ABSTRACT
Lin28A is an oncoprotein overexpressed in several cancer types such as testicular, ovarian, colon, breast and lung cancers. As a pluripotency factor that promotes tumorigenesis, Lin28A is associated with more undifferentiated and aggressive tumors phenotypes. Moreover, Lin28A is a highly stable protein that is difficult to downregulate. The compound resveratrol (RSV) has anticancer effects. The present study aimed to elucidate the mechanisms underlying the downregulation of Lin28A protein expression by RSV in the NCCIT cell line. NCCIT cells were treated with different concentrations of RSV to investigate its effects on Lin28A expression. The mRNA expression levels of Lin28A and ubiquitin-specific protease 28 (USP28) were assessed using reverse transcription-quantitative PCR. Western blot analysis was employed to evaluate the protein levels of Lin28A, USP28 and phosphorylated Lin28A. In addition, in some experiments, cells were treated with a MAPK/ERK pathway inhibitor, and other experiments involved transfecting cells with small interfering RNAs targeting USP28. The results demonstrated that RSV significantly reduced Lin28A expression by destabilizing the protein; this effect was mediated by the ability of RSV to suppress the expression of USP28, a deubiquitinase that normally protects Lin28A from ubiquitination and degradation. Additionally, RSV inhibited phosphorylation of Lin28A via the MAPK/ERK pathway; this phosphorylation event has previously been shown to enhance the stability of Lin28A by increasing its half-life. This resulted in Lin28A degradation through the proteasomal pathway in NCCIT cells. The results provide further evidence of the anticancer activity of RSV, and identified Lin28A and USP28 as promising therapeutic targets. As a stable oncoprotein, downregulating Lin28A expression is challenging. However, the present study demonstrated that RSV can overcome this hurdle by inhibiting USP28 expression and MAPK/ERK signaling to promote Lin28A degradation. Furthermore, elucidating these mechanisms provides avenues for developing targeted cancer therapies.
ABSTRACT
Atherosclerosis (AS) is a chronic inflammatory vascular disease. Dysregulated lipid metabolism, oxidative stress, and inflammation are the major mechanisms implicated in the development of AS. In addition, evidence suggests that gut dysbiosis plays an important role in atherogenesis, and modulation of the gut microbiota with probiotics and phenolic compounds has emerged as a promising strategy for preventing and treating AS. It has been shown that probiotics and phenolic compounds can improve atherosclerosis-related parameters by improving lipid profile, oxidative stress, and inflammation. In addition, these compounds may modulate the diversity and composition of the gut microbiota and improve atherosclerosis. The studies evaluated in the present review showed that probiotics and phenolic compounds, when consumed individually, improved atherosclerosis by modulating the gut microbiota in various ways, such as decreasing gut permeability, decreasing TMAO and LPS levels, altering alpha and beta diversity, and increasing fecal bile acid loss. However, no study was found that evaluated the combined use of probiotics and phenolic compounds to improve atherosclerosis. The available literature highlights the synergistic potential between phenolic compounds and probiotics to improve their health-promoting properties and functionalities. This review aims to summarize the available evidence on the individual effects of probiotics and phenolic compounds on AS, while providing insights into the potential benefits of nutraceutical approaches using probiotic strains, quercetin, and resveratrol as potential adjuvant therapies for AS treatment through modulation of the gut microbiota.
ABSTRACT
INTRODUCTION: One of the markers of aging is oxidative stress, a condition characterized by an increase in free radicals concomitant with a reduction in antioxidant defenses. Within this, resveratrol is a compound that has been shown to act as a potent antioxidant. However, few studies highlight the cellular signaling pathways that are activated or inhibited during aging and that are responsible for this biological effect. AIM: To verify the antioxidant profile of resveratrol (5 µM) in leukocytes from donors in different age groups. METHODS: The project was approved by the Ethics Committee. Individuals were divided into three groups: 20-39, 40-59, and 60-80 years old. After separating the leukocytes, assays were performed to evaluate the AMPK (AMP-activated protein kinase) and Nrf2 (erythroid nuclear factor 2-related factor 2) pathways. In addition, luciferase assay and enzyme-linked immunosorbent assay were performed to evaluate transcription factor activation and Nrf2 expression, respectively. The analysis between age and treatment was performed using Pearson correlation (*P < 0.05). RESULTS: There was a reduction in the antioxidant effect of resveratrol during the aging process. In leukocytes from donors over 60 years of age, the AMPK pathway was silenced. Nrf2 was active at all ages. There was an increase in the activation of the transcription factor and phosphorylated protein in all age groups. CONCLUSIONS: Nrf2 is an important biochemical mechanism responsible for the antioxidant effect of resveratrol. This effect diminishes with aging but is still observed. Geriatr Gerontol Int 2024; â¢â¢: â¢â¢-â¢â¢.
ABSTRACT
OBJECTIVES: Resveratrol has been studied as a potential agent for treating rheumatic conditions; however, this compound suppresses glucose synthesis and glycogen catabolism when infused in perfused livers of both arthritic and healthy rats. This study investigated the effects of oral administration of resveratrol on inflammation and liver metabolism in rats with arthritis induced by Freund's adjuvant, which serves as rheumatoid arthritis model. METHODS: Holtzman rats, both healthy and exhibiting arthritic symptoms, were orally treated with resveratrol at doses varying from 25 to 500â¯mg/kg for a 5-day period preceding arthritis induction, followed by an additional 20-day period thereafter. Paw edema, arthritic score and hepatic myeloperoxidase activity were assessed to evaluate inflammation. Glycogen catabolism and gluconeogenesis from lactate were respectively evaluated in perfused livers from fed and fasted rats. RESULTS: Resveratrol decreased the liver myeloperoxidase activity at doses above 100â¯mg/kg, and decreased the paw edema and delayed the arthritic score at doses above 250â¯mg/kg. The hepatic gluconeogenesis was decreased in arthritic rats and resveratrol did not improve it. However, resveratrol did not negatively modify the gluconeogenesis in livers of healthy and arthritic rats. Glycogen catabolism was in part and slightly modified by resveratrol in the liver of arthritic and healthy rats. CONCLUSIONS: It is improbable that resveratrol negatively affects the liver metabolism, especially considering that gluconeogenesis is highly fragile to changes in cellular architecture. The findings suggest that resveratrol could serve as alternative for treating rheumatoid arthritis. Nevertheless, prudence is advised regarding its transient effects on liver metabolism.
ABSTRACT
SUMMARY: In this study we aimed to examine the effect of novel vasodilatory drug Riociguat co-administration along resveratrol to recover neurodegeneration in experimental stroke injury. For that purpose, thirty-five adult female rats were divided into five groups (Control, MCAO, MCAO + R, MCAO + BAY, MCAO + C) of seven animals in each. Animals in Control group did not expose to any application during the experiment and sacrificed at the end of the study. Rats in the rest groups exposed to middle cerebral artery occlusion (MCAO) induced ischemic stroke. MCAO + R group received 30 mg/kg resveratrol, and MCAO + BAY group received 10 mg/kg Riociguat. The MCAO + C group received both drugs simultaneously. The drugs were administered just before the reperfusion, and the additional doses were administered 24h, and 48h hours of reperfusion. All animals in this study were sacrificed at the 72nd hour of experiment. Total brains were received for analysis. Results of this experiment indicated that MCAO led to severe injury in cerebral structure. Bax, IL-6 and IL-1ß tissue levels were up-regulated, but anti-apoptotic Bcl-2 immunoexpression was suppressed (p<0.05). In resveratrol and Riociguat treated animals, the neurodegenerations and apoptosis and inflammation associated protein expressions were improved compared to MCAO group, but the most success was obtained in combined treatment exposed animals in MCAO + C group. This study indicated that the novel soluble guanylate stimulator Riociguat is not only a potent neuroprotective drug in MCAO induced stroke, but also synergistic administration of Riociguat along with resveratrol have potential to increase the neuroprotective effect of resveratrol in experimental cerebral stroke exposed rats.
En este estudio, nuestro objetivo fue examinar el efecto de la coadministración del nuevo fármaco vasodilatador Riociguat junto con resveratrol para recuperar la neurodegeneración en lesiones por ataques cerebrovasculares experimentales. Para ello, se dividieron 35 ratas hembras adultas en cinco grupos (Control, MCAO, MCAO + R, MCAO + BAY, MCAO + C) de siete animales en cada uno. Los animales del grupo control no fueron sometidos a ninguna aplicación durante el experimento y se sacrificaron al final del estudio. Las ratas de los grupos expuestas a la oclusión de la arteria cerebral media (MCAO) indujeron un ataque cerebrovascular isquémico. El grupo MCAO + R recibió 30 mg/kg de resveratrol y el grupo MCAO + BAY recibió 10 mg/kg de Riociguat. El grupo MCAO + C recibió ambos fármacos simultáneamente. Los fármacos se administraron antes de la reperfusión y las dosis adicionales se administraron a las 24 y 48 horas de la reperfusión. Todos los animales en este estudio fueron sacrificados a las 72 horas del experimento. Se recibieron cerebros totales para su análisis. Los resultados indicaron que la MCAO provocaba lesiones graves en la estructura cerebral. Los niveles tisulares de Bax, IL-6 e IL- 1ß estaban regulados positivamente, pero se suprimió la inmunoexpresión antiapoptótica de Bcl-2 (p <0,05). En los animales tratados con resveratrol y Riociguat, las neurodegeneraciones y las expresiones de proteínas asociadas a la apoptosis y la inflamación mejoraron en comparación con el grupo MCAO, sin embargo el mayor éxito se obtuvo en el tratamiento combinado de animales expuestos en el grupo MCAO + C. Este estudio indicó que el nuevo estimulador de guanilato ciclasa soluble Riociguat no solo es un fármaco neuroprotector potente en el ataque cerebrovascular inducido por MCAO, sino que también la administración sinérgica de Riociguat junto con resveratrol tiene el potencial para aumentar el efecto neuroprotector del resveratrol en ratas experimentales expuestas a un ataque cerebrovascular.
Subject(s)
Animals , Female , Rats , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Stroke/drug therapy , Resveratrol/administration & dosage , Arterial Occlusive Diseases , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Interleukin-6/analysis , Apoptosis/drug effects , Neuroprotective Agents , Middle Cerebral Artery , Stroke/pathology , Enzyme Activators/administration & dosage , Models, Animal , Drug Therapy, Combination , Interleukin-1beta/analysis , Guanylate Cyclase/drug effects , InflammationABSTRACT
Trans-resveratrol, a widely used supplement for humans, aims to enhance the body's antioxidant defense. Studies suggest that it exerts anti-inflammatory and antioxidant effects by activating the nuclear factor erythroid 2-related factor 2 (Nrf2). In order to evaluate this hypothesis, LDLr(-/-) mice were fed a Western diet to induce liver inflammation and oxidative stress. One group was fed a diet containing 0.60â mg/day of trans-resveratrol (RESV), while another group received no dietary supplementation (CONT). Oxidative stress biomarkers and inflammatory cytokines were assessed in liver homogenates. It was observed that trans-resveratrol decreased hepatic oxidative stress by increasing the GSH/GSSG ratio and reducing malondialdehyde (MDA) concentration. However, the RESV group exhibited a reduction in Nrf2 relative expression compared to CONT. Additionally, trans-resveratrol supplementation reduced nuclear factor-κB (NF-κB) expression but led to an increase in IL-6, with no significant changes observed in tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) concentrations. Overall, these findings indicate that the in vivo antioxidant impact induced by trans-resveratrol supplementation in hepatic tissue did not correlate with increase of inflammatory cytokines and Nrf2 relative expression. Further exploration of alternative mechanisms, such as direct radical scavenger activity, is warranted to elucidate the antioxidant effect.
ABSTRACT
OBJECTIVES: To evaluate in vivo 1) the bioavailability of trans-resveratrol when administered through sublingual capsules; 2) the effect of resveratrol on the protein composition of the acquired enamel pellicle (AEP). DESIGN: Ten volunteers received a sublingual capsule containing 50 mg of trans-resveratrol. Unstimulated saliva was then collected after 0, 30, 60, and 120 min and AEP was collected after 120 min following administration of the capsule. In the next week, the volunteers received a placebo sublingual capsule, and saliva and AEP were collected again. Saliva samples were analyzed for free trans-resveratrol using high-performance liquid chromatopgraphy (HPLC), and AEP samples were subjected to proteomic analysis (nLC-ESI-MS/MS). RESULTS: Trans-resveratrol was detected in saliva at all the time points evaluated, with the peak at 30 min. A total of 242 proteins were identified in both groups. Ninety-six proteins were increased and 23 proteins were decreased in the Resveratrol group. Among the up-regulated proteins, isoforms of cystatins, PRPs, Mucin-7, Histatin-1, Lactotrasnferrin and Lysozyme-C were increased and the isoforms of Protein S100, Neutrophil defensins, Albumin, PRPs, and, Statherin were decreased in Resveratrol group. CONCLUSION: The sublingual capsule is effective at increasing the bioavailability of trans-resveratrol in saliva. Several proteins involved in important processes to maintain systemic and oral health homeostasis were identified. These proteins differently expressed due to the presence of trans-resveratrol deserve attention for future studies, since they have important functions, mainly related to antimicrobial action.
Subject(s)
Capsules , Dental Pellicle , Resveratrol , Saliva , Humans , Resveratrol/pharmacology , Resveratrol/pharmacokinetics , Resveratrol/administration & dosage , Saliva/metabolism , Saliva/chemistry , Male , Adult , Dental Pellicle/metabolism , Dental Pellicle/chemistry , Chromatography, High Pressure Liquid , Female , Biological Availability , Stilbenes/pharmacokinetics , Stilbenes/pharmacology , Stilbenes/administration & dosage , Proteomics , Tandem Mass Spectrometry , Salivary Proteins and Peptides/metabolismABSTRACT
Colorectal cancer (CRC) remains a significant global health concern, being the third most diagnosed cancer in men and the second most diagnosed cancer in women, with alarming mortality rates. Natural phytochemicals have gained prominence among various therapeutic avenues explored due to their diverse biological properties. Curcumin, extracted from turmeric, and resveratrol, a polyphenol found in several plants, have exhibited remarkable anticancer activities. However, their limited solubility and bioavailability hinder their therapeutic efficacy. To enhance the bioavailability of these compounds, nanomaterials work as effective carriers with biogenic silica (BS) attracting major attention owing to their exceptional biocompatibility and high specific surface area. In this study, we developed Curcumin-resveratrol-loaded BS (Cur-Res-BS) and investigated their effects on colorectal cancer cell lines (HCT-116 and Caco-2). Our results demonstrated significant concentration-dependent inhibition of cell viability in HCT-116 cells and revealed a complex interplay of crucial proto-onco or tumor suppressor genes, such as TP53, Bax, Wnt-1, and CTNNB1, which are commonly dysregulated in colorectal cancer. Notably, Cur-Res-BS exhibited a synergistic impact on key signaling pathways related to colorectal carcinogenesis. While these findings are promising, further investigations are essential to comprehensively understand the mechanisms and optimize the therapeutic strategy. Moreover, rigorous safety assessments and in vitro studies mimicking the in vivo environment are imperative before advancing to in vivo experiments, ensuring the potential of Cur-Res-BS as an efficient treatment for CRC.
ABSTRACT
BACKGROUND: Resveratrol, a natural compound, may be an alternative to improving conventional breast cancer therapy. Thus, we assessed the capability of resveratrol at a low dose to enhance the in vitro effect of conventional theray in estrogen receptor (ER) and human epidermal growth factor receptor type 2 (HER2)-positive breast cancer cells. METHODS: Cell viability of breast cancer cells was measured with neutral red uptake assay. Apoptosis, autophagy, cell cycle progression and cell proliferation were detected through hypotonic fluorescent solution assay, formation of acidic vesicular organelles, flow cytometry, and bromodeoxyuridine assay, respectively. Western blotting was performed to study the expression of pro-apoptotic, anti-apoptotic and autophagic proteins, and estrogen receptors. RESULTS: Resveratrol combined with tamoxifen metabolites or trastuzumab reduced cell viability of ER- and HER2-positive breast cancer cells, respectively. This effect was mainly associated with induction of apoptosis due to a greater formation of hypodiploid nuclei, reduced protein expression of procaspase-7, Bcl-2, Bcl-xL, and PARP; and increased expression of cleaved PARP. Resveratrol decreased the expression of ERα and increased that of ERß, contributing to the reduced viability on breast cancer cells. Combined treatments induced autophagy, evidenced by increased levels of acidic vesicular organelles and degradation of p62/SQSTM1 protein. Nevertheless, on inhibiting autophagy with 3-methyladenine, cell viability was further reduced and apoptosis was induced, suggesting a pro-survival role of autophagy, impairing apoptosis. CONCLUSIONS: Resveratrol increasead the in vitro cytotoxic effect of conventional therapy in breast cancer cells. However, it was necessary to block resveratrol-induced autophagy to improve the therapeutic response.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Apoptosis , Autophagy , Breast Neoplasms , Cell Proliferation , Receptor, ErbB-2 , Resveratrol , Tamoxifen , Humans , Resveratrol/pharmacology , Resveratrol/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Apoptosis/drug effects , Receptor, ErbB-2/metabolism , Autophagy/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Proliferation/drug effects , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Cell Survival/drug effects , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Receptors, Estrogen/metabolism , Cell Line, Tumor , Drug Synergism , MCF-7 Cells , Gene Expression Regulation, Neoplastic/drug effectsABSTRACT
Menopause causes important bodily and metabolic changes, which favor the increased occurrence of cardiovascular diseases, obesity, diabetes, and osteoporosis. Resveratrol exerts proven effects on body metabolism, improving glucose and lipid homeostasis and reducing inflammation and oxidative stress in various organs and tissues. Accordingly, this study evaluates the effects of resveratrol supplementation on the expression of markers associated with thermogenesis in brown adipose tissue, and on the body, metabolic and hormonal parameters of female mice submitted to bilateral oophorectomy. Eighteen female mice were randomized into three groups: G1: control (CONTROL), G2: oophorectomy (OOF), and G3: oophorectomy + resveratrol (OOF + RSV); the animals were kept under treatment for twelve weeks, being fed a standard diet and treated with resveratrol via gavage. Body, biochemical, hormonal, and histological parameters were measured; in addition to the expression of markers associated with thermogenesis in brown adipose tissue. The results showed that animals supplemented with resveratrol showed reduced body weight and visceral adiposity, in addition to glucose, total cholesterol, and triglyceride levels; decreased serum FSH levels and increased estrogen levels were observed compared to the OOF group and mRNA expression of PRDM16, UCP1, and SIRT3 in brown adipose tissue. The findings of this study suggest the important role of resveratrol in terms of improving body, metabolic, and hormonal parameters, as well as modulating markers associated with thermogenesis in brown adipose tissue of female mice submitted to oophorectomy.
Subject(s)
Adipose Tissue, Brown , Dietary Supplements , Ovariectomy , Resveratrol , Thermogenesis , Uncoupling Protein 1 , Animals , Resveratrol/pharmacology , Resveratrol/administration & dosage , Female , Thermogenesis/drug effects , Thermogenesis/genetics , Mice , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Administration, Oral , Gene Expression Regulation/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Body Weight/drug effects , Hormones/bloodABSTRACT
Anthocyanins are colored water-soluble plant pigments. Upon consumption, anthocyanins are quickly absorbed and can penetrate the blood-brain barrier (BBB). Research based on population studies suggests that including anthocyanin-rich sources in the diet lowers the risk of neurodegenerative diseases. The copigmentation caused by copigments is considered an effective way to stabilize anthocyanins against adverse environmental conditions. This is attributed to the covalent and noncovalent interactions between colored forms of anthocyanins (flavylium ions and quinoidal bases) and colorless or pale-yellow organic molecules (copigments). The present work carried out a theoretical study of the copigmentation process between cyanidin and resveratrol (CINRES). We used three levels of density functional theory: M06-2x/6-31g+(d,p) (d3bj); ωB97X-D/6-31+(d,p); APFD/6-31+(d,p), implemented in the Gaussian16W package. In a vacuum, the CINRES was found at a copigmentation distance of 3.54 Å between cyanidin and resveratrol. In water, a binding free energy ∆G was calculated, rendering -3.31, -1.68, and -6.91 kcal/mol, at M06-2x/6-31g+(d,p) (d3bj), ωB97X-D/6-31+(d,p), and APFD/6-31+(d,p) levels of theory, respectively. A time-dependent density functional theory (TD-DFT) was used to calculate the UV spectra of the complexes and then compared to its parent molecules, resulting in a lower energy gap at forming complexes. Excited states' properties were analyzed with the ωB97X-D functional. Finally, Shannon aromaticity indices were calculated and isosurfaces of non-covalent interactions were evaluated.
Subject(s)
Anthocyanins , Density Functional Theory , Resveratrol , Anthocyanins/chemistry , Resveratrol/chemistry , Thermodynamics , Models, Molecular , Water/chemistryABSTRACT
Neutrophil extracellular traps (NETs) are defense mechanisms that trap and kill microorganisms and degrade cytokines. However, excessive production, dysregulation of suppression mechanisms, or inefficient removal of NETs can contribute to increased inflammatory response and the development of pathological conditions. Therefore, research has focused on identifying drugs that inhibit or delay the NET release process. Since reactive oxygen species (ROS) play a significant role in NET release, we aimed to investigate whether resveratrol (RSV), with a wide range of biological and pharmacological properties, could modulate NET release in response to different stimuli. Thus, human neutrophils were pretreated with RSV and subsequently stimulated with PMA, LPS, IL-8, or Leishmania. Our findings revealed that RSV reduced the release of NETs in response to all tested stimuli. RSV decreased hydrogen peroxide levels in PMA- and LPS-stimulated neutrophils, inhibited myeloperoxidase activity, and altered the localization of neutrophil elastase. RSV inhibition of NET generation was not mediated through A2A or A2B adenosine receptors or PKA. Based on the observed effectiveness of RSV in inhibiting NET release, our study suggests that this flavonoid holds potential as a candidate for treating NETs involving pathologies.
Subject(s)
Extracellular Traps , Humans , Extracellular Traps/metabolism , Resveratrol/pharmacology , Resveratrol/metabolism , Hydrogen Peroxide/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Neutrophils/metabolism , Reactive Oxygen Species/metabolismABSTRACT
SUMMARY: The response of the immune system to harmful stimuli leads to inflammation, and the adverse effects of the toxic hepatitis chemical, thioacetamide (TAA) on the human body are well documented. This article investigated the degree of protection provided by the combined pleotropic drug, metformin (Met) and the plant polyphenolic and the antiinflammatory compound, resveratrol (Res) on liver tissue exposed to TAA possibly via the inhibition of the inflammatory cytokine, tumor necrosis factor-α (TNF-α) / mammalian target of rapamycin (mTOR) axis-mediated liver fibrosis, as well as amelioration of profibrotic gene and protein expression. Rats were either given TAA (200 mg/kg via intraperitoneal injection) for 8 weeks beginning at the third week (experimental group) or received during the first two weeks of the experiment combined doses of metformin (200 mg/kg) and resveratrol (20 mg/kg) and continued receiving these agents and TAA until experiment completion at week 10 (treated group). A considerable damage to hepatic tissue in the experimental rats was observed as revealed by tissue collagen deposition in the portal area of the liver and a substantial increase (p<0.0001) in hepatic levels of the inflammatory marker, tumor necrosis factor-α (TNF-α), as well as blood levels of hepatocellular injury biomarkers, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). TAA also augmented hepatic tissue levels of the signalling molecule that promotes liver fibrosis (mTOR), and profibrogenic markers; alpha-smooth muscle actin (α-SMA) protein, tissue inhibitor of metalloproteinases-1 (TIMP-1) mRNA, and matrix metalloproteinase-9 (MMP-9) mRNA. All these parameters were protected (p≤0.0016) by Met+Res. In addition, a significant correlation was detected between liver fibrosis score and inflammation, liver injury enzymes, mTOR, and profibrogenesis markers. Thus, these findings suggest that Met+Res effectively protect the liver against damage induced by thioacetamide in association with the downregulation of the TNF-α/mTOR/fibrosis axis.
La respuesta del sistema inmunológico a estímulos dañinos conduce a la inflamación y los efectos adversos de la tioacetamida (TAA), una sustancia química tóxica para el hígado, están bien documentadas. Este artículo investigó el grado de protección proporcionado por el fármaco pleotrópico combinado metformina (Met), el polifenólico vegetal y el compuesto antiinflamatorio resveratrol (Res) en el tejido hepático expuesto a TAA, posiblemente a través de la inhibición de la citoquina inflamatoria, factor de necrosis tumoral α (TNF-α)/objetivo de la fibrosis hepática mediada por el eje de rapamicina (mTOR), así como mejora de la expresión de genes y proteínas profibróticas. Las ratas recibieron TAA (200 mg/kg mediante inyección intraperitoneal) durante 8 semanas a partir de la tercera semana (grupo experimental) o recibieron durante las dos primeras semanas del experimento dosis combinadas de metformina (200 mg/kg) y resveratrol (20 mg/kg) y continuaron recibiendo estos agentes y TAA hasta completar el experimento en la semana 10 (grupo tratado). Se observó un daño considerable al tejido hepático en las ratas experimentales, como lo revela el depósito de colágeno tisular en el área portal del hígado y un aumento sustancial (p<0,0001) en los niveles hepáticos del marcador inflamatorio, el factor de necrosis tumoral-α (TNF- α), así como los niveles sanguíneos de biomarcadores de lesión hepatocelular, alanina aminotransferasa (ALT) y aspartato aminotransferasa (AST). TAA también aumentó los niveles en el tejido hepático de la molécula de señalización que promueve la fibrosis hepática (mTOR) y marcadores profibrogénicos; proteína actina del músculo liso alfa (α- SMA), inhibidor tisular de las metaloproteinasas-1 (TIMP-1) mRNA y matriz metaloproteinasa-9 (MMP-9) mRNA. Todos estos parámetros fueron protegidos (p≤0.0016) por Met+Res. Además, se detectó una correlación significativa entre la puntuación de fibrosis hepática y la inflamación, las enzimas de lesión hepática, mTOR y los marcadores de profibrogénesis. Por lo tanto, estos hallazgos sugieren que Met+Res protege eficazmente el hígado contra el daño inducido por la tioacetamida en asociación con la regulación negativa del eje TNF-α/mTOR/fibrosis.
Subject(s)
Animals , Rats , Thioacetamide/toxicity , Resveratrol/pharmacology , Liver Cirrhosis/drug therapy , Metformin/pharmacology , Immunohistochemistry , Cytokines/antagonists & inhibitors , Tumor Necrosis Factor-alpha , Tissue Inhibitor of Metalloproteinase-1 , Sirolimus , TOR Serine-Threonine Kinases , Inflammation , Liver/drug effects , Liver Cirrhosis/chemically inducedABSTRACT
The prevalence and incidence of obesity and the comorbidities linked to it are increasing worldwide. Current therapies for obesity and associated pathologies have proven to cause a broad number of adverse effects, and often, they are overpriced or not affordable for all patients. Among the alternatives currently available, natural bioactive compounds stand out. These are frequently contained in pharmaceutical presentations, nutraceutical products, supplements, or functional foods. The clinical evidence for these molecules is increasingly solid, among which epigallocatechin-3-gallate, ellagic acid, resveratrol, berberine, anthocyanins, probiotics, carotenoids, curcumin, silymarin, hydroxy citric acid, and α-lipoic acid stand out. The molecular mechanisms and signaling pathways of these molecules have been shown to interact with the endocrine, nervous, and gastroenteric systems. They can regulate the expression of multiple genes and proteins involved in starvation-satiety processes, activate the brown adipose tissue, decrease lipogenesis and inflammation, increase lipolysis, and improve insulin sensitivity. This review provides a comprehensive view of nature-based therapeutic options to address the increasing prevalence of obesity. It offers a valuable perspective for future research and subsequent clinical practice, addressing everything from the molecular, genetic, and physiological bases to the clinical study of bioactive compounds.
Subject(s)
Anthocyanins , Thioctic Acid , Humans , Anthocyanins/therapeutic use , Obesity/metabolism , Dietary Supplements , Resveratrol/therapeutic use , Thioctic Acid/therapeutic useABSTRACT
Diabetic retinopathy (RD) is a microvascular disease that can cause the formation of fragile neovessels, increasing the risk of hemorrhages and leading to vision loss. Current therapies are based on the intravitreal injection of anti-VEGF (vascular endothelial growth factor), which is invasive and can cause secondary effects. The development of new treatments that complement the current therapies is necessary to improve the patient's outcomes. Nanostructured formulations offer several advantages regarding drug delivery and penetration. In this research, a resveratrol nanosuspension (RSV-NS) was prepared and characterized using dynamic light scattering, field emission scanning electron microscopy, and infrared spectroscopy. The RSV-NS had an average particle size of 304.0 ± 81.21 nm with a PDI of 0.225 ± 0.036, and a spherical-like morphology and uniform particle distribution. Cell viability, proliferation, and migration were tested on endothelial cells (HMRECs). RSV-NS in a concentration of less than 18.75 µM did not have a cytotoxic effect on HMRECs. Likewise, proliferation and migration were significantly reduced compared to the unstimulated control at 37.5 µM. The RSV-NS did not present cytotoxic effects but decreased cell proliferation and migration, indicating that it could provide an important contribution to future medical implementations and could have a high potential to treat this disease.
ABSTRACT
OBJECTIVE: This study evaluated the effect of administration of trans-resveratrol-containing orodispersible tablets on the protein composition of the AEP and on blood plasma trans-resveratrol concentrations. METHODS: Ten volunteers participated in two crossover double-blind phases. In each phase, after dental prophylaxis, they received a trans-resveratrol (15 mg) orodispersible tablet, or a placebo tablet (without actives). The AEP formed after 120 min was collected with electrode filter papers soaked in 3 % citric acid. Blood samples were collected 30, 45, 60 and 120 min after the use of the tablet. After protein extraction, AEP samples were analyzed by shotgun labelfree quantitative proteomics and plasma samples were analyzed by high-performance liquid chromatography (HPLC). RESULTS: Eight hundred and two proteins were identified in the AEP. Among them, 336 and 213 were unique to the trans-resveratrol and control groups, respectively, while 253 were common to both groups. Proteins with important functions in the AEP had increased expression in the trans-resveratroltreated group, such as neutrophil defensins, S100 protein isoforms, lysozyme C, cystatin-D, mucin-7, alphaamylase, albumin, haptoglobin and statherin. Trans-resveratrol was detected in the plasma at all the times evaluated, with the peak at 30 min. CONCLUSIONS: The administration of trans-resveratrol in sublingual orodispersible tablets was effective both to increase the bioavailability of the polyphenol and the expression of antibacterial and acid-resistant proteins in the AEP, which might benefit oral and general health.
Subject(s)
Proteins , Humans , Dental Pellicle , Proteins/analysis , Proteins/metabolism , Proteins/pharmacology , Resveratrol/pharmacology , Resveratrol/analysis , Resveratrol/metabolism , Cross-Over Studies , Double-Blind MethodABSTRACT
Polydatin (3,4',5-trihydroxystilbene-3-ß-D-glucoside, piceid), a natural stilbenoid found in different plant sources, has gained increasing attention for its potential health benefits. However, prior to its widespread adoption in human therapeutics and consumer products, a comprehensive investigation of its toxicological effects is crucial. In this study, the toxicity of polydatin was investigated in a developmental toxicity test using zebrafish (Danio rerio) as a valuable model for preclinical assessments. We employed the Fish Embryo Test (FET test - OECD n°236) to investigate the effects of polydatin on survival, hatchability, development, and behavior of zebrafish embryo-larval stage. Remarkably, the results demonstrated that polydatin up to 435 µM showed no toxicity. Throughout the exposure period, zebrafish embryos exposed to polydatin exhibited normal development, with no significant mortality observed. Furthermore, hatching success and heartbeat rate were unaffected, and no morphological abnormalities were identified, signifying a lack of teratogenic effects and cardiotoxicity. Locomotion activity assessment revealed normal swimming patterns and response to stimuli, indicating no neurotoxic effects. Our study provides valuable insights into the toxicological profile of polydatin, suggesting that it may offer potential therapeutic benefits under a considerable concentration range. In addition, zebrafish model proves to be an efficient system for early-stage toxicological screening, guiding further investigations into the secure utilization of polydatin for human health and wellness.
ABSTRACT
The clinical application of 5-fluorouracil (5-Fu), a potent chemotherapeutic agent, is often hindered by its well-documented cardiotoxic effects. Nevertheless, natural polyphenolic compounds like resveratrol (RES), known for their dual anti-tumor and cardioprotective properties, are potential adjunct therapeutic agents. In this investigation, we examined the combined utilization of RES and 5-Fu for the inhibition of gastric cancer using both in vitro and in vivo models, as well as their combined impact on cardiac cytotoxicity. Our study revealed that the co-administration of RES and 5-Fu effectively suppressed MFC cell viability, migration, and invasion, while also reducing tumor weight and volume. Mechanistically, the combined treatment prompted p53-mediated apoptosis and autophagy, leading to a considerable anti-tumor effect. Notably, RES mitigated the heightened oxidative stress induced by 5-Fu in cardiomyocytes, suppressed p53 and Bax expression, and elevated Bcl-2 levels. This favorable influence enhanced primary cardiomyocyte viability, decreased apoptosis and autophagy, and mitigated 5-Fu-induced cardiotoxicity. In summary, our findings suggested that RES holds promise as an adjunct therapy to enhance the efficacy of gastric cancer treatment in combination with 5-Fu, while simultaneously mitigating cardiotoxicity.
ABSTRACT
SUMMARY: Senile osteoporosis is mainly caused by reduced osteoblast differentiation and has become the leading cause of fractures in the elderly worldwide. Natural organics are emerging as a potential option for the prevention and treatment of osteoporosis. This study was designed to study the effect of resveratrol on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in osteoporosis mice. A mouse model of osteoporosis was established by subcutaneous injection of dexamethasone and treated with resveratrol administered by gavage. In vivo and in vitro, we used western blot to detect protein expression, and evaluated osteogenic differentiation of BMSCs by detecting the expression of osteogenic differentiation related proteins, calcium deposition, ALP activity and osteocalcin content. Resveratrol treatment significantly increased the body weight of mice, the level of serum Ca2+, 25(OH)D and osteocalcin, ration of bone weight, bone volume/total volume, trabecular thickness, trabecular number, trabecular spacing and cortical thickness in osteoporosis mice. In BMSCs of osteoporosis mice, resveratrol treatment significantly increased the expression of Runx2, osterix (OSX) and osteocalcin (OCN) protein, the level of calcium deposition, ALP activity and osteocalcin content. In addition, resveratrol treatment also significantly increased the expression of SIRT1, p-PI3K / PI3K and p-AKT / AKT in BMSCs of osteoporosis mice. In vitro, resveratrol increased the expression of SIRT1, p-PI3K / PI3K and p-AKT / AKT, Runx2, OSX and OCN protein, the level of calcium deposition, ALP activity and osteocalcin content in BMSCs in a concentration-dependent manner, while SIRT1 knockdown significantly reversed the effect of resveratrol. Resveratrol can attenuate osteoporosis by promoting osteogenic differentiation of bone marrow mesenchymal stem cells, and the mechanism may be related to the regulation of SIRT1/PI3K/AKT pathway.
La osteoporosis senil es causada principalmente por una diferenciación reducida de osteoblastos y se ha convertido en la principal causa de fracturas en las personas mayores en todo el mundo. Los productos orgánicos naturales están surgiendo como una opción potencial para la prevención y el tratamiento de la osteoporosis. Este estudio fue diseñado para estudiar el efecto del resveratrol en la diferenciación osteogénica de las células madre mesenquimales de la médula ósea (BMSC) en ratones con osteoporosis. Se estableció un modelo de osteoporosis en ratones mediante inyección subcutánea de dexametasona y se trató con resveratrol administrado por sonda. In vivo e in vitro, utilizamos Western blot para detectar la expresión de proteínas y evaluamos la diferenciación osteogénica de BMSC detectando la expresión de proteínas relacionadas con la diferenciación osteogénica, la deposición de calcio, la actividad de ALP y el contenido de osteocalcina. El tratamiento con resveratrol aumentó significativamente el peso corporal de los ratones, el nivel sérico de Ca2+, 25(OH)D y osteocalcina, la proporción de peso óseo, el volumen óseo/ volumen total, el espesor trabecular, el número trabecular, el espaciado trabecular y el espesor cortical en ratones con osteoporosis. En BMSC de ratones con osteoporosis, el tratamiento con resveratrol aumentó significativamente la expresión de las proteínas Runx2, osterix (OSX) y osteocalcina (OCN), el nivel de deposición de calcio, la actividad de ALP y el contenido de osteocalcina. Además, el tratamiento con resveratrol también aumentó significativamente la expresión de SIRT1, p-PI3K/PI3K y p-AKT/AKT en BMSC de ratones con osteoporosis. In vitro, el resveratrol aumentó la expresión de las proteínas SIRT1, p-PI3K/PI3K y p- AKT/AKT, Runx2, OSX y OCN, el nivel de deposición de calcio, la actividad de ALP y el contenido de osteocalcina en BMSC de manera dependiente de la concentración, mientras que La caída de SIRT1 revirtió significativamente el efecto del resveratrol. El resveratrol puede atenuar la osteoporosis al promover la diferenciación osteogénica de las células madre mesenquimales de la médula ósea, y el mecanismo puede estar relacionado con la regulación de la vía SIRT1/PI3K/AKT.
Subject(s)
Animals , Male , Mice , Osteoporosis/drug therapy , Resveratrol/administration & dosage , Osteogenesis/drug effects , Cell Differentiation/drug effects , Blotting, Western , Disease Models, Animal , Sirtuin 1 , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Resveratrol/pharmacology , Mice, Inbred C57BLABSTRACT
Therapeutically targeting senescent cells seems to be an interesting perspective in treating chronic lung diseases, which are often associated with human aging. The combination of the drug dasatinib and the polyphenol quercetin is used in clinical trials as a senolytic, and the first results point to the relief of physical dysfunction in patients with idiopathic pulmonary fibrosis. In this work, we tested new combinations of drugs and polyphenols, looking for senolytic activity using human lung fibroblasts (MRC-5 cell line) with induced senescence. We researched drugs, such as azithromycin, rapamycin, metformin, FK-506, aspirin, and dasatinib combined with nine natural polyphenols, namely caffeic acid, chlorogenic acid, ellagic acid, ferulic acid, gallic acid, epicatechin, hesperidin, quercetin, and resveratrol. We found new effective senolytic combinations with dasatinib and ellagic acid and dasatinib and resveratrol. Both drug combinations increased apoptosis, reduced BCL-2 expression, and increased caspase activity in senescent MRC-5 cells. Ellagic acid senolytic activity was more potent than quercetin, and resveratrol counteracted inflammatory cytokine release during senolysis in vitro. In conclusion, dasatinib and ellagic acid and dasatinib and resveratrol present in vitro senolytic potential like that observed for the combination in clinical trials of dasatinib and quercetin, and maybe they could be future alternatives in the senotherapeutic field.