Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
1.
Methods Mol Biol ; 2835: 277-288, 2024.
Article in English | MEDLINE | ID: mdl-39105923

ABSTRACT

Photodynamic therapy (PDT), a noninvasive cancer treatment, relies on three components: light source, oxygen, and photosensitizer (PS). When PS is excited by a specific wavelength of light in the presence of oxygen, it leads to the generation of reactive oxygen species (ROS), which results in targeted destruction of cancer cells. The success of PDT mainly depends on the properties of the chosen PS, emphasizing selectivity, high absorbance, drug conjugation, controlled biodistribution, and low toxicity. Nanomaterials not only play an important role in photochemical activity by maximizing the absorption of photons from the light source but can also adjust the pharmacokinetics and tumor selectivity of photoactive molecules. Therefore, they can be used as a PS on their own and conjugated with other PS molecules. When combined with selectivity, high targeting capacity, and finally, light of the appropriate wavelength, the scenario results in localized ROS formation and cell death. However, the signaling pathways of PDT-induced cell death may differ depending on the cell type or nanomaterial properties. For this reason, omics analyses are needed to clarify the mechanisms underlying photodynamic reactions. Proteomics, crucial in molecular sciences, sheds light on cancer mechanisms, identifying biomarkers and therapeutic targets. Examining nanoparticle-based PDT in cancer cell lines in vitro, this chapter aims to molecularly evaluate efficacy, utilizing proteomic analysis to understand the underlying mechanisms.


Subject(s)
Nanostructures , Neoplasms , Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Photochemotherapy/methods , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism , Nanostructures/chemistry , Cell Line, Tumor , Proteomics/methods , Nanoparticles/chemistry
2.
BMC Plant Biol ; 24(1): 689, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030471

ABSTRACT

BACKGROUND: Boron (B) is an essential micronutrient for plants. Inappropriate B supply detrimentally affects the productivity of numerous crops. Understanding of the molecular responses of plants to different B supply levels would be of significance in crop improvement and cultivation practices to deal with the problem. RESULTS: We conducted a comprehensive analysis of the transcriptome and proteome of tobacco seedlings to investigate the expression changes of genes/proteins in response to different B supply levels, with a particular focus on B deficiency. The global gene and protein expression profiles revealed the potential mechanisms involved in the responses of tobacco to B deficiency, including up-regulation of the NIP5;1-BORs module, complex regulation of genes/proteins related to cell wall metabolism, and up-regulation of the antioxidant machinery. CONCLUSION: Our results demonstrated that B deficiency caused severe morphological and physiological disorders in tobacco seedlings, and revealed dynamic expression changes of tobacco genes/proteins in response to different B supply levels, especially to B deficiency, thus offering valuable insights into the molecular responses of tobacco to B deficiency.


Subject(s)
Boron , Nicotiana , Proteome , Transcriptome , Boron/deficiency , Boron/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Proteome/metabolism , Gene Expression Regulation, Plant , Seedlings/genetics , Seedlings/metabolism , Seedlings/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling
3.
Article in English | MEDLINE | ID: mdl-38970598

ABSTRACT

BACKGROUND: Left bundle branch area pacing includes left bundle branch pacing (LBBP) and left ventricular septal pacing (LVSP), which is effective in patients with dyssynchronous heart failure (DHF). However, the basic mechanisms are unknown. OBJECTIVES: This study aimed to compare LBBP with LVSP and explore potential mechanisms underlying the better clinical outcomes of LBBP. METHODS: A total of 24 beagles were assigned to the following groups: 1) control group; 2) DHF group, left bundle branch ablation followed by 6 weeks of AOO pacing at 200 ppm; 3) LBBP group, DHF for 3 weeks followed by 3 weeks of DOO pacing at 200 ppm; and 4) LVSP with the same interventions in the LBBP group. Metrics of electrocardiogram, echocardiography, hemodynamics, and expression of left ventricular proteins were evaluated. RESULTS: Compared with LVSP, LBBP had better peak strain dispersion (44.67 ± 1.75 ms vs 55.50 ± 4.85 ms; P < 0.001) and hemodynamic effect (dP/dtmax improvement: 27.16% ± 7.79% vs 11.37% ± 4.73%; P < 0.001), whereas no significant differences in cardiac function were shown. The altered expressions of proteins in the lateral wall vs septum in the DHF group were partially reversed by LBBP and LVSP, which was associated with the contraction and adhesion process, separately. CONCLUSIONS: The animal study demonstrated that LBBP offered better mechanical synchrony and improved hemodynamics than LVSP, which might be explained by the reversed expression of contraction proteins. These results supported the potential superiority of left bundle branch area pacing with the capture of the conduction system in DHF model.

4.
J Invest Dermatol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908781

ABSTRACT

Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high mortality rate. Merkel cell polyomavirus causes 80% of MCCs, encoding the viral oncogenes small T and truncated large T (tLT) antigens. These proteins impair the RB1-dependent G1/S checkpoint blockade and subvert the host cell epigenome to promote cancer. Whole-proteome analysis and proximal interactomics identified a tLT-dependent deregulation of DNA damage response (DDR). Our investigation revealed, to our knowledge, a previously unreported interaction between tLT and the histone methyltransferase EHMT2. T antigen knockdown reduced DDR protein levels and increased the levels of the DNA damage marker γH2Ax. EHMT2 normally promotes H3K9 methylation and DDR signaling. Given that inhibition of EHMT2 did not significantly change the MCC cell proteome, tLT-EHMT2 interaction could affect the DDR. With tLT, we report that EHMT2 gained DNA damage repair proximal interactors. EHMT2 inhibition rescued proliferation in MCC cells depleted for their T antigens, suggesting impaired DDR and/or lack of checkpoint efficiency. Combined tLT and EHMT2 inhibition led to altered DDR, evidenced by multiple signaling alterations. In this study, we show that tLT hijacks multiple components of the DNA damage machinery to enhance tolerance to DNA damage in MCC cells, which could explain the genetic stability of these cancers.

5.
Oncol Lett ; 28(2): 359, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38881711

ABSTRACT

High expression of carbonyl reductase 1 (CBR1) protein in ovarian cancer cells inhibits tumor growth and metastasis. However, the underlying mechanism is unknown. To investigate the mechanism by which CBR1 suppresses tumor growth, the present study generated ovarian cancer cells that constitutively overexpress human CBR1 (hCBR1) protein. Ovarian cancer cell lines (OVCAR-3 and SK-OV-3) were transfected with a plasmid encoding hCBR1, followed by selection with G418 to isolate hCBR1-overexpressing lines. The proliferation rates of hCBR1-overexpressing cells were then compared with those of negative control and wild-type cells. Overexpression of hCBR1 led to significant inhibition of proliferation (P<0.05). Subsequently, to investigate changes in intracellular signaling pathways, cellular proteins were extracted and subjected to proteome analysis using liquid chromatography followed by mass spectrometry. There was an inverse correlation between CBR1 protein expression and cell proliferation. In addition, Ingenuity Pathway Analysis of hCBR1-overexpressing cell lines was performed, which revealed changes in the expression of proteins involved in signaling pathways related to growth regulation. Of these, the eukaryotic translation initiation factor 2 (eIF2) signaling pathway was upregulated most prominently. Thus, alterations in multiple tumor-related signaling pathways, including eIF2 signaling, may lead to growth suppression. Taken together, the present data may lead to the development of new drugs that target CBR1 and related signaling pathways, thereby improving outcomes for patients with ovarian cancer.

6.
J Fungi (Basel) ; 10(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786669

ABSTRACT

Neutrophil and (alveolar) macrophage immunity is considered crucial for eliminating Aspergillus fumigatus. Data derived from bronchoalveloar lavage (BAL) characterizing the human immuno-pulmonary response to Aspergillus fumigatus are non-existent. To obtain a comprehensive picture of the immune pathways involved in chronic pulmonary aspergillosis (CPA), we performed proteome analysis on AL of 9 CPA patients and 17 patients with interstitial lung disease (ILD). The dihydrorhodamine (DHR) test was also performed on BAL and blood neutrophils from CPA patients and compared to blood neutrophils from healthy controls (HCs). BAL from CPA patients primarily contained neutrophils, while ILD BAL was also characterized by a large fraction of lymphocytes; these differences likely reflecting the different immunological etiologies underlying the two disorders. BAL and blood neutrophils from CPA patients displayed the same oxidative burst capacity as HC blood neutrophils. Hence, immune evasion by Aspergillus involves other mechanisms than impaired neutrophil oxidative burst capacity per se. CPA BAL was enriched by proteins associated with innate immunity, as well as, more specifically, with neutrophil degranulation, Toll-like receptor 4 signaling, and neutrophil-mediated iron chelation. Our data provide the first comprehensive target organ-derived immune data on the human pulmonary immune response to Aspergillus fumigatus.

7.
Bioengineering (Basel) ; 11(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38790371

ABSTRACT

Bartonella henselae is a Gram-negative bacterium causing a variety of clinical symptoms, ranging from cat-scratch disease to severe systemic infections, and it is primarily transmitted by infected fleas. Its status as an emerging zoonotic pathogen and its capacity to persist within host erythrocytes and endothelial cells emphasize its clinical significance. Despite progress in understanding its pathogenesis, limited knowledge exists about the virulence factors and regulatory mechanisms specific to the B. henselae strain Houston-1. Exploring these aspects is crucial for targeted therapeutic strategies against this versatile pathogen. Using reverse-vaccinology-based subtractive proteomics, this research aimed to identify the most antigenic proteins for formulating a multi-epitope vaccine against the B. henselae strain Houston-1. One crucial virulent and antigenic protein, the PAS domain-containing sensor histidine kinase protein, was identified. Subsequently, the identification of B-cell and T-cell epitopes for the specified protein was carried out and the evaluated epitopes were checked for their antigenicity, allergenicity, solubility, MHC binding capability, and toxicity. The filtered epitopes were merged using linkers and an adjuvant to create a multi-epitope vaccine construct. The structure was then refined, with 92.3% of amino acids falling within the allowed regions. Docking of the human receptor (TLR4) with the vaccine construct was performed and demonstrated a binding energy of -1047.2 Kcal/mol with more interactions. Molecular dynamic simulations confirmed the stability of this docked complex, emphasizing the conformation and interactions between the molecules. Further experimental validation is necessary to evaluate its effectiveness against B. henselae.

8.
Biomedicines ; 12(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791048

ABSTRACT

Breast cancer (BC) remains one of the leading causes of mortality among women, with triple-negative breast cancer (TNBC) standing out for its aggressive nature and limited treatment options. Metabolic reprogramming, one of cancer's hallmarks, underscores the importance of targeting metabolic vulnerabilities for therapeutic intervention. This study aimed to investigate the impact of de novo serine biosynthetic pathway (SSP) inhibition, specifically targeting phosphoglycerate dehydrogenase (PHGDH) with NCT-503, on three TNBC cell lines: MDA-MB-231, MDA-MB-468 and Hs 578T. First, MS-based proteomics was used to confirm the distinct expression of PHGDH and other SSP enzymes using the intracellular proteome profiles of untreated cells. Furthermore, to characterize the response of the TNBC cell lines to the inhibitor, both in vitro assays and label-free, bottom-up proteomics were employed. NCT-503 exhibited significant cytotoxic effects on all three cell lines, with MDA-MB-468 being the most susceptible (IC50 20.2 ± 2.8 µM), while MDA-MB-231 and Hs 578T showed higher, comparable IC50s. Notably, differentially expressed proteins (DEPs) induced by NCT-503 treatment were mostly cell line-specific, both in terms of the intracellular and secreted proteins. Through overrepresentation and Reactome GSEA analysis, modifications of the intracellular proteins associated with cell cycle pathways were observed in the MDA-MBs following treatment. Distinctive dysregulation of signaling pathways were seen in all TNBC cell lines, while modifications of proteins associated with the extracellular matrix organization characterizing both MDA-MB-231 and Hs 578T cell lines were highlighted through the treatment-induced modifications of the secreted proteins. Lastly, an analysis was conducted on the DEPs that exhibited greater abundance in the NCT-503 treatment groups to evaluate the potential chemo-sensitizing properties of NCT-503 and the druggability of these promising targets.

9.
J Agric Food Chem ; 72(23): 13451-13464, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38728234

ABSTRACT

This study delved into the relationship between umami taste sensitivity (UTS) and variations in the salivary proteome among 12 healthy nonsmokers utilizing 4D data-independent acquisition-based proteomics. By assessing UTS through monosodium l-glutamate (MSG) detection thresholds, we discovered notable differences: individuals with high UTS detected umami at significantly lower MSG concentrations (0.20 ± 0.12 mM) compared to their low UTS counterparts (2.51 ± 1.21 mM). Both groups showed an upregulation of the S100A1 protein under MSG stimulation, indicating a potent biochemical response to umami stimuli. The high UTS group exhibited enhanced metabolic pathways including those for amino acid, lipid, and organic acid biosynthesis, essential for maintaining taste receptor functionality and enhancing signal transduction. This group also demonstrated increased activity in cytochrome P450 enzymes and ribonucleoprotein complexes, suggesting a readiness to manage metabolic challenges and optimize umami perception. In contrast, the low UTS group showed adaptive mechanisms, possibly through modulation of receptor availability and function, with an upregulation of structural and ribosomal proteins that may support taste receptor production and turnover. These findings suggest that varying biological mechanisms underpin differences in umami perception, which could significantly influence dietary preferences and nutritional outcomes, highlighting the intricate interplay of genetic, physiological, and metabolic factors in taste sensitivity.


Subject(s)
Proteome , Saliva , Taste , Humans , Saliva/chemistry , Saliva/metabolism , Adult , Female , Male , Young Adult , Proteome/metabolism , Taste Perception , Sodium Glutamate , Proteomics
10.
Article in English | MEDLINE | ID: mdl-38460182

ABSTRACT

OBJECTIVES: In SLE, anti-dsDNA can co-occur with autoantibodies against other chromatin components, like histones and nucleosomes. These antibodies induce type-1 interferon production, a hallmark of SLE. We measured antinuclear antibody (ANA) sub-specificities and investigated their associations to inflammatory biomarkers including interferon-regulated chemokines. METHODS: We included 93 Sudanese and 480 Swedish SLE patients and matched controls (N = 104 + 192). Autoantibodies targeting ANA-subspecificites: dsDNA, Sm, Sm/U1RNPcomplex, U1RNP, SSA/Ro52, SSA/Ro60, SSB/La, ribosomal P, PCNA and histones were quantified in all subjects, anti-nucleosome only in the Swedish patients, with a bead-based multiplex immunoassay. Levels of 72 plasma biomarkers were determined with Proximity Extension Assay technique or ELISA. RESULTS: Among Sudanese patients, the investigated antibodies significantly associated with 9/72 biomarkers. Anti-histone antibodies showed the strongest positive correlations with MCP-3 and S100A12 as well as with interferon I-inducible factors MCP-1 and CXCL10. Anti-dsDNA antibodies associated with CXCL10 and S100A12, but in multivariate analyses, unlike anti-histone, associations lost significance.Among Swedish patients, MCP-1, CXCL10, SA100A12 also demonstrated stronger associations to anti-histone and anti-nucleosome antibodies, compared with anti-dsDNA and other ANA sub-specificities. In multiple regression models, anti-histone/nucleosome retained the strongest associations. When excluding anti-histone or anti-nucleosome positive patients, the associations between MCP-1/CXCL10 and anti-dsDNA were lost. In contrast, when excluding anti-dsDNA positive patients, associations with anti-histone and anti-nucleosome remained significant. CONCLUSION: In two cohorts of different ethnical origin, autoantibodies targeting chromatin correlate stronger with IFN-induced inflammatory biomarkers than anti-dsDNA or other ANA sub-specificities. Our results suggest that anti-histone/nucleosome autoantibodies may be main drivers of type-1 interferon activity in SLE.

11.
Methods Mol Biol ; 2791: 113-119, 2024.
Article in English | MEDLINE | ID: mdl-38532098

ABSTRACT

Two-dimensional gel electrophoresis (2-DE) is a proteomic tool used for the separation of protein mixtures according to protein isoelectric point and molecular mass. Although gel-free quantitative and qualitative proteomic study techniques are now available, 2-DE remains a useful analytical tool. The presented protocol was performed to analyze the flower and leaf proteome of common buckwheat using 24 cm immobilized pH gradient strips (pH 4-7) and visualization of proteins on gels via colloidal Coomassie G-250 staining.


Subject(s)
Fagopyrum , Proteome , Proteome/analysis , Proteomics , Isoelectric Focusing/methods , Plant Leaves/chemistry , Flowers , Electrophoresis, Gel, Two-Dimensional/methods , Gels , Hydrogen-Ion Concentration
12.
Leuk Res ; 138: 107454, 2024 03.
Article in English | MEDLINE | ID: mdl-38452534

ABSTRACT

Adult T-cell leukemia/lymphoma (ATL), caused by human T-cell leukemia virus type-1 (HTLV-1) infection, is a malignant hematologic cancer that remains difficult to cure. We herein established a biomarker identification strategy based on the total cell proteomics of cultured ATL cells to search for novel ATL biomarkers. Four protocols with a combination of selected conditions based on lysis buffers and addition agents for total cell proteomics were used for a differential analysis between the ATL cell group (consisting of 11 cell lines), HTLV-1-infected cell group (consisting of 6 cell lines), and HTLV-1-negative cell group (consisting of 6 cell lines). In the analysis, we identified 24 and 27 proteins that were significantly increased (ratio ≥2.0, p < 0.05) and decreased (ratio ≤ 0.5, p < 0.05), respectively, in the ATL group. Previously reported CCL3 and CD30/TNFRSF8 were confirmed to be among significantly increased proteins. Furthermore, correlation analysis between identified proteins and Tax suggested that RASSF2 and GORASP2 were candidates of novel Tax-regulated factors. The biomarker identification strategy established herein is expected to contribute to the identification of biomarkers for ATL and other diseases.


Subject(s)
Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Lymphoma , Adult , Humans , Proteomics , Human T-lymphotropic virus 1/metabolism , Biomarkers , Digestion , Gene Products, tax/metabolism , Golgi Matrix Proteins
13.
Anticancer Agents Med Chem ; 24(10): 773-788, 2024.
Article in English | MEDLINE | ID: mdl-38415491

ABSTRACT

BACKGROUND: Non-Small Cell Lung Cancer (NSCLC) is a malignancy with a significant prevalence and aggressive nature, posing a considerable challenge in terms of therapeutic interventions. Autophagy and apoptosis, two intricate cellular processes, are integral to NSCLC pathophysiology, each affecting the other through shared signaling pathways. Phytol (Phy) and α-bisabolol (Bis) have shown promise as potential anticancer agents individually, but their combined effects in NSCLC have not been extensively investigated. OBJECTIVE: The present study was to examine the synergistic impact of Phy and Bis on NSCLC cells, particularly in the context of autophagy modulation, and to elucidate the resulting differential protein expression using LCMS/ MS analysis. METHODS: The A549 cell lines were subjected to the patented effective concentration of Phy and Bis, and subsequently, the viability of the cells was evaluated utilizing the MTT assay. The present study utilized real-time PCR analysis to assess the expression levels of crucial apoptotic genes, specifically Bcl-2, Bax, and Caspase-9, as well as autophagy-related genes, including Beclin-1, SQSTM1, Ulk1, and LC3B. The confirmation of autophagy marker expression (Beclin-1, LC3B) and the autophagy-regulating protein SQSTM1 was achieved through the utilization of Western blot analysis. Differentially expressed proteins were found using LC-MS/MS analysis. RESULTS: The combination of Phy and Bis demonstrated significant inhibition of NSCLC cell growth, indicating their synergistic effect. Real-time PCR analysis revealed a shift towards apoptosis, with downregulation of Bcl-2 and upregulation of Bax and Caspase-9, suggesting a shift towards apoptosis. Genes associated with autophagy regulation, including Beclin-1, SQSTM1 (p62), Ulk1, and LC3B, showed significant upregulation, indicating potential induction of autophagy. Western blot analysis confirmed increased expression of autophagy markers, such as Beclin-1 and LC3B, while the autophagy-regulating protein SQSTM1 exhibited a significant decrease. LC-MS/MS analysis revealed differential expression of 861 proteins, reflecting the modulation of cellular processes. Protein-protein interaction network analysis highlighted key proteins involved in apoptotic and autophagic pathways, including STOML2, YWHAB, POX2, B2M, CDA, CAPN2, TXN, ECHS1, PEBP1, PFN1, CDC42, TUBB1, HSPB1, PXN, FGF2, and BAG3, emphasizing their crucial roles. Additionally, PANTHER pathway analysis uncovered enriched pathways associated with the differentially expressed proteins, revealing their involvement in a diverse range of biological processes, encompassing cell signaling, metabolism, and cellular stress responses. CONCLUSION: The combined treatment of Phy and Bis exerts a synergistic inhibitory effect on NSCLC cell growth, mediated through the interplay of apoptosis and autophagy. The differential protein expression observed, along with the identified proteins and enriched pathways, provides valuable insights into the underlying molecular mechanisms. These findings offer a foundation for further exploration of the therapeutic potential of Phy and Bis in the management of NSCLC.


Subject(s)
Apoptosis , Autophagy , Cell Proliferation , Drug Screening Assays, Antitumor , Phytol , Tandem Mass Spectrometry , Humans , Autophagy/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Phytol/pharmacology , Phytol/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , A549 Cells , Proteome/drug effects , Proteome/metabolism , Chromatography, Liquid , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Structure-Activity Relationship , Molecular Structure , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Synergism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Tumor Cells, Cultured , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry
14.
Front Plant Sci ; 15: 1331949, 2024.
Article in English | MEDLINE | ID: mdl-38390296

ABSTRACT

Duckweed is an aquatic model plant with tremendous potential in industrial and agricultural applications. Duckweed rarely flowers which significantly hinders the resource collection and heterosis utilization. Salicylic acid (SA) can significantly induce duckweed to flower; however, the underlying regulatory mechanisms remain largely unknown. In this work, transcriptome and proteome were conducted in parallel to examine the expression change of genes and proteins in Lemna gibba under SA treatment. A high-quality reference transcriptome was generated using Iso-Seq strategy, yielding 42,281 full-length transcripts. A total of 422, 423, and 417 differentially expressed genes (DEGs), as well as 213, 51, and 92 differentially expressed proteins (DEPs), were identified at flower induction, flower initiation, and flowering stages by ssRNA-seq and iTRAQ methods. Most DEGs and DEPs were only regulated at either the transcriptomic or proteomic level. Additionally, DEPs exhibited low expression correlations with the corresponding mRNAs, suggesting that post-transcriptional regulation plays a pivotal role in SA-induced flowering in L. gibba. Specifically, the genes related to photosynthesis, stress, and hormone metabolism were mainly regulated at the mRNA level, those associated with mitochondrial electron transport / ATP synthesis, nucleotide synthesis, and secondary metabolism were regulated at the protein level, while those related to redox metabolism were regulated at the mRNA and/or protein levels. The post-transcriptional regulation of genes relevant to hormone synthesis, transcription factors, and flowering was also extensively analyzed and discussed. This is the first study of integrative transcriptomic and proteomic analyses in duckweed, providing novel insights of post-transcriptional regulation in SA-induced flowering of L. gibba.

15.
Plant Cell Rep ; 43(3): 66, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341387

ABSTRACT

KEY MESSAGE: We used transcriptomic and proteomic association analysis to reveal the critical genes/proteins at three key flower bud differentiation stages and overexpression of CpFPA1 in Arabidopsis resulted in earlier flowering. Wintersweet (Chimonanthus praecox), a rare winter-flowering woody plant, is well known for its unique blooming time, fragrance and long flowering period. However, the molecular mechanism of flowering in C. praecox remains poorly unclear. In this study, we used transcriptomic and proteomic association analysis to reveal the critical genes/proteins at three key flower bud (FB) differentiation stages (FB.Apr, FB.May and FB.Nov) in C. praecox. The results showed that a total of 952 differential expressed genes (DEGs) and 40 differential expressed proteins (DEPs) were identified. Gene ontology (GO) enrichment revealed that DEGs in FB.Apr/FB.May comparison group were mainly involved in metabolic of biological process, cell and cell part of cellular component and catalytic activity of molecular function. In the EuKaryotic Orthologous Groups (KOG) functional classification, DEPs were predicted mainly in the function of general function prediction only (KOG0118), post-translational modification, protein turnover and chaperones. The autonomous pathway genes play an essential role in the floral induction. Based on transcriptome and proteome correlation analysis, six candidate genes associated with the autonomous pathway were identified, including FPA1, FPA2a, FPA2b, FCA, FLK, FY. Furthermore, CpFPA1 was isolated and functionally characterized, and ectopic expression of CpFPA1 in Arabidopsis Columbia (Col-0) resulted in earlier flowering. These data could contribute to understand the function of CpFPA1 for floral induction and provide information for further research on the molecular mechanisms of flowering in wintersweet.


Subject(s)
Arabidopsis , Transcriptome , Transcriptome/genetics , Proteome/genetics , Proteome/metabolism , Flowers/genetics , Flowers/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Proteomics , Gene Expression Regulation, Plant
16.
Mol Neurobiol ; 61(8): 5754-5770, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38228842

ABSTRACT

The iPSC-derived 3D models are considered to be a connective link between 2D culture and in vivo studies. However, the sensitivity of such 3D models is yet to be established. We assessed the sensitivity of the hiPSC-derived 3D spheroids against 2D cultures of neural progenitor cells. The sub-toxic dose of Sodium Arsenite (SA) was used to investigate the alterations in miRNA-proteins in both systems. Though SA exposure induced significant alterations in the proteins in both 2D and 3D systems, these proteins were uncommon except for 20 proteins. The number and magnitude of altered proteins were higher in the 2D system compared to 3D. The association of dysregulated miRNAs with the target proteins showed their involvement primarily in mitochondrial bioenergetics, oxidative and ER stress, transcription and translation mechanism, cytostructure, etc., in both culture systems. Further, the impact of dysregulated miRNAs and associated proteins on these functions and ultrastructural changes was compared in both culture systems. The ultrastructural studies revealed a similar pattern of mitochondrial damage, while the cellular bioenergetics studies confirm a significantly higher energy failure in the 2D system than to 3D. Such a higher magnitude of changes could be correlated with a higher amount of internalization of SA in 2D cultures than in 3D spheroids. Our findings demonstrate that a 2D culture system seems better responsive than a 3D spheroid system against SA exposure.


Subject(s)
Arsenic , Induced Pluripotent Stem Cells , MicroRNAs , Neural Stem Cells , Proteomics , Spheroids, Cellular , Humans , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Proteomics/methods , Arsenic/toxicity , Cell Culture Techniques/methods , Mitochondria/drug effects , Mitochondria/metabolism , Cells, Cultured
17.
Methods Mol Biol ; 2752: 143-165, 2024.
Article in English | MEDLINE | ID: mdl-38194033

ABSTRACT

In situ hybridization of oligonucleotide probes to intracellular RNA allows quantification of predefined gene transcripts within millions of single cells using cytometry platforms. Previous methods have been hindered by the number of RNA that can be analyzed simultaneously. Here we describe a method called proximity ligation assay for RNA (PLAYR) that permits highly multiplexed RNA analysis that can be combined with antibody staining. Potentially any number of RNA combined with antigen can be analyzed together, being limited only by the number of analytes that can be measured simultaneously.


Subject(s)
Antibodies , RNA , In Situ Hybridization , Oligonucleotide Probes , RNA/genetics , Staining and Labeling
18.
J Leukoc Biol ; 115(3): 435-449, 2024 02 23.
Article in English | MEDLINE | ID: mdl-37811856

ABSTRACT

Macrophages are key immune cells that can adapt their metabolic phenotype in response to different stimuli. Lysine deacetylases are important enzymes regulating inflammatory gene expression and lysine deacetylase inhibitors have been shown to exert anti-inflammatory effects in models of chronic obstructive pulmonary disease. We hypothesized that these anti-inflammatory effects may be associated with metabolic changes in macrophages. To validate this hypothesis, we used an unbiased and a targeted proteomic approach to investigate metabolic enzymes, as well as liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry, to quantify metabolites in combination with the measurement of functional parameters in primary murine alveolar-like macrophages after lipopolysaccharide-induced activation in the presence or absence of lysine deacetylase inhibition. We found that lysine deacetylase inhibition resulted in reduced production of inflammatory mediators such as tumor necrosis factor α and interleukin 1ß. However, only minor changes in macrophage metabolism were observed, as only one of the lysine deacetylase inhibitors slightly increased mitochondrial respiration while no changes in metabolite levels were seen. However, lysine deacetylase inhibition specifically enhanced expression of proteins involved in ubiquitination, which may be a driver of the anti-inflammatory effects of lysine deacetylase inhibitors. Our data illustrate that a multiomics approach provides novel insights into how macrophages interact with cues from their environment. More detailed studies investigating ubiquitination as a potential driver of lysine deacetylase inhibition will help developing novel anti-inflammatory drugs for difficult-to-treat diseases such as chronic obstructive pulmonary disease.


Subject(s)
Lipopolysaccharides , Pulmonary Disease, Chronic Obstructive , Mice , Animals , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Lysine/metabolism , Lysine/pharmacology , Proteomics , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology
19.
Appl Environ Microbiol ; 89(10): e0118523, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37791757

ABSTRACT

Humans consume alginate in the form of seaweed, food hydrocolloids, and encapsulations, making the digestion of this mannuronic acid (M) and guluronic acid (G) polymer of key interest for human health. To increase knowledge on alginate degradation in the gut, a gene catalog from human feces was mined for potential alginate lyases (ALs). The predicted ALs were present in nine species of the Bacteroidetes phylum, of which two required supplementation of an endo-acting AL, expected to mimic cross-feeding in the gut. However, only a new isolate grew on alginate. Whole-genome sequencing of this alginate-utilizing isolate suggested that it is a new Bacteroides ovatus strain harboring a polysaccharide utilization locus (PUL) containing three ALs of families: PL6, PL17, and PL38. The BoPL6 degraded polyG to oligosaccharides of DP 1-3, and BoPL17 released 4,5-unsaturated monouronate from polyM. BoPL38 degraded both alginates, polyM, polyG, and polyMG, in endo-mode; hence, it was assumed to deliver oligosaccharide substrates for BoPL6 and BoPL17, corresponding well with synergistic action on alginate. BoPL17 and BoPL38 crystal structures, determined at 1.61 and 2.11 Å, respectively, showed (α/α)6-barrel + anti-parallel ß-sheet and (α/α)7-barrel folds, distinctive for these PL families. BoPL17 had a more open active site than the two homologous structures. BoPL38 was very similar to the structure of an uncharacterized PL38, albeit with a different triad of residues possibly interacting with substrate in the presumed active site tunnel. Altogether, the study provides unique functional and structural insights into alginate-degrading lyases of a PUL in a human gut bacterium.IMPORTANCEHuman ingestion of sustainable biopolymers calls for insight into their utilization in our gut. Seaweed is one such resource with alginate, a major cell wall component, used as a food hydrocolloid and for encapsulation of pharmaceuticals and probiotics. Knowledge is sparse on the molecular basis for alginate utilization in the gut. We identified a new Bacteroides ovatus strain from human feces that grew on alginate and encoded three alginate lyases in a gene cluster. BoPL6 and BoPL17 show complementary specificity toward guluronate (G) and mannuronate (M) residues, releasing unsaturated oligosaccharides and monouronic acids. BoPL38 produces oligosaccharides degraded by BoPL6 and BoPL17 from both alginates, G-, M-, and MG-substrates. Enzymatic and structural characterization discloses the mode of action and synergistic degradation of alginate by these alginate lyases. Other bacteria were cross-feeding on alginate oligosaccharides produced by an endo-acting alginate lyase. Hence, there is an interdependent community in our guts that can utilize alginate.


Subject(s)
Alginates , Bacteria , Humans , Alginates/metabolism , Bacteria/metabolism , Oligosaccharides/metabolism , Polysaccharide-Lyases/metabolism , Substrate Specificity
20.
Proteomes ; 11(4)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37873870

ABSTRACT

The budding yeast Saccharomyces cerevisiae is a powerful model system that is widely used to investigate many cellular processes. The harvesting of yeast cells is the first step in almost every experimental procedure. Here, yeast cells are isolated from their growth medium, collected, and used for successive experiments or analysis. The two most common methods to harvest S. cerevisiae are centrifugation and filtration. Understanding if and how centrifugation and filtration affect yeast physiology is essential with respect to downstream data interpretation. Here, we profile and compare the proteomes and the phosphoproteomes, using isobaric label-based quantitative mass spectrometry, of three common methods used to harvest S. cerevisiae cells: low-speed centrifugation, high-speed centrifugation, and filtration. Our data suggest that, while the proteome was stable across the tested conditions, hundreds of phosphorylation events were different between centrifugation and filtration. Our analysis shows that, under our experimental conditions, filtration may cause both cell wall and osmotic stress at higher levels compared to centrifugation, implying harvesting-method-specific stresses. Thus, considering that the basal activation levels of specific stresses may differ under certain harvesting conditions is an important, but often overlooked, aspect of experimental design.

SELECTION OF CITATIONS
SEARCH DETAIL