Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
1.
Pharmacol Res ; : 107336, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094987

ABSTRACT

G-Protein Pathway Suppressor 2 (GPS2) is an inhibitor of non-proteolytic K63 ubiquitination mediated by the E2 ubiquitin-conjugating enzyme Ubc13. Previous studies have associated GPS2-mediated restriction of ubiquitination with the regulation of insulin signaling, inflammatory responses and mitochondria-nuclear communication across different tissues and cell types. However, a detailed understanding of the targets of GPS2/Ubc13 activity is lacking. Here, we have dissected the GPS2-regulated K63 ubiquitome in mouse embryonic fibroblasts and human breast cancer cells, unexpectedly finding an enrichment for proteins involved in RNA binding and translation on the outer mitochondrial membrane. Validation of selected targets of GPS2-mediated regulation, including the RNA-binding protein PABPC1 and translation factors RPS1, RACK1 and eIF3M, revealed a mitochondrial-specific strategy for regulating the translation of nuclear-encoded mitochondrial proteins via non-proteolytic ubiquitination. Removal of GPS2-mediated inhibition, either via genetic deletion or stress-induced nuclear translocation, promotes the import-coupled translation of selected mRNAs leading to the increased expression of an adaptive antioxidant program. In light of GPS2 role in nuclear-mitochondria communication, these findings reveal an exquisite regulatory network for modulating mitochondrial gene expression through spatially coordinated transcription and translation.

2.
J Med Life ; 17(3): 309-313, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39044930

ABSTRACT

Experimental glomerulonephritis results in hypertension that is sensitive to salt. Nevertheless, salt retention alone cannot explain the increase in blood pressure. Angiotensin antagonistic therapy reduces hypertension caused by puromycin amino nucleosides (PAN). We investigated the hypothesis that PAN modifies renal vascular reactivity through processes dependent on angiotensin. Long-Evans rats were given an intraperitoneal injection of either puromycin (150 mg/kg) or saline (controls). Group 1 was fed a normal sodium diet (NSD, n = 9). Group 2 was given 30 mg/L of quinapril (Q) in addition to NSD (NSD + Q; n = 6). Group 3 received a high sodium diet (HSD, n = 7), and Group 4 received HSD + Q (n = 7). Systolic blood pressure (SBP), plasma creatinine, proteinuria, and sodium balance were monitored for 12 days. On day 15, renal vascular reactivity was assessed by administering increasing doses of angiotensin II, acetylcholine (ACh), and sodium nitroprusside (SNP) directly into the renal artery. SBP progressively increased in all PAN groups. This increase in SBP was greater in the HSD groups and was not significantly altered by Q treatment. SBP increased by 22 ± 4% (NSD), 51 ± 5% (NSD + Q), 81 ± 10% (HSD), and 65 ± 8% (HSD + Q). The renal blood flow of PAN rats did not return to baseline despite their normal renal vasoconstrictor responses to angiotensin II. Additionally, they showed reduced renal vasodilator responses to SNP and Ach. The vasodilator responses to both vasodilators were surprisingly unaffected by the inhibition of the angiotensin-converting enzyme (ACE). Renal vasodilator responses to both endothelium-dependent and independent variables were reduced in early PAN-induced hypertension. We found that the angiotensin-mediated mechanism is not responsible for this altered renal vasoreactivity.


Subject(s)
Angiotensin II , Kidney , Animals , Angiotensin II/pharmacology , Rats , Kidney/blood supply , Kidney/drug effects , Male , Rats, Long-Evans , Blood Pressure/drug effects , Puromycin/pharmacology , Nitroprusside/pharmacology , Puromycin Aminonucleoside , Acetylcholine/pharmacology , Kidney Diseases/chemically induced
3.
Eur J Med Chem ; 275: 116604, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38917665

ABSTRACT

The endogenous opioid system regulates pain through local release of neuropeptides and modulation of their action on opioid receptors. However, the effect of opioid peptides, the enkephalins, is short-lived due to their rapid hydrolysis by enkephalin-degrading enzymes. In turn, an innovative approach to the management of pain would be to increase the local concentration and prolong the stability of enkephalins by preventing their inactivation by neural enkephalinases such as puromycin-sensitive aminopeptidase (PSA). Our previous structure-activity relationship studies offered the S-diphenylmethyl cysteinyl derivative of puromycin (20) as a nanomolar inhibitor of PSA. This chemical class, however, suffered from undesirable metabolism to nephrotoxic puromycin aminonucleoside (PAN). To prevent such toxicity, we designed and synthesized 5'-chloro substituted derivatives. The compounds retained the PSA inhibitory potency of the corresponding 5'-hydroxy analogs and had improved selectivity toward PSA. In vivo treatment with the lead compound 19 caused significantly reduced pain response in antinociception assays, alone and in combination with Met-enkephalin. The analgesic effect was reversed by the opioid antagonist naloxone, suggesting the involvement of opioid receptors. Further, PSA inhibition by compound 19 in brain slices caused local increase in endogenous enkephalin levels, corroborating our rationale. Pharmacokinetic assessment of compound 19 showed desirable plasma stability and identified the cysteinyl sulfur as the principal site of metabolic liability. We gained additional insight into inhibitor-PSA interactions by molecular modeling, which underscored the importance of bulky aromatic amino acid in puromycin scaffold. The results of this study strongly support our rationale for the development of PSA inhibitors for effective pain management.


Subject(s)
Signal Transduction , Animals , Structure-Activity Relationship , Signal Transduction/drug effects , Male , Mice , Molecular Structure , Dose-Response Relationship, Drug , Humans , CD13 Antigens/antagonists & inhibitors , CD13 Antigens/metabolism , Enkephalins/chemistry , Enkephalins/metabolism , Enkephalins/pharmacology , Puromycin/pharmacology , Puromycin/metabolism , Puromycin/chemistry , Analgesics/pharmacology , Analgesics/chemistry , Aminopeptidases/antagonists & inhibitors , Aminopeptidases/metabolism , Rats
4.
Biomolecules ; 14(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38927071

ABSTRACT

Bacterial peptidyl tRNA hydrolase (Pth) or Pth1 emerges as a pivotal enzyme involved in the maintenance of cellular homeostasis by catalyzing the release of peptidyl moieties from peptidyl-tRNA molecules and the maintenance of a free pool of specific tRNAs. This enzyme is vital for bacterial cells and an emerging drug target for various bacterial infections. Understanding the enzymatic mechanisms and structural intricacies of bacterial Pth is pivotal in designing novel therapeutics to combat antibiotic resistance. This review provides a comprehensive analysis of the multifaceted roles of Pth in bacterial physiology, shedding light on its significance as a potential drug target. This article delves into the diverse functions of Pth, encompassing its involvement in ribosome rescue, the maintenance of a free tRNA pool in bacterial systems, the regulation of translation fidelity, and stress response pathways within bacterial systems. Moreover, it also explores the druggability of bacterial Pth, emphasizing its promise as a target for antibacterial agents and highlighting the challenges associated with developing specific inhibitors against this enzyme. Structural elucidation represents a cornerstone in unraveling the catalytic mechanisms and substrate recognition of Pth. This review encapsulates the current structural insights of Pth garnered through various biophysical techniques, such as X-ray crystallography and NMR spectroscopy, providing a detailed understanding of the enzyme's architecture and conformational dynamics. Additionally, biophysical aspects, including its interaction with ligands, inhibitors, and substrates, are discussed, elucidating the molecular basis of bacterial Pth's function and its potential use in drug design strategies. Through this review article, we aim to put together all the available information on bacterial Pth and emphasize its potential in advancing innovative therapeutic interventions and combating bacterial infections.


Subject(s)
Anti-Bacterial Agents , Bacteria , Bacteria/enzymology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Infections/drug therapy
5.
Discov Oncol ; 15(1): 197, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814491

ABSTRACT

Breast cancer is a prevalent malignant tumor among women with an increasing incidence rate annually. Breast cancer stem cells (BCSCs) are integral in impeding tumor advancement and addressing drug resistance. Bestatin serves as an adjuvant chemotherapy, triggering apoptosis in cancer cells. In this study, the effects of bestatin on sorted BCSCs from breast cancer cell lines have been studied. Our results indicated that bestatin inhibits the migration and proliferation of breast cancer cells by reducing the stemness of BCSCs both in vitro and in vivo. Puromycin-sensitive aminopeptidase is implicated in the process through the regulation of cell cycle, resulting in heightened cell apoptosis and diminished cell proliferation of BCSCs. Our study suggest that targeting cancer stem cell may offer a promising approach in breast cancer treatment, presenting noval therapeutic strategies for patients with breast cancer.

6.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617237

ABSTRACT

The endogenous opioid system regulates pain through local release of neuropeptides and modulation of their action on opioid receptors. However, the effect of opioid peptides, the enkephalins, is short-lived due to their rapid hydrolysis by enkephalin-degrading enzymes. In turn, an innovative approach to the management of pain would be to increase the local concentration and prolong the stability of enkephalins by preventing their inactivation by neural enkephalinases such as puromycin sensitive aminopeptidase (PSA). Our previous structure-activity relationship studies offered the S-diphenylmethyl cysteinyl derivative of puromycin (20) as a nanomolar inhibitor of PSA. This chemical class, however, suffered from undesirable metabolism to nephrotoxic puromycin aminonucleoside (PAN). To prevent such toxicity, we designed and synthesized 5'-chloro substituted derivatives. The compounds retained the PSA inhibitory potency of the corresponding 5'-hydroxy analogs and had improved selectivity toward PSA. In vivo treatment with the lead compound 19 caused significantly reduced pain response in antinociception assays, alone and in combination with Met-enkephalin. The analgesic effect was reversed by the opioid antagonist naloxone, suggesting the involvement of opioid receptors. Further, PSA inhibition by compound 19 in brain slices caused local increase in endogenous enkephalin levels, corroborating our rationale. Pharmacokinetic assessment of compound 19 showed desirable plasma stability and identified the cysteinyl sulfur as the principal site of metabolic liability. We gained additional insight into inhibitor-PSA interactions by molecular modeling, which underscored the importance of bulky aromatic amino acid in puromycin scaffold. The results of this study strongly support our rationale for the development of PSA inhibitors for effective pain management.

7.
Molecules ; 29(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474448

ABSTRACT

Prosthetic infections are associated with high morbidity, mortality, and relapse rates, making them still a serious problem for implantology. Staphylococcus aureus is one of the most common bacterial pathogens causing prosthetic infections. In response to the increasing rate of bacterial resistance to commonly used antibiotics, this work proposes a method for combating pathogenic microorganisms by modifying the surfaces of synthetic polymeric biomaterials using proteolytic enzyme inhibitors (serine protease inhibitors-4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride and puromycin). While using techniques based on the immobilization of biologically active molecules, it is important to monitor the changes occurring on the surface of the modified biomaterial, where spectroscopic techniques (e.g., FTIR) are ideal. ATR-FTIR measurements demonstrated that the immobilization of both inhibitors caused large structural changes on the surface of the tested vascular prostheses (polyester or polytetrafluoroethylene) and showed that they were covalently bonded to the surfaces of the biomaterials. Next, the bactericidal and antibiofilm activities of the tested serine protease inhibitors were determined using the CLSM microscopic technique with fluorescent staining. During LIVE/DEAD analyses, a significant decrease in the formation of Staphylococcus aureus biofilm after exposure to selected concentrations of native inhibitors (0.02-0.06 mg/mL for puromycin and 0.2-1 mg/mL for 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride) was demonstrated.


Subject(s)
Anti-Infective Agents , Staphylococcal Infections , Sulfones , Humans , Blood Vessel Prosthesis , Anti-Bacterial Agents/pharmacology , Biofilms , Serine Proteinase Inhibitors/pharmacology , Staphylococcus aureus , Biocompatible Materials , Puromycin , Peptide Hydrolases
8.
Proc Natl Acad Sci U S A ; 121(7): e2306993121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315848

ABSTRACT

Puromycin is covalently added to the nascent chain of proteins by the peptidyl transferase activity of the ribosome and the dissociation of the puromycylated peptide typically follows this event. It was postulated that blocking the translocation of the ribosome with emetine could retain the puromycylated peptide on the ribosome, but evidence against this has recently been published [Hobson et al., Elife 9, e60048 (2020); and Enam et al., Elife 9, e60303 (2020)]. In neurons, puromycylated nascent chains remain in the ribosome even in the absence of emetine, yet direct evidence for this has been lacking. Using biochemistry and cryoelectron microscopy, we show that the puromycylated peptides remain in the ribosome exit channel in the large subunit in a subset of neuronal ribosomes stalled in the hybrid state. These results validate previous experiments to localize stalled polysomes in neurons and provide insight into how neuronal ribosomes are stalled. Moreover, in these hybrid-state neuronal ribosomes, anisomycin, which usually blocks puromycylation, competes poorly with puromycin in the puromycylation reaction, allowing a simple assay to determine the proportion of nascent chains that are stalled in this state. In early hippocampal neuronal cultures, over 50% of all nascent peptides are found in these stalled polysomes. These results provide insights into the stalling mechanisms of neuronal ribosomes and suggest that puromycylated peptides can be used to reveal subcellular sites of hybrid-state stalled ribosomes in neurons.


Subject(s)
Emetine , Ribosomes , Puromycin/pharmacology , Cryoelectron Microscopy , Emetine/analysis , Emetine/metabolism , Ribosomes/metabolism , Protein Biosynthesis , Peptides/metabolism , Neurons/metabolism
9.
Bio Protoc ; 14(3): e4933, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38379826

ABSTRACT

As the most energy- and metabolite-consuming process, protein synthesis is under the control of several intrinsic and extrinsic factors that determine its fine-tuning to the cellular microenvironment. Consequently, variations in protein synthesis rates occur under various physiological and pathological conditions, enabling an adaptive response by the cell. For example, global protein synthesis increases upon mitogenic factors to support biomass generation and cell proliferation, while exposure to low concentrations of oxygen or nutrients require translational repression and reprogramming to avoid energy depletion and cell death. To assess fluctuations in protein synthesis rates, radioactive isotopes or radiolabeled amino acids are often used. Although highly sensitive, these techniques involve the use of potentially toxic radioactive compounds and require specific materials and processes for the use and disposal of these molecules. The development of alternative, non-radioactive methods that can be easily and safely implemented in laboratories has therefore been encouraged to avoid handling radioactivity. In this context, the SUrface SEnsing of Translation (SUnSET) method, based on the classical western blot technique, was developed by Schmidt et al. in 2009. The SUnSET is nowadays recognized as a simple alternative to radioactive methods assessing protein synthesis rates. Key features • As a structural analogue of aminoacyl-transfer RNA, puromycin incorporates into the elongating peptide chain. • Detection of puromycin-labeled peptides by western blotting reflects translation rates without the need for radioactive isotopes. • The protocol described here for in vitro applications is derived from the SUnSET method originally published by Schmidt et al. (2009).

10.
Biotechnol J ; 19(2): e2300353, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403398

ABSTRACT

Prime editing is an advanced technology in CRISPR/Cas research with increasing numbers of improved methodologies. The original multi-vector method hampers the efficiency and precision of prime editing and also has inherent difficulty in generating homozygous mutations in mammalian cells. To overcome these technical issues, we developed a Uni-vector prime editing system, wherein the major components for prime editing were constructed in all-in-one plasmids, pPE3-pPuro and pePEmax-pPuro. The Uni-vector prime editing plasmids enhance the editing efficiency of prime editing and improved the generation of homozygous mutated mammalian cell lines. The editing efficiency is dependent of the transfection efficiency. Remarkably, the Uni-vector ePE5max system achieved an impressive editing rate approximately 79% in average, even in cell lines that are traditionally difficult to transfect, such as FaDu cell line. Furthermore, it resulted in a high frequency of homozygous knocked-in cells, with a rate of 99% in HeLa and 85% in FaDu cells. Together, our Uni-vector approach simplifies the delivery of editing components and improves the editing efficiency, especially in cells with low transfection efficiency. This approach presents an advancement in the field of prime editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Humans , HeLa Cells , Mutation , Transfection , CRISPR-Cas Systems/genetics , Mammals
11.
Methods Mol Biol ; 2766: 169-174, 2024.
Article in English | MEDLINE | ID: mdl-38270877

ABSTRACT

Mesenchymal stem cells (MSC) are multipotent stem cells that display the capacity to generate the tissue in which they reside. MSC have been used as progenitor cells to engineer cartilage implants that can be used to repair chondral and osteochondral lesions, or as trophic producers of bioactive factors to initiate endogenous regenerative activities in the arthritic joint. Targeted gene therapy might further enhance the capacity of MSC for chondrogenesis. By using a clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins genomic manipulation technique, target gene-modified MSC would be a promising therapeutic option for regeneration of diseased joints in the treatment of RA.


Subject(s)
CRISPR-Associated Proteins , Mesenchymal Stem Cells , Multipotent Stem Cells , Stem Cells , Chondrogenesis
12.
Int J Biol Macromol ; 259(Pt 1): 129150, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171441

ABSTRACT

It is generally believed that the regulation of gene expression involves protein translation occurring before RNA transcription. Therefore, it is crucial to investigate protein translation and its regulation. Recent advancements in biological sciences, particularly in the field of omics, have revolutionized protein translation research. These studies not only help characterize changes in protein translation during specific biological or pathological processes but also have significant implications in disease prevention and treatment. In this review, we summarize the latest methods in ribosome-based translation omics. We specifically focus on the application of fluorescence imaging technology and omics technology in studying overall protein translation. Additionally, we analyze the advantages, disadvantages, and application of these experimental methods, aiming to provide valuable insights and references to researchers studying translation.


Subject(s)
Protein Biosynthesis , Ribosomes , RNA, Messenger/genetics , Ribosomes/genetics , Ribosomes/metabolism
13.
Liver Cancer ; 12(6): 590-602, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38058421

ABSTRACT

Introduction: Complete resection is the only possible treatment for cholangiocarcinoma in the extrahepatic biliary tree (eCCA), although current imaging modalities are limited in their ability to accurately diagnose longitudinal spread. We aimed to develop fluorescence imaging techniques for real-time identification of eCCA using an enzyme-activatable probe, which emits fluorescence immediately after activation by a cancer-specific enzyme. Methods: Using lysates and small tissue fragments collected from surgically resected specimens, we selected the most specific probe for eCCA from among 800 enzyme-activatable probes. The selected probe was directly sprayed onto resected specimens and fluorescence images were acquired; these images were evaluated for diagnostic accuracy. We also comprehensively searched for enzymes that could activate the probe, then compared their expression levels in cancer and non-cancer tissues. Results: Analyses of 19 samples (four cancer lysates, seven non-cancer lysates, and eight bile samples) and 54 tissue fragments (13 cancer tissues and 41 non-cancer tissues) revealed that PM-2MeSiR was the most specific fluorophore for eCCA. Fluorescence images of 7 patients were obtained; these images enabled rapid identification of cancerous regions, which closely matched histopathology findings in 4 patients. Puromycin-sensitive aminopeptidase was identified as the enzyme that might activate the probe, and its expression was upregulated in eCCA. Conclusion: Fluorescence imaging with PM-2MeSiR, which may be activated by puromycin-sensitive aminopeptidase, yielded generally high accuracy. This technique may be useful for real-time identification of the spread of eCCA during surgery and endoscopic examinations.

14.
Pharmacol Ther ; 252: 108559, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37952905

ABSTRACT

During carcinogenesis, neoplastic cells accumulate mutations in genes important for cellular homeostasis, producing defective proteins. Viral infections occur when viral capsid proteins bind to the host cell receptor, allowing the virus to enter the cells. In both cases, proteins play important roles in cancer development and viral infection, so these targets can be exploited to develop alternative treatments. mRNA display technology is a very powerful tool for the development of peptides capable of acting on specific targets in neoplastic cells or on viral capsid proteins. mRNA display technology allows the selection and evolution of peptides with desired functional properties from libraries of many nucleic acid variants. Among other advantages of this technology, the use of flexizymes allows the production of peptides with unnatural amino acid residues, which can enhance the activity of these molecules. From target immobilization, peptides with greater specificity for the targets of interest are generated during the selection rounds. Herein, we will explore the use of mRNA display technology for the development of active peptides after successive rounds of selection, using proteins present in neoplastic cells and viral particles as targets.


Subject(s)
Capsid Proteins , Neoplasms , Humans , Capsid Proteins/genetics , RNA, Messenger , Peptides/chemistry , Mutation , Neoplasms/genetics
15.
Pharmacol Res ; 194: 106851, 2023 08.
Article in English | MEDLINE | ID: mdl-37453673

ABSTRACT

Hypoxia-inducible factor-2α (HIF-2α) is a transcription factor responsible for regulating genes related to angiogenesis and metabolism. This study aims to explore the effect of a previously unreported mutation c.C2473T (p.R825S) in the C-terminal transactivation domain (CTAD) of HIF-2α that we detected in tissue of patients with liver disease. We sequenced available liver and matched blood samples obtained during partial liver resection or liver transplantation performed for clinical indications including hepatocellular carcinoma and liver failure. In tandem, we constructed cell lines and a transgenic mouse model bearing the corresponding identified mutation in HIF-2α from which we extracted primary hepatocytes. Lipid accumulation was evaluated in these cells and liver tissue from the mouse model using Oil Red O staining and biochemical measurements. We identified a mutation in the CTAD of HIF-2α (c.C2473T; p.R825S) in 5 of 356 liver samples obtained from patients with hepatopathy and dyslipidemia. We found that introduction of this mutation into the mouse model led to an elevated triglyceride level, lipid droplet accumulation in liver of the mutant mice and in their extracted primary hepatocytes, and increased transcription of genes related to hepatic fatty acid transport and synthesis in the mutant compared to the control groups. In mutant mice and cells, the protein levels of nuclear HIF-2α and its target perilipin-2 (PLIN2), a lipid droplet-related gene, were also elevated. Decreased lipophagy was observed in mutant groups. Our study defines a subpopulation of dyslipidemia that is caused by this HIF-2α mutation. This may have implications for personalized treatment.


Subject(s)
Dyslipidemias , Liver Neoplasms , Animals , Humans , Mice , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Dyslipidemias/genetics , Lipids , Mutation
16.
Int J Stem Cells ; 16(4): 438-447, 2023 11 30.
Article in English | MEDLINE | ID: mdl-37385638

ABSTRACT

Recently, ex-vivo gene therapy has emerged as a promising approach to enhance the therapeutic potential of mesenchymal stem cells (MSCs) by introducing functional genes in vitro. Here, we explored the need of using selection markers to increase the gene delivery efficiency and evaluated the potential risks associated with their use in the manufacturing process. We used MSCs/CD that carry the cytosine deaminase gene (CD) as a therapeutic gene and a puromycin resistance gene (PuroR) as a selection marker. We evaluated the correlation between the therapeutic efficacy and the purity of therapeutic MSCs/CD by examining their anti-cancer effect on co-cultured U87/GFP cells. To simulate in vivo horizontal transfer of the PuroR gene in vivo, we generated a puromycin-resistant E. coli (E. coli/PuroR) by introducing the PuroR gene and assessed its responsiveness to various antibiotics. We found that the anti-cancer effect of MSCs/CD was directly proportional to their purity, suggesting the crucial role of the PuroR gene in eliminating impure unmodified MSCs and enhancing the purity of MSCs/CD during the manufacturing process. Additionally, we found that clinically available antibiotics were effective in inhibiting the growth of hypothetical microorganism, E. coli/PuroR. In summary, our study highlights the potential benefits of using the PuroR gene as a selection marker to enhance the purity and efficacy of therapeutic cells in MSC-based gene therapy. Furthermore, our study suggests that the potential risk of horizontal transfer of antibiotics resistance genes in vivo can be effectively managed by clinically available antibiotics.

17.
Small Methods ; 7(7): e2300069, 2023 07.
Article in English | MEDLINE | ID: mdl-37156748

ABSTRACT

Viral-mediated delivery of the CRISPR-Cas9 system is one the most commonly used techniques to modify the genome of a cell, with the aim of analyzing the function of the targeted gene product. While these approaches are rather straightforward for membrane-bound proteins, they can be laborious for intracellular proteins, given that selection of full knockout (KO) cells often requires the amplification of single-cell clones. Moreover, viral-mediated delivery systems, besides the Cas9 and gRNA, lead to the integration of unwanted genetic material, such as antibiotic resistance genes, introducing experimental biases. Here, an alternative non-viral delivery approach is presented for CRISPR/Cas9, allowing efficient and flexible selection of KO polyclonal cells. This all-in-one mammalian CRISPR-Cas9 expression vector, ptARgenOM, encodes the gRNA and the Cas9 linked to a ribosomal skipping peptide sequence followed by the enhanced green fluorescent protein and the puromycin N-acetyltransferase, allowing for transient, expression-dependent selection and enrichment of isogenic KO cells. After evaluation using more than 12 distinct targets in 6 cell lines, ptARgenOM is found to be efficient in producing KO cells, reducing the time required to obtain a polyclonal isogenic cell line by 4-6 folds. Altogether ptARgenOM provides a simple, fast, and cost-effective delivery tool for genome editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , CRISPR-Cas Systems/genetics , Gene Editing/methods , Cell Line , Mammals/genetics
18.
J Biotechnol ; 369: 43-54, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37149043

ABSTRACT

Chinese Hamster Ovary cells have been widely used as host cells for production of recombinant therapeutic molecules. Cell line development is a decisive step, which must be carried out with an efficient process. In particular, degree of selection stringency is an important parameter for identification of rare, high-producing cell lines. In the CHOZN® CHO K1 platform, selection of top-producing clones is based on puromycin resistance, whose expression is driven by Simian Virus 40 Early (SV40E) promoter. In this study, novel promoters have been identified to drive expression of selection marker. Decrease of transcriptional activity compared to SV40E promoter was confirmed by RT-qPCR. Selection stringency was increased, as seen by decreased surviving rate of transfected mini-pools and longer recovery duration of transfected bulk pools. Several promoters led to a 1.5-fold increase of maximum titer and a 1.3-fold increase of mean specific productivity of the monoclonal antibody over the clone generation. Expression level was maintained stable over long term cultivation. Finally, productivity increase was confirmed on several monoclonal antibodies and fusion proteins. Lowering the strength of promoter for expression of selective pressure resistance is an efficient strategy to increase selection stringency, which can be applied on industrial CHO-based cell line development platforms.


Subject(s)
Antibodies, Monoclonal , Cricetinae , Animals , Cricetulus , CHO Cells , Transfection , Clone Cells , Recombinant Proteins/genetics
19.
Anim Cells Syst (Seoul) ; 27(1): 112-119, 2023.
Article in English | MEDLINE | ID: mdl-37089626

ABSTRACT

Puromycin treatment can cause glomerular injury to the kidney, leading to proteinuria. However, the pathogenesis of acute kidney injury and subsequent regeneration after puromycin administration in animal models remain unclear. In this work, we examined the characteristics of kidney injury and subsequent regeneration following puromycin treatment in adult zebrafish. We intraperitoneally injected 100 µg of puromycin into zebrafish; sacrificed them at 1, 3, 5, 7, or 14 days post-injection (dpi); and examined the morphological, functional, and molecular changes in the kidney. Puromycin-treated zebrafish presented more rapid clearance of rhodamine dextran than control animals. Morphological changes were observed immediately after the puromycin injection (1-7 dpi) and had recovered by 14 dpi. The mRNA production of lhx1a, a renal progenitor marker, increased during recovery from kidney injury. Levels of NFκB, TNFα, Nampt, and p-ERK increased significantly during nephron injury and regeneration, and Sirt1, FOXO1, pax2, and wt1b showed an increasing tendency. However, TGF-ß1 and smad5 production did not show any changes after puromycin treatment. This study provides evidence that puromycin-induced injury in adult zebrafish kidneys is a potential tool for evaluating the mechanism of nephron injury and subsequent regeneration.

20.
Elife ; 122023 04 24.
Article in English | MEDLINE | ID: mdl-37092974

ABSTRACT

Controlled protein synthesis is required to regulate gene expression and is often carried out in a cell type-specific manner. Protein synthesis is commonly measured by labeling the nascent proteome with amino acid analogs or isotope-containing amino acids. These methods have been difficult to implement in vivo as they require lengthy amino acid replacement procedures. O-propargyl-puromycin (OPP) is a puromycin analog that incorporates into nascent polypeptide chains. Through its terminal alkyne, OPP can be conjugated to a fluorophore-azide for directly visualizing nascent protein synthesis, or to a biotin-azide for capture and identification of newly-synthesized proteins. To achieve cell type-specific OPP incorporation, we developed phenylacetyl-OPP (PhAc-OPP), a puromycin analog harboring an enzyme-labile blocking group that can be removed by penicillin G acylase (PGA). Here, we show that cell type-specific PGA expression in Drosophila can be used to achieve OPP labeling of newly-synthesized proteins in targeted cell populations within the brain. Following a brief 2 hr incubation of intact brains with PhAc-OPP, we observe robust imaging and affinity purification of OPP-labeled nascent proteins in PGA-targeted cell populations. We apply this method to show a pronounced age-related decline in neuronal protein synthesis in the fly brain, demonstrating the capability of PhAc-OPP to quantitatively capture in vivo protein synthesis states. This method, which we call POPPi (PGA-dependent OPP incorporation), should be applicable for rapidly visualizing protein synthesis and identifying nascent proteins synthesized under diverse physiological and pathological conditions with cellular specificity in vivo.


Subject(s)
Drosophila , Proteome , Animals , Proteome/metabolism , Drosophila/metabolism , Azides/chemistry , Amino Acids/metabolism , Puromycin
SELECTION OF CITATIONS
SEARCH DETAIL