Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Ecol Lett ; 27(7): e14461, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953253

ABSTRACT

Under the recently adopted Kunming-Montreal Global Biodiversity Framework, 196 Parties committed to reporting the status of genetic diversity for all species. To facilitate reporting, three genetic diversity indicators were developed, two of which focus on processes contributing to genetic diversity conservation: maintaining genetically distinct populations and ensuring populations are large enough to maintain genetic diversity. The major advantage of these indicators is that they can be estimated with or without DNA-based data. However, demonstrating their feasibility requires addressing the methodological challenges of using data gathered from diverse sources, across diverse taxonomic groups, and for countries of varying socio-economic status and biodiversity levels. Here, we assess the genetic indicators for 919 taxa, representing 5271 populations across nine countries, including megadiverse countries and developing economies. Eighty-three percent of the taxa assessed had data available to calculate at least one indicator. Our results show that although the majority of species maintain most populations, 58% of species have populations too small to maintain genetic diversity. Moreover, genetic indicator values suggest that IUCN Red List status and other initiatives fail to assess genetic status, highlighting the critical importance of genetic indicators.


Subject(s)
Biodiversity , Conservation of Natural Resources , Genetic Variation , Animals
2.
Anim Genet ; 55(4): 527-539, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38716584

ABSTRACT

The conservation of animal genetic resources refers to measures taken to prevent the loss of genetic diversity in livestock populations, including the protection of breeds from extinction. Creole cattle populations have suffered a drastic reduction in recent decades owing to absorbent crosses or replacement with commercial breeds of European or Indian origin. Genetic characterization can serve as a source of information for conservation strategies to maintain genetic variation. The objective of this work was to evaluate the levels of inbreeding and kinship through the use of genomic information. A total of 903 DNAs from 13 cattle populations from Argentina, Bolivia and Uruguay were genotyped using an SNP panel of 48 K. Also, a dataset of 76 K SNPs from Peruvian Creole was included. Two inbreeding indices (FROH and Fhat2) and kinship relationships were calculated. In addition, effective population size (Ne), linkage disequilibrium, population composition and phylogenetic relationships were estimated. In Creole cattle, FROH ranged from 0.14 to 0.03, and Fhat2 was close to zero. The inferred Ne trends exhibited a decline toward the present for all populations, whereas Creole cattle presented a lower magnitude of Ne than foreign breeds. Cluster analysis clearly differentiated the taurine and Zebu components (K2) and showed that Bolivian Creole cattle presented Zebu gene introgression. Despite the population reduction, Creole populations did not present extreme values of consanguinity and kinship and maintain high levels of genetic diversity. The information obtained in this work may be useful for planning conservation programmes for these valuable local animal genetic resources.


Subject(s)
Inbreeding , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Uruguay , Bolivia , Breeding , Linkage Disequilibrium , Phylogeny , Genotype , Argentina , Pedigree , Genetic Variation , Genetics, Population , Population Density
3.
Trop Anim Health Prod ; 55(5): 292, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37589774

ABSTRACT

The Romosinuano cattle breed is one of the most important Creole genetic resources in Colombia, and interesting traits like adaptation or reproductive efficiency have promoted its use in different countries in America. To consolidate the genealogical historical records, the review of very first yield records in this population was used to reconstruct the genealogy of the breed since the first animals incorporated to the in vivo germplasm bank and estimate different demographic parameters. The complete genealogy comprises 17,136 animals with 5.8 years of generation interval for two pathways. The estimated average inbreeding for the population and inbred animals was 2.53% and 6.32% respectively, with a progressive increase of inbred animals across the generations. Almost 48% of the total animals presented some level of consanguinity. Effective population size (Ne) based on the inbreeding rate estimated by regression in all generations was 120 animals whereas Ne estimated by equivalent generations was 69 animals. Effective number of founders (Fe), effective number of ancestors (Fa), and ancestors explaining 50% of variability were 75, 48, and 22, respectively. The relation between Fa/Fe of 64% indicates a genetic bottleneck effect in the population studied.


Subject(s)
Cattle Diseases , Dermatitis , Animals , Cattle/genetics , Colombia , Acclimatization , Dermatitis/veterinary , Inbreeding , Phenotype
4.
Zool Res ; 44(4): 701-711, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37313847

ABSTRACT

The sizes of Astyanax mexicanus blind cavefish populations of North-East Mexico are demographic parameters of great importance for investigating a variety of ecological, evolutionary, and conservation issues. However, few estimates have been obtained. For these mobile animals living in an environment difficult to explore as a whole, methods based on capture-mark-recapture are appropriate, but their feasibility and interpretation of results depend on several assumptions that must be carefully examined. Here, we provide evidence that minimally invasive genetic identification from captures at different time intervals (three days and three years) can give insights into cavefish population size dynamics as well as other important demographic parameters of interest. We also provide tools to calibrate sampling and genotyping efforts necessary to reach a given level of precision. Our results suggest that the El Pachón cave population is currently very small, of an order of magnitude of a few hundreds of individuals, and is distributed in a relatively isolated area. The probable decline in population size in the El Pachón cave since the last census in 1971 raises serious conservation issues.


Subject(s)
Caves , Fishes , Animals , Biological Evolution , Population Density , Fishes/genetics
5.
Math Biosci Eng ; 20(1): 1148-1175, 2023 01.
Article in English | MEDLINE | ID: mdl-36650806

ABSTRACT

In this paper, we propose a simplified bidimensional Wolbachia infestation model in a population of Aedes aegypti mosquitoes, preserving the main features associated with the biology of this species that can be found in higher-dimensional models. Namely, our model represents the maternal transmission of the Wolbachia symbiont, expresses the reproductive phenotype of cytoplasmic incompatibility, accounts for different fecundities and mortalities of infected and wild insects, and exhibits the bistable nature leading to the so-called principle of competitive exclusion. Using tools borrowed from monotone dynamical system theory, in the proposed model, we prove the existence of an invariant threshold manifold that allows us to provide practical recommendations for performing single and periodic releases of Wolbachia-carrying mosquitoes, seeking the eventual elimination of wild insects that are capable of transmitting infections to humans. We illustrate these findings with numerical simulations using parameter values corresponding to the wMelPop strain of Wolbachia that is considered the best virus blocker but induces fitness loss in its carriers. In these tests, we considered multiple scenarios contrasting a periodic release strategy against a strategy with a single inundative release, comparing their effectiveness. Our study is presented as an expository and mathematically accessible tool to study the use of Wolbachia-based biocontrol versus more complex models.


Subject(s)
Aedes , Wolbachia , Animals , Humans , Reproduction , Fertility , Population Dynamics
6.
J Evol Biol ; 36(2): 432-443, 2023 02.
Article in English | MEDLINE | ID: mdl-36537369

ABSTRACT

Uncovering what predicts genetic diversity (GD) within species can help us access the status of populations and their evolutionary potential. Traits related to effective population size show a proportional association to GD, but evidence supports life-history strategies and habitat as the drivers of GD variation. Instead of investigating highly divergent taxa, focusing on one group could help to elucidate the factors influencing the GD. Additionally, most empirical data is based on vertebrate taxa; therefore, we might be missing novel patterns of GD found in neglected invertebrate groups. Here, we investigated the predictors of the GD in crabs (Brachyura) by compiling the most comprehensive cytochrome c oxidase subunit I (COI) available. Eight predictor variables were analysed across 150 species (16 992 sequences) using linear models (multiple linear regression) and comparative methods (PGLS). Our results indicate that population size fluctuation represents the most critical trait predicting GD, with species that have undergone bottlenecks followed by population expansion showing lower GD. Egg size, pelagic larval duration and habitat might play a role probably because of their association with how species respond to disturbances. Ultimately, K-strategists that have undergone bottlenecks are the species showing lower GD. Some variables do not show an association with GD as expected, most likely due to the taxon-specific role of some predictors, which should be considered in further investigations and generalizations. This work highlights the complexity underlying the predictors of GD and adds results from a marine invertebrate group to the current understanding of this topic.


Subject(s)
Brachyura , Animals , Brachyura/genetics , Genetic Variation , Biological Evolution , Ecosystem , Invertebrates , Demography , Phylogeny
7.
BMC Ecol Evol ; 22(1): 129, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333669

ABSTRACT

BACKGROUND: Detecting genomic variants and their accumulation processes during species diversification and adaptive radiation is important for understanding the molecular and genetic basis of evolution. Anolis lizards in the West Indies are good models for studying evolutionary mechanisms because of the repeated evolution of their morphology and the ecology. We performed de novo genome assembly of six Cuban Anolis lizards with different ecomorphs and thermal habitats (Anolis isolepis, Anolis allisoni, Anolis porcatus, Anolis allogus, Anolis homolechis, and Anolis sagrei). We carried out a comparative analysis of these genome assemblies to investigate the genetic changes that occurred during their diversification. RESULTS: We reconstructed novel draft genomes with relatively long scaffolds and high gene completeness, with the scaffold N50 ranging from 5.56 to 39.79 Mb and vertebrate Benchmarking Universal Single-Copy Orthologs completeness ranging from 77.5% to 86.9%. Comparing the repeat element compositions and landscapes revealed differences in the accumulation process between Cuban trunk-crown and trunk-ground species and separate expansions of several families of LINE in each Cuban trunk-ground species. Duplicated gene analysis suggested that the proportional differences in duplicated gene numbers among Cuban Anolis lizards may be associated with differences in their habitat ranges. Additionally, Pairwise Sequentially Markovian Coalescent analysis suggested that the effective population sizes of each species may have been affected by Cuba's geohistory. CONCLUSIONS: We provide draft genomes of six Cuban Anolis lizards and detected species and lineage-specific transposon accumulation and gene copy number changes that may be involved in adaptive evolution. The change processes in the past effective population size was also estimated, and the factors involved were inferred. These results provide new insights into the genetic basis of Anolis lizard diversification and are expected to serve as a stepping stone for the further elucidation of their diversification mechanisms.


Subject(s)
Lizards , Animals , Lizards/genetics , Ecosystem , Ecology , Genomics , West Indies
8.
G3 (Bethesda) ; 12(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36226801

ABSTRACT

Many lizard species face extinction due to worldwide climate change. The Guatemalan Beaded Lizard, Heloderma charlesbogerti, is a member of the Family Helodermatidae that may be particularly imperiled; fewer than 600 mature individuals are believed to persist in the wild. In addition, H. charlesbogerti lizards are phenotypically remarkable. They are large in size, charismatically patterned, and possess a venomous bite. Here, we report the draft genome of the Guatemalan Beaded Lizard using DNA from a wild-caught individual. The assembled genome totals 2.31 Gb in length, similar in size to the genomes of related species. Single-copy orthologs were used to produce a novel molecular phylogeny, revealing that the Guatemalan Beaded Lizard falls into a clade with the Asian Glass Lizard (Anguidae) and in close association with the Komodo Dragon (Varanidae) and the Chinese Crocodile Lizard (Shinisauridae). In addition, we identified 31,411 protein-coding genes within the genome. Of the genes identified, we found 504 that evolved with a differential constraint on the branch leading to the Guatemalan Beaded Lizard. Lastly, we identified a decline in the effective population size of the Guatemalan Beaded Lizard approximately 400,000 years ago, followed by a stabilization before starting to dwindle again 60,000 years ago. The results presented here provide important information regarding a highly endangered, venomous reptile that can be used in future conservation, functional genetic, and phylogenetic analyses.


Subject(s)
Lizards , Humans , Animals , Lizards/genetics , Phylogeny , Population Density , Venoms/genetics , Genome
9.
Malar J ; 21(1): 135, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477448

ABSTRACT

BACKGROUND: During the last two decades, researchers have suggested that the changes of malaria cases in African highlands were driven by climate change. Recently, a study claimed that the malaria cases (Plasmodium falciparum) in Oromia (Ethiopia) were related to minimum temperature. Critics highlighted that other variables could be involved in the dynamics of the malaria. The literature mentions that beyond climate change, trends in malaria cases could be involved with HIV, human population size, poverty, investments in health control programmes, among others. METHODS: Population ecologists have developed a simple framework, which helps to explore the contributions of endogenous (density-dependent) and exogenous processes on population dynamics. Both processes may operate to determine the dynamic behaviour of a particular population through time. Briefly, density-dependent (endogenous process) occurs when the per capita population growth rate (R) is determined by the previous population size. An exogenous process occurs when some variable affects another but is not affected by the changes it causes. This study explores the dynamics of malaria cases (Plasmodium falciparum and Plasmodium vivax) in Oromia region in Ethiopia and explores the interaction between minimum temperature, HIV, poverty, human population size and social instability. RESULTS: The results support that malaria dynamics showed signs of a negative endogenous process between R and malaria infectious class, and a weak evidence to support the climate change hypothesis. CONCLUSION: Poverty, HIV, population size could interact to force malaria models parameters explaining the dynamics malaria observed at Ethiopia from 1985 to 2007.


Subject(s)
HIV Infections , Malaria, Falciparum , Malaria , Climate Change , Ethiopia/epidemiology , HIV Infections/epidemiology , Humans , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Plasmodium falciparum , Population Growth , Poverty
10.
Animals (Basel) ; 12(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35268215

ABSTRACT

Understanding the genetic status of aquaculture strains is essential for developing management guidelines aimed at sustaining the rates of genetic gain for economically important traits, as well as securing populations that will be robust to climate change. Coho salmon was the first salmonid introduced to Chile for commercial purposes and now comprises an essential component of the country's aquaculture industry. Several events, such as admixture, genetic bottlenecks, and rapid domestication, appear to be determinants in shaping the genome of commercial strains representing this species. To determine the impact of such events on the genetic diversity of these strains, we sought to estimate the effective population size (Ne) of several of these strains using genome-wide approaches. We compared these estimates to commercial strains from North America and Japan, as well as a hatchery strain used for supportive breeding of wild populations. The estimates of Ne were based on a method robust to assumptions about changes in population history, and ranged from low (Ne = 34) to relatively high (Ne = 80) in the Chilean strains. These estimates were higher than those obtained from the commercial North American strain but lower than those observed in the hatchery population and the Japanese strain (with Ne over 150). Our results suggest that some populations require measures to control the rates of inbreeding, possibly by using genomic information and incorporating new genetic material to ensure the long-term sustainability of these populations.

11.
PeerJ ; 10: e12906, 2022.
Article in English | MEDLINE | ID: mdl-35341055

ABSTRACT

Estimates of animal abundance provide essential information for population ecological studies. However, the recording of individuals in the field can be challenging, and accurate estimates require analytical techniques which account for imperfect detection. Here, we quantify local abundances and overall population size of Morelet's crocodiles (Crocodylus moreletii) in the region of Calakmul (Campeche, Mexico), comparing traditional approaches for crocodylians (Minimum Population Size-MPS; King's Visible Fraction Method-VFM) with binomial N-mixture models based on Poisson, zero-inflated Poisson (ZIP) and negative binomial (NB) distributions. A total of 191 nocturnal spotlight surveys were conducted across 40 representative locations (hydrologically highly dynamic aquatic sites locally known as aguadas) over a period of 3 years (2017-2019). Local abundance estimates revealed a median of 1 both through MPS (min-max: 0-89; first and third quartiles, Q1-Q3: 0-7) and VFM (0-112; Q1-Q3: 0-9) non-hatchling C. moreletii for each aguada, respectively. The ZIP based N-mixture approach shown overall superior confidence over Poisson and NB, and revealed a median of 6 ± 3 individuals (min = 0; max = 120 ± 18; Q1 = 0; Q3 = 18 ± 4) jointly with higher detectabilities in drying aguadas with low and intermediate vegetation cover. Extrapolating these inferences across all waterbodies in the study area yielded an estimated ~10,000 (7,000-11,000) C. moreletii present, highlighting Calakmul as an important region for this species. Because covariates enable insights into population responses to local environmental conditions, N-mixture models applied to spotlight count data result in particularly insightful estimates of crocodylian detection and abundance.


Subject(s)
Alligators and Crocodiles , Animals , Mexico , Population Density
12.
Plant Biol (Stuttg) ; 24(1): 185-191, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34634170

ABSTRACT

Endemic species distributed in fragmented habitats are highly vulnerable to extinction because they may have low genetic diversity. However, some life-history traits can mitigate the effect of genetic drift on populations. We analysed the level and distribution of genetic variation and ancestral population size of Yucca capensis, a long-lived endemic plant of the Baja California Peninsula, Mexico. Its populations are scattered across a habitat that is suffering accelerated transformation. We used six nuclear microsatellites to genotype 224 individuals from 17 locations across the entire species' geographic range. We estimated polymorphisms, heterozygosity and genetic structure. We also evaluated the ancestral and recent effective size and time since the population started to change. We found high heterozygosity, high polymorphism and low differentiation among locations, suggesting a panmictic population across the range. We also detected a large ancestral effective population size, which suffered a strong reduction in the Mid-Holocene. Despite changes in environmental conditions caused by habitat modification, the high diversity and low differentiation in Y. capensis may result from its large ancestral effective size and life-history traits, such as plant longevity, clonal growth and mating system, which reduce the rate of loss of genetic variation. However, the dependence on a specialist pollinator that displays short flight range can reduce gene flow among the plant populations and could, shortly, lead them into an extinction vortex.


Subject(s)
Asparagaceae , Yucca , Ecosystem , Gene Flow , Genetic Variation , Genetics, Population , Mexico , Microsatellite Repeats/genetics , Trees/genetics
13.
Front Genet ; 12: 729867, 2021.
Article in English | MEDLINE | ID: mdl-34721524

ABSTRACT

The level of genetic diversity in a population is inversely proportional to the linkage disequilibrium (LD) between individual single nucleotide polymorphisms (SNPs) and quantitative trait loci (QTLs), leading to lower predictive ability of genomic breeding values (GEBVs) in high genetically diverse populations. Haplotype-based predictions could outperform individual SNP predictions by better capturing the LD between SNP and QTL. Therefore, we aimed to evaluate the accuracy and bias of individual-SNP- and haplotype-based genomic predictions under the single-step-genomic best linear unbiased prediction (ssGBLUP) approach in genetically diverse populations. We simulated purebred and composite sheep populations using literature parameters for moderate and low heritability traits. The haplotypes were created based on LD thresholds of 0.1, 0.3, and 0.6. Pseudo-SNPs from unique haplotype alleles were used to create the genomic relationship matrix ( G ) in the ssGBLUP analyses. Alternative scenarios were compared in which the pseudo-SNPs were combined with non-LD clustered SNPs, only pseudo-SNPs, or haplotypes fitted in a second G (two relationship matrices). The GEBV accuracies for the moderate heritability-trait scenarios fitting individual SNPs ranged from 0.41 to 0.55 and with haplotypes from 0.17 to 0.54 in the most (Ne ≅ 450) and less (Ne < 200) genetically diverse populations, respectively, and the bias fitting individual SNPs or haplotypes ranged between -0.14 and -0.08 and from -0.62 to -0.08, respectively. For the low heritability-trait scenarios, the GEBV accuracies fitting individual SNPs ranged from 0.24 to 0.32, and for fitting haplotypes, it ranged from 0.11 to 0.32 in the more (Ne   ≅ 250) and less (Ne   ≅ 100) genetically diverse populations, respectively, and the bias ranged between -0.36 and -0.32 and from -0.78 to -0.33 fitting individual SNPs or haplotypes, respectively. The lowest accuracies and largest biases were observed fitting only pseudo-SNPs from blocks constructed with an LD threshold of 0.3 (p < 0.05), whereas the best results were obtained using only SNPs or the combination of independent SNPs and pseudo-SNPs in one or two G matrices, in both heritability levels and all populations regardless of the level of genetic diversity. In summary, haplotype-based models did not improve the performance of genomic predictions in genetically diverse populations.

14.
Environ Monit Assess ; 193(12): 816, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34791540

ABSTRACT

Indicators are important tools to improve the efficiency of water supply systems. Considering that the performance could vary according to the systems' sizes, this research proposed financial, operational, and water quality indicators for water supply systems of municipalities with different populations in Minas Gerais, Brazil. The organisation and selection of the sample were based on available information in the National Sanitation Data System of 2014. We selected 363 municipalities of Minas Gerais and 56 predictors. Through multiple linear regression (MLR), we found that the commitment of revenues with expenditures and the ratio among revenues and expenses are the most relevant variables to describe the financial performance. Furthermore, water loss per connection and water-billing index were the most important to describe the operational performance. Finally, models related to water quality performance could not be established due to the low value of the coefficient of determination. We observed that supply systems have distinct variables to describe their financial and operational performance, according to their sizes. Small municipalities have a strong relationship with financial performance and expenses. Large counterparts have their performance related to the collection, which can be explained by the economy of scale. Considering the operational performance, we observed that larger municipalities have a strong relationship between their operational performance and water loss. These models are potential tools in the decision-making processes, which can be used to promote improvements in water supply systems.


Subject(s)
Environmental Monitoring , Sanitation , Brazil , Cities , Water Supply
15.
Front Genet ; 12: 702822, 2021.
Article in English | MEDLINE | ID: mdl-34386042

ABSTRACT

Cattle population history, breeding systems, and geographic subdivision may be reflected in runs of homozygosity (ROH), effective population size (N e), and linkage disequilibrium (LD) patterns. Thus, the assessment of this information has become essential to the implementation of genomic selection on purebred and crossbred cattle breeding programs. In this way, we assessed the genotype of 19 cattle breeds raised in Brazil belonging to taurine, indicine, synthetic crossbreds, and Iberian-derived locally adapted ancestries to evaluate the overall LD decay patterns, N e, ROH, and breed composition. We were able to obtain a general overview of the genomic architecture of cattle breeds currently raised in Brazil and other tropical countries. We found that, among the evaluated breeds, different marker densities should be used to improve the genomic prediction accuracy and power of genome-wide association studies. Breeds showing low N e values indicate a recent inbreeding, also reflected by the occurrence of longer ROH, which demand special attention in the matting schemes to avoid extensive inbreeding. Candidate genes (e.g., ABCA7, PENK, SPP1, IFNAR1, IFNAR2, SPEF2, PRLR, LRRTM1, and LRRTM4) located in the identified ROH islands were evaluated, highlighting biological processes involved with milk production, behavior, rusticity, and fertility. Furthermore, we were successful in obtaining the breed composition regarding the taurine and indicine composition using single-nucleotide polymorphism (SNP) data. Our results were able to observe in detail the genomic backgrounds that are present in each breed and allowed to better understand the various contributions of ancestor breeds to the modern breed composition to the Brazilian cattle.

16.
Front Genet ; 12: 669350, 2021.
Article in English | MEDLINE | ID: mdl-34276776

ABSTRACT

In general, large mammal species with highly specialized feeding behavior and solitary habits are expected to suffer genetic consequences from habitat loss and fragmentation. To test this hypothesis, we analyzed the genetic diversity distribution of the threatened giant anteater inhabiting a human-modified landscape. We used 10 microsatellite loci to assess the genetic diversity and population structure of 107 giant anteaters sampled in the Brazilian Central-Western region. No genetic population structuring was observed in this region suggesting no gene flow restriction within the studied area. On the other hand, the moderate level of genetic diversity (Ho = 0.54), recent bottleneck detected and inbreeding (Fis, 0.13; p ≤ 0.001) signatures suggest potential impacts on the genetic variation of this Xenarthra. Additionally, a previous demographic reduction was suggested. Thus, considering the increased human-promoted impacts across the entire area of distribution of the giant anteater, our results can illustrate the potential effects of these disturbances on the genetic variation, allowing us to request the long-term conservation of this emblematic species.

17.
PeerJ ; 9: e11144, 2021.
Article in English | MEDLINE | ID: mdl-33828926

ABSTRACT

BACKGROUND: The novel coronavirus disease (COVID-19) pandemic is the second global health emergency the world has faced in less than two decades, after the H1N1 Influenza pandemic in 2009-2010. Spread of pandemics is frequently associated with increased population size and population density. The geographical scales (national, regional or local scale) are key elements in determining the correlation between demographic factors and the spread of outbreaks. The aims of this study were: (a) to collect the Mexican data related to the two pandemics; (b) to create thematic maps using federal and municipal geographic scales; (c) to investigate the correlations between the pandemics indicators (numbers of contagious and deaths) and demographic patterns (population size and density). METHODS: The demographic patterns of all Mexican Federal Entities and all municipalities were taken from the database of "Instituto Nacional de Estadística y Geografía" (INEGI). The data of "Centro Nacional de Programas Preventivos y Control de Enfermedades" (CENAPRECE) and the geoportal of Mexico Government were also used in our analysis. The results are presented by means of tables, graphs and thematic maps. A Spearman correlation was used to assess the associations between the pandemics indicators and the demographic patterns. Correlations with a p value < 0.05 were considered significant. RESULTS: The confirmed cases (ccH1N1) and deaths (dH1N1) registered during the H1N1 Influenza pandemic were 72.4 thousand and 1.2 thousand respectively. Mexico City (CDMX) was the most affected area by the pandemic with 8,502 ccH1N1 and 152 dH1N1. The ccH1N1 and dH1N1 were positively correlated to demographic patterns; p-values higher than the level of marginal significance were found analyzing the % ccH1N1 and the % dH1N1 vs the population density. The COVID-19 pandemic data indicated 75.0 million confirmed cases (ccCOVID-19) and 1.6 million deaths (dCOVID-19) worldwide, as of date. The CDMX, where 264,330 infections were recorded, is the national epicenter of the pandemic. The federal scale did not allow to observe the correlation between demographic data and pandemic indicators; hence the next step was to choose a more detailed geographical scale (municipal basis). The ccCOVID-19 and dCOVID-19 (municipal basis) were highly correlated with demographic patterns; also the % ccCOVID-19 and % dCOVID-19 were moderately correlated with demographic patterns. CONCLUSION: The magnitude of COVID-19 pandemic is much greater than the H1N1 Influenza pandemic. The CDMX was the national epicenter in both pandemics. The federal scale did not allow to evaluate the correlation between exanimated demographic variables and the spread of infections, but the municipal basis allowed the identification of local variations and "red zones" such as the delegation of Iztapalapa and Gustavo A. Madero in CDMX.

18.
Animals (Basel) ; 11(2)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525405

ABSTRACT

The ultimate goal of genetic selection is to improve genetic progress by increasing favorable alleles in the population. However, with selection, homozygosity, and potentially harmful recessive alleles can accumulate, deteriorating genetic variability and hampering continued genetic progress. Such potential adverse side effects of selection are of particular interest in populations with a small effective population size like the Romosinuano beef cattle in Mexico. The objective of this study was to evaluate the genetic background and inbreeding depression in Mexican Romosinuano cattle using pedigree and genomic information. Inbreeding was estimated using pedigree (FPED) and genomic information based on the genomic relationship matrix (FGRM) and runs of homozygosity (FROH) of different length classes. Linkage disequilibrium (LD) was evaluated using the correlation between pairs of loci, and the effective population size (Ne) was calculated based on LD and pedigree information. The pedigree file consisted of 4875 animals born between 1950 and 2019, of which 71 had genotypes. LD decreased with the increase in distance between markers, and Ne estimated using genomic information decreased from 610 to 72 animals (from 109 to 1 generation ago), the Ne estimated using pedigree information was 86.44. The reduction in effective population size implies the existence of genetic bottlenecks and the decline of genetic diversity due to the intensive use of few individuals as parents of the next generations. The number of runs of homozygosity per animal ranged between 18 and 102 segments with an average of 55. The shortest and longest segments were 1.0 and 36.0 Mb long, respectively, reflecting ancient and recent inbreeding. The average inbreeding was 2.98 ± 2.81, 2.98 ± 4.01, and 7.28 ± 3.68% for FPED, FGRM, and FROH, respectively. The correlation between FPED and FGRM was -0.25, and the correlations among FPED and FROH of different length classes were low (from 0.16 to 0.31). The correlations between FGRM and FROH of different length classes were moderate (from 0.44 to 0.58), indicating better agreement. A 1% increase in population inbreeding decreased birth weight by 0.103 kg and weaning weight by 0.685 kg. A strategy such as optimum genetic contributions to maximize selection response and manage the long-term genetic variability and inbreeding could lead to more sustainable breeding programs for the Mexican Romosinuano beef cattle breed.

19.
Anim Biosci ; 34(7): 1116-1122, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32898959

ABSTRACT

OBJECTIVE: The aim was to characterize the genetic diversity evolution of the registered Mexican Charolais cattle population by pedigree analysis. METHODS: Data consisted of 331,390 pedigree records of animals born from 1934 to 2018. Average complete generation equivalent, generation interval, effective population size (Ne), and effective numbers of founders (fe), ancestors (fa), and founder genomes (Ng) were calculated for seven five-year periods. The inbreeding coefficient was calculated per year of birth, from 1984 to 2018, whereas the gene contribution of the most influential ancestors was calculated for the latter period. RESULTS: Average complete generation equivalent consistently increased across periods, from 4.76, for the first period (1984 through 1988), to 7.86, for the last period (2014 through 2018). The inbreeding coefficient showed a relative steadiness across the last seventeen years, oscillating from 0.0110 to 0.0145. During the last period, the average generation interval for the father-offspring pathways was nearly 1 yr. longer than that of the mother-offspring pathways. The effective population size increased steadily since 1984 (105.0) and until 2013 (237.1), but showed a minor decline from 2013 to 2018 (233.2). The population displayed an increase in the fa since 1984 and until 2008; however, showed a small decrease during the last decade. The effective number of founder genomes increased from 1984 to 2003, but revealed loss of genetic variability during the last fifteen years (from 136.4 to 127.7). The fa:fe ratio suggests that the genetic diversity loss was partially caused by formation of genetic bottlenecks in the pedigree; in addition, the Ng:fa ratio indicates loss of founder alleles due to genetic drift. The most influential ancestor explained 1.8% of the total genetic variability in the progeny born from 2014 to 2018. CONCLUSION: Inbreeding, Ne, fa, and Ng are rather beyond critical levels; therefore, the current genetic status of the population is not at risk.

20.
Ecol Lett ; 24(3): 415-425, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33300663

ABSTRACT

Experiments and models suggest that climate affects mosquito-borne disease transmission. However, disease transmission involves complex nonlinear interactions between climate and population dynamics, which makes detecting climate drivers at the population level challenging. By analysing incidence data, estimated susceptible population size, and climate data with methods based on nonlinear time series analysis (collectively referred to as empirical dynamic modelling), we identified drivers and their interactive effects on dengue dynamics in San Juan, Puerto Rico. Climatic forcing arose only when susceptible availability was high: temperature and rainfall had net positive and negative effects respectively. By capturing mechanistic, nonlinear and context-dependent effects of population susceptibility, temperature and rainfall on dengue transmission empirically, our model improves forecast skill over recent, state-of-the-art models for dengue incidence. Together, these results provide empirical evidence that the interdependence of host population susceptibility and climate drives dengue dynamics in a nonlinear and complex, yet predictable way.


Subject(s)
Dengue , Animals , Dengue/epidemiology , Disease Susceptibility , Population Dynamics , Puerto Rico/epidemiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL