (RS) (19.04 %) compared to samples prepared in pure water or ethanol-containing aqueous solution without ethanol evaporation treatment (these samples showed crystallinity of 6.97 %-8.00 %, complex index of 9.09 %-11.4 2%, and RS of 4.45 %-14.38 %). Molecular dynamic simulation results confirmed that the changes in solution polarity significantly determined the formation of starch-genistein complexes. Findings offered a feasible pathway to efficiently promote starch interaction with genistein and in turn mitigate starch digestibility.


Subject(s)
Digestion , Genistein , Solubility , Starch , Starch/chemistry , Genistein/chemistry , Ethanol/chemistry , Solvents/chemistry , Molecular Dynamics Simulation
11.
Food Res Int ; 194: 114913, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232536

ABSTRACT

The formation of starch-polyphenol complexes through high-pressure homogenization (HPH) is a promising method to reduce starch digestibility and control postprandial glycemic responses. This study investigated the combined effect of pH (5, 7, 9) and polyphenol structures (gallic acid, ferulic acid, quercetin, and tannic acid) on the formation, muti-scale structure, physicochemical properties, and digestibility of pea starch (PS)-polyphenol complexes prepared by HPH. Results revealed that reducing pH from 9 to 5 significantly strengthened the non-covalent binding between polyphenols and PS, achieving a maximum complex index of 13.89 %. This led to the formation of complexes with higher crystallinity and denser structures, promoting a robust network post-gelatinization with superior viscoelastic and thermal properties. These complexes showed increased resistance to enzymatic digestion, with the content of resistant starch increasing from 28.66 % to 42.00 %, rapidly digestible starch decreasing from 42.82 % to 21.88 %, and slowly digestible starch reducing from 71.34 % to 58.00 %. Gallic acid formed the strongest hydrogen bonds with PS, especially at pH 5, leading to the highest enzymatic resistance in PS-gallic acid complexes, with the content of resistant starch of 42.00 %, rapidly digestible starch of 23.35 % and slowly digestible starch of 58.00 %, and starch digestion rates at two digestive stages of 1.82 × 10-2 min-1 and 0.34 × 10-2 min-1. These insights advance our understanding of starch-polyphenol interactions and support the development of functional food products to improve metabolic health by mitigating rapid glucose release.


Subject(s)
Digestion , Gallic Acid , Pisum sativum , Polyphenols , Starch , Hydrogen-Ion Concentration , Polyphenols/chemistry , Starch/chemistry , Starch/metabolism , Pisum sativum/chemistry , Gallic Acid/chemistry , Tannins/chemistry , Pressure , Coumaric Acids/chemistry , Food Handling/methods , Quercetin/chemistry
12.
Article in English | MEDLINE | ID: mdl-39234903

ABSTRACT

BACKGROUND: Clostridium difficile is an opportunistic infection that can lead to antibi-otic-associated diarrhea and toxic megacolon. OBJECTIVE: This systematic review study aimed to investigate polyphenols' antibacterial and anti-toxin properties and their effects on reducing complications related to C. difficile Infections (CDI). METHODS: This systematic review was conducted following the PRISMA guideline 2020. Multiple databases, including Web of Science, PubMed, Cochrane Library, EMBASE, and Scopus, were searched thoroughly for existing literature. After considering the inclusion and exclusion criteria for the review, 18 articles were included. Data were collected and registered into an Excel file for further investigations and conclusions. RESULTS: Polyphenols by reducing Reactive Oxygen Species (ROS) levels, increasing inflammatory factor Interleukin 10 (IL-10), reducing Nuclear Factor kappa B (NF-κB) and Tumour Necrosis Fac-tor-α (TNF-α), IL-6, IL-1α, IL-1ß, Granulocyte Colony-stimulating Factor (G-CSF), and Monocyte Chemoattractant Protein-1 (MCP-1) and Macrophage Inflammatory Protein-1 alpha (MIP-1α) lev-els, and regulating the expression of Bcl-2 and Bax, make the growth and replication conditions of C. difficile more difficult and prevent it from producing toxins. Furthermore, polyphenols can ex-hibit prebiotic properties, promoting the growth of beneficial Bifidobacterium and Lactobacillus species and consequently regulating gut microbiota, exerting antimicrobial activities against C. dif-ficile. They also induce their beneficial effects by inhibiting the production of C. difficile TcdA and TcdB. CONCLUSION: Polyphenols have been reported to inhibit C. difficile growth and toxin production by several mechanisms in preclinical studies. However, more clinical studies are needed to investigate their safety in humans.

13.
Food Chem ; 461: 140851, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39167945

ABSTRACT

Reducing the allergenicity of edible insects is crucial for the comprehensive utilization of insect resources. Phospholipase A2 (PLA2) exists in various edible insects and mammalian tissues, which can cause serious allergic reactions. Herein, we constructed a magnetic nanocomposite with photo/chemical synergistic capability to mitigate the allergenicity of PLA2. The formation of prepared nanocomposite was systematically confirmed using various techniques. The nanocomposite exhibited uniform diameters, abundant functional groups, excellent magnetic capabilities. An effective photo/chemical method was established to reduce the allergenicity of PLA2 in vitro. The feasibility of the method was demonstrated through circular dichroism, fluorescence spectrum and IgE-binding analysis. The allergenicity and IgE-binding effect of PLA2 were significantly reduced due to conformational changes after nanomaterial treatment. These results demonstrate the sensitivity and effectiveness a strategy for reducing PLA2 allergenicity, providing a basis for development of nanomaterials to reduce the risk of novel food allergies in response to edible insect products.

14.
Article in English | MEDLINE | ID: mdl-39169473

ABSTRACT

Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the numerous studies on the inhibition of amyloid formation, the prevention and treatment of a majority of amyloid-related disorders are still challenging. In this study, we investigated the effects of various plant extracts on amyloid formation of α-synuclein. We found that the extracts from Eucalyptus gunnii are able to inhibit amyloid formation, and to disaggregate preformed fibrils, in vitro. The extract itself did not lead cell damage. In the extract, miquelianin, which is a glycosylated form of quercetin and has been detected in the plasma and the brain, was identified and assessed to have a moderate inhibitory activity, compared to the effects of ellagic acid and quercetin, which are strong inhibitors for amyloid formation. The properties of miquelianin provide insights into the mechanisms controlling the assembly of α-synuclein in the brain.

15.
Food Sci Technol Int ; : 10820132241274966, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39169785

ABSTRACT

This study presents a comprehensive analysis of the impact of plasma treatment on the browning inhibition. A 30 min plasma treatment resulted in a pronounced decrease in the concentration of flavan-3-ols, which play a pivotal role in antioxidant defense and browning prevention. This significant reduction is likely due to plasma-induced oxidative stress, which can lead to the breakdown of these compounds or their conversion into other phenolic structures. Simultaneously, a slight increase in dihydrochalcones and flavonols was observed, suggesting a selective effect of plasma on different phenolic classes. The increase in these compounds could be attributed to the plasma's ability to induce specific reactions that generate these phenolics from other precursors present in the apples. The reduction in flavan-3-ols may affect the antioxidant capacity and health benefits associated with the apples, while the increase in dihydrochalcones and flavonols could have a positive impact on the flavor profile and potential health-promoting properties. Moreover, these modifications could contribute to the extension of shelf-life and maintenance of sensory qualities, making plasma treatment a valuable tool in the food industry for enhancing product stability and consumer appeal.

16.
Plant Physiol Biochem ; 215: 109023, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39146914

ABSTRACT

The introduction of arsenic, a hazardous metalloid, into the soil system due to heavy industrialization has negatively affected agricultural productivity, resulting in limited crop yields. A recent breakthrough in stress-responsive hormones, specifically brassinosteroids, has extensively covered the role of antioxidant enzyme defense systems in heavy metal stress mitigation. Considering the antioxidant properties and metal complex formation abilities of polyphenols, our study focuses on examining their role in arsenate toxicity amelioration by 24-epibrassinolide. We demonstrate enhanced growth parameters of sodium arsenate-stressed seedlings upon application of 24-epibrassinolide, with increased root and shoot polyphenol levels analyzed by high-performance liquid chromatography. Specifically, the concentration of catechin, sinapic acid, 4-hydroxy benzoic acid, protocatechuic acid, 4-coumaric acid, and myricetin were elevated, indicating induction of phenylpropanoid signaling pathway. Further, we also report a decrease in the generation of superoxide anions and hydrogen peroxide validated the antioxidant effects of these metabolites through the nitrobluetetrazolium and diaminobenzidine staining method. In addition, evaluation of transcript level of genes encoding for specific enzymes of the phenylpropanoid pathway in shoot and root showed a significant upregulation in mRNA expression of phenylalanine ammonia-lyase-1, cinnamate-4-hydroxylase, and caffeic acid o-methyltransferase-1 upon exogenous application of 24-epibrassinolide in arsenate stressed Oryza sativa.

17.
Food Res Int ; 192: 114850, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147530

ABSTRACT

Rice has a long history as a staple food consumed by half of the world's population. Compared with white rice (WR), colored rice (CR) has more nutritional value because it contains rich active ingredients. In this study, the potential mechanism of CR (red rice (RR), green rice (GR), black rice (BR), and purple rice (PR)) for immunomodulation was explored by UPLC-Q-TOF, network pharmacology, and cell experiment. kuromanin, kaempferol-3-O-arabinoside, keracyanin, guajavarin, and hispidulin in CR were the critical components for improving immunity. These ingredients are mainly found in BR. Cell experiments supported that kuromanin plays a role in maintaining immune homeostasis. In the normal environment, it promotes cell proliferation and improves DNA repair; In an inflammatory environment, it binds to AKT1 and reduces the release of inflammatory factors through the MAPK and NFKB signaling pathways. The study provides a guideline for humans to utilize the precise nutrition of CR.


Subject(s)
Network Pharmacology , Oryza , Oryza/chemistry , Humans , Chromatography, High Pressure Liquid , Immunomodulation , Cell Proliferation/drug effects , Animals , Signal Transduction/drug effects
18.
Food Res Int ; 192: 114852, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147529

ABSTRACT

Crohn's disease (CD) is a chronic and progressive inflammatory disease that can involve any part of the gastrointestinal tract. The protective role of dietary polyphenols has been documented in preclinical models of CD. Gut microbiota mediates the metabolism of polyphenols and affects their bioactivity and physiological functions. However, it remains elusive the capacity of microbial polyphenol metabolism in CD patients and healthy controls (HCs) along with its correlation with polyphenols intake and polyphenol-derived metabolites. Thus, we aimed to decode polyphenol metabolism in CD patients through aspects of diet, gut microbiota, and metabolites. Dietary intake analysis revealed that CD patients exhibited decreased intake of polyphenols. Using metagenomic data from two independent clinical cohorts (FAH-SYSU and PRISM), we quantified abundance of polyphenol degradation associated bacteria and functional genes in CD and HCs and observed a lower capacity of flavonoids degradation in gut microbiota residing in CD patients. Furthermore, through analysis of serum metabolites and enterotypes in participants of FAH-SYSU cohort, we observed that CD patients exhibited reduced levels of serum hippuric acid (HA), one of polyphenol-derived metabolites. HA level was higher in healthier enterotypes (characterized by dominance of Ruminococcaceae and Prevotellaceae, dominant by HCs) and positively correlated with multiple polyphenols intake and abundance of bacteria engaged in flavonoids degradation as well as short-chain fatty acid production, which could serve as a biomarker for effective polyphenol metabolism by the gut microbiota and a healthier gut microbial community structure. Overall, our findings provide a foundation for future work exploring the polyphenol-based or microbiota-targeted therapeutic strategies in CD.


Subject(s)
Crohn Disease , Diet , Gastrointestinal Microbiome , Polyphenols , Humans , Crohn Disease/microbiology , Crohn Disease/metabolism , Crohn Disease/drug therapy , Gastrointestinal Microbiome/physiology , Polyphenols/metabolism , Female , Male , Adult , Hippurates/metabolism , Middle Aged , Young Adult , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Feces/microbiology
19.
Food Res Int ; 192: 114761, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147543

ABSTRACT

This study aimed to investigate the ameliorating effects of peach blossom soluble dietary fiber (PBSDF) and polyphenol (PBP) combinations on loperamide (Lop)-induced constipation in mice, together with the possible mechanism of action. The results demonstrated that the combined use of PBSDF and PBP could synergistically accelerate the gastrointestinal transit rate and gastric emptying rate, shorten first red fecal defecation time, accelerate the frequency of defecation, regulate the abnormal secretion of gastrointestinal neurotransmitters and pro-inflammatory cytokines, and down-regulate the expressions of AQP3 and AQP8. Western blotting and RT-qPCR analysis confirmed that PBSDF + PBP up-regulated the protein and mRNA expressions of SCF and C-kit in SCF/C-kit signaling pathway, and down-regulated pro-inflammatory mediator expressions in NF-κB signaling pathway. 16S rRNA sequencing showed that the diversity of gut microbiota and the relative abundance of specific strains, including Akkermansia, Bacteroides, Ruminococcus, Lachnospiraceae_NK4A136_group, and Turicibacter, rehabilitated after PBSDF + PBP intervention. These findings suggested that the combination of a certain dose of PBSDF and PBP had a synergistic effect on attenuating Lop-induced constipation, and the synergistic mechanism in improving constipation might associated with the regulating NF-κB and SCF/C-kit signaling pathway, and modulating the specific gut strains on constipation-related systemic types. The present study provided a novel strategy via dietary fiber and polyphenol interactions for the treatment of constipation.


Subject(s)
Constipation , Dietary Fiber , Gastrointestinal Microbiome , Loperamide , NF-kappa B , Polyphenols , Proto-Oncogene Proteins c-kit , Prunus persica , Signal Transduction , Stem Cell Factor , Animals , Constipation/chemically induced , Constipation/drug therapy , Gastrointestinal Microbiome/drug effects , Mice , Polyphenols/pharmacology , NF-kappa B/metabolism , Stem Cell Factor/metabolism , Male , Prunus persica/chemistry , Proto-Oncogene Proteins c-kit/metabolism , Proto-Oncogene Proteins c-kit/genetics , Aquaporin 3/metabolism , Aquaporin 3/genetics , Gastrointestinal Transit/drug effects , Disease Models, Animal
20.
Food Sci Nutr ; 12(8): 5341-5356, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39139973

ABSTRACT

Polyphenols, natural micronutrients derived from plants, are valued for their anti-inflammatory and antioxidant properties. The escalating global prevalence of non-alcoholic fatty liver disease (NAFLD) underscores its status as a chronic progressive liver condition. Furthermore, the dysregulation of gut microbiota (GM) is implicated in the onset and progression of NAFLD through the actions of metabolites such as bile acids (BAs), lipopolysaccharide (LPS), choline, and short-chain fatty acids (SCFAs). Additionally, GM may influence the integrity of the intestinal barrier. This review aims to evaluate the potential effects of polyphenols on GM and intestinal barrier function, and their subsequent impact on NAFLD. We searched through a wide range of databases, such as Web of Science, PubMed, EMBASE, and Scopus to gather information for our non-systematic review of English literature. GM functions and composition can be regulated by polyphenols such as chlorogenic acid, curcumin, green tea catechins, naringenin, quercetin, resveratrol, and sulforaphane. Regulating GM composition improves NAFLD by alleviating inflammation, liver fat accumulation, and liver enzymes. Furthermore, it improves serum lipid profile and gut barrier integrity. All of these components affect NAFLD through the metabolites of GM, including SCFAs, choline, LPS, and BAs. Current evidence indicates that chlorogenic acid, resveratrol, quercetin, and curcumin can modulate GM, improving intestinal barrier integrity and positively impacting NAFLD. More studies are necessary to evaluate the safety and efficacy of naringenin, sulforaphane, and catechin.

SELECTION OF CITATIONS
SEARCH DETAIL