Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Plant Physiol Biochem ; 215: 108977, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39084167

ABSTRACT

Silicon (Si) can significantly improve the salt tolerance of plants, but its mechanism remains unclear. In this study, role of abscisic acid (ABA) in Si derived salt resistance in tobacco seedling was investigated. Under salt stress, the photosynthetic rate, stomatal conductance, and transpiration rate of tobacco seedlings were reduced by 86.17%, 80.63%, and 67.54% respectively, resulting in a decrease in biomass. The application of Si found to mitigate these stress-induced markers. However, positive role of Si was mainly attributed to the enhanced expression of aquaporin genes, which helped in enhancing root hydraulic conductance (Lpr) and ultimately maintaining the leaf relative water content (RWC). Moreover, sodium tungstate, an ABA biosynthesis inhibitor, was used to test the role of ABA on Si-regulating Lpr. The results indicated that the improvement of Lpr by Si was diminished in the presence of ABA inhibitor. In addition, it was observed that the ABA content was increased due to the Si-upregulated of ABA biosynthesis genes, namely NtNCED1 and NtNCED5. Conversely, the expression of ABA metabolism gene NtCYP7O7A was found to be reduced by Si. Together, this study suggested that Si increased ABA content, leading to enhanced efficiency of water uptake by the roots, ultimately facilitating an adequate water supply to maintain leaf water balance. As a result, there was an improvement in salt resistance in tobacco seedling.

2.
J Hazard Mater ; 476: 134905, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38941827

ABSTRACT

Numerous studies shown that silicon (Si) enhanced plants' resistance to cadmium (Cd). Most studies primarily focused on investigating the impact of Si on Cd accumulation. However, there is a lack of how Si enhanced Cd resistance through regulation of water balance. The study demonstrated that Si had a greater impact on increasing fresh weight compared to dry weight under Cd stress. This effect was mainly attributed to Si enhanced plant relative water content (RWC). Plant water content depends on the dynamic balance of water loss and water uptake. Our findings revealed that Si increased transpiration rate and stomatal conductance, leading to higher water loss. This, in turn, negatively impacted water content. The increased water content caused by Si could ascribe to improve root water uptake. The Si treatment significantly increased root hydraulic conductance (Lpr) by 131 % under Cd stress. This enhancement was attributed to Si upregulation genes expression of NtPIP1;1, NtPIP1;2, NtPIP1;3, and NtPIP2;1. Through meticulously designed scientific experiments, this study showed that Si enhanced AQP activity, leading to increased water content that diluted Cd concentration and ultimately improved plant Cd resistance. These findings offered fresh insights into the role of Si in bolstering plant resistance to Cd.


Subject(s)
Aquaporins , Cadmium , Nicotiana , Plant Roots , Seedlings , Silicon , Water , Cadmium/toxicity , Silicon/pharmacology , Silicon/chemistry , Plant Roots/metabolism , Plant Roots/drug effects , Seedlings/drug effects , Seedlings/metabolism , Nicotiana/drug effects , Nicotiana/metabolism , Aquaporins/metabolism , Water/chemistry , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Transpiration/drug effects
3.
Plants (Basel) ; 12(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37653916

ABSTRACT

Recent discoveries regarding the signal molecules involved in abiotic stresses require integration into the field of plant hydraulic property research. Although calcium (Ca) is an important second messenger involved in numerous complex, abiotic stress-induced signaling pathways, it remains unclear how exogenous calcium mediates cellular signaling to promote plant drought resistance. We investigated the effects of calcium on the water balance and hydraulic properties in maize seedlings (Zea mays L.) under osmotic stress simulated by 10% (m/v) PEG-6000 in a hydroponic culture. The osmotic stress dramatically decreased the photosynthetic rate, transpiration rate, stomatal conductance, leaf water content, and root water absorption. However, the short-term (2 h) and long-term (10 d) exogenous Ca2+ (CaCl2: 10 mM) treatments had different effects on the maize gas exchange parameters and leaf water status. The short-term treatment improved the leaf transpiration by inhibiting the abscisic acid (ABA) synthesis and accumulation in the leaves, generating a stronger transpiration pull and enhancing the root water absorption and axial flow path water transport by increasing the root hydraulic conductance to relieve the osmotic stress-induced inhibition. The long-term treatment induced the ABA and H2O2 accumulation in the roots and leaves. Under osmotic stress, the accumulation of ABA, H2O2, and Ca2+ rapidly repressed the transpiration and enhanced the radial flow path water transport, decreasing the water loss and improving the stress tolerance. These insights suggest a role for a judicious use of Ca fertilizer in reducing the adverse effects of drought on agricultural production.

4.
Plant Cell Environ ; 45(3): 650-663, 2022 03.
Article in English | MEDLINE | ID: mdl-35037263

ABSTRACT

Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil-plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil-root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (-6 to -1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed.


Subject(s)
Soil , Water , Desiccation , Phenotype , Plant Roots/chemistry , Plant Transpiration , Water/analysis
5.
Tree Physiol ; 40(10): 1381-1391, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32483620

ABSTRACT

Plant hydraulics is key for plant survival and growth because it is linked to gas exchange and drought resistance. Although the environment influences plant hydraulics, there is no clear consensus on the effect of nitrogen (N) supply, which may be, in part, due to different hydraulic conductance normalization criteria and studied species. The objective of this study was to compare the variation of root hydraulic properties using several normalization criteria in four pine species in response to three contrasting N fertilization regimes. We studied four closely related, yet ecologically distinct species: Pinus nigra J.F. Arnold, Pinus pinaster Ait., Pinus pinea L. and Pinus halepensis Mill. Root hydraulic conductance (Kh) was measured with a high-pressure flow meter, and values were normalized by total leaf area (leaf specific conductance, Kl), xylem cross-section area (xylem specific conductance, Ks), total root area (root specific conductance, Kr) and the area of fine roots (fine root specific conductance, Kfr). Controlling for organ size differences allowed comparison of the hydraulic efficiency of roots to supply or absorb water among fertilization treatments and species. The effect of N on the root hydraulic efficiency depended on the normalization criteria. Increasing N availability reduced Kl and Ks, but increased Kh, Kr and especially Kfr. The positive effect of N on Kr and Kfr was positively related to seedling relative growth rate and was also consistent with published results at the interspecific level, whereby plant hydraulics is positively linked to photosynthesis and transpiration rate and fast growth. In contrast, normalization by leaf area and xylem cross-sectional area (Kl and Ks) reflected opposite responses to Kr and Kfr. This indicates that the normalization criteria determine the interpretation of the effect of N on plant hydraulics, which can limit species and treatment comparisons.


Subject(s)
Pinus , Seedlings , Nitrogen , Plant Leaves , Plant Roots , Plant Transpiration , Water
6.
BMC Plant Biol ; 20(1): 218, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32410579

ABSTRACT

BACKGROUND: Water deficiency is likely to become more frequent and intense as a result of global climate change, which may severely impact agricultural production in the world. The positive effects of melatonin (MEL) on alleviation drought or osmotic stress-induced water deficiency in plants has been well reported. However, the underlying mechanism of MEL on the detailed process of plant water uptake and transport under water deficiency condition remains largely unknown. RESULTS: Application of 1 µM MEL led to enhanced tolerance to water deficiency stress in maize seedlings, as evidenced by maintaining the higher photosynthetic parameters, leaf water status and plant transpiration rate. The relatively higher whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lpr) in MEL-treated seedlings suggest that exogenous MEL alleviated water deficiency stress by promoting root water absorption. HgCl2 (aquaporin inhibitor) treatment inhibit the transpiration rate in MEL-treated plants greater than those of MEL-untreated; after recovery by dithiothreitol (DTT, anti-inhibitor), the transpiration rate in MEL-treated plants increased much higher than those of untreated plants. Moreover, under water deficiency, the transcription level of aquaporin genes was up-regulated by MEL application, and the H2O2 was less accumulated in MEL-treated root. CONCLUSIONS: Exogenous MEL promoted aquaporin activity, which contributed to the maintaining of Lpr and Kplant under short-term water deficiency. The increased water uptake and transport lead to improved water status and thus increased tolerance to PEG-induced short-term water deficiency in maize seedlings.


Subject(s)
Melatonin/pharmacology , Plant Transpiration , Polyethylene Glycols/administration & dosage , Water/metabolism , Zea mays/physiology , Zea mays/drug effects
7.
New Phytol ; 225(1): 126-134, 2020 01.
Article in English | MEDLINE | ID: mdl-31498457

ABSTRACT

Efficient water transport from soil to leaves sustains stomatal opening and steady-state photosynthesis. The aboveground portion of this pathway is well-described, yet the roots and their connection with the soil are still poorly understood due to technical limitations. Here we used a novel rehydration technique to investigate changes in the hydraulic pathway between roots and soil and within the plant body as individual olive plants were subjected to a range of water stresses. Whole root hydraulic resistance (including the radial pathway from xylem to the soil-root interface) constituted 81% of the whole-plant resistance in unstressed plants, increasing to > 95% under a moderate level of water stress. The decline in this whole root hydraulic conductance occurred in parallel with stomatal closure and contributed significantly to the reduction in canopy conductance according to a hydraulic model. Our results demonstrate that losses in root hydraulic conductance, mainly due to a disconnection from the soil during moderate water stress in olive plants, are profound and sufficient to induce stomatal closure before cavitation occurs. Future studies will determine whether this core regulatory role of root hydraulics exists more generally among diverse plant species.


Subject(s)
Olea/physiology , Plant Roots/physiology , Plant Stomata/physiology , Plant Transpiration , Water/metabolism , Biological Transport , Dehydration , Photosynthesis , Plant Leaves/physiology , Soil/chemistry , Xylem/physiology
8.
Plant Sci ; 271: 100-107, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29650147

ABSTRACT

Sunflower broomrape (Orobanche cumana) is a root holoparasitic plant causing major damage to sunflower (Helianthus annuus L.). Parasite infection initiates source-sink relations between the parasite (sink) and the host (source), allocating carbohydrates, water and nutrients to the parasite. The primary aim of the current study was to explore responses of sunflower to broomrape parasitism, specifically to examine alternations in leaf area, leaf mass per area (LMA), mesophyll structure and root hydraulic conductivity. Leaf changes revealed modifications similar to described previously in shade adapted plants, causing larger and thinner leaves. These traits were accompanied with significantly higher root hydraulics. These changes were caused by carbohydrate depletion due to source-sink relationships between the host and parasite. An Imazapic herbicide (ALS inhibitor) was used for controlling broomrape attachments and by to investigate the plasticity of the traits found. Broomrape infected plants which were treated with Imazapic had leaves similar to non-infected plants, including mesophyll structure and carbon assimilation rates. These results demonstrated source-sink effects of broomrape which cause a low-light-like acclimation behavior which is reversible.


Subject(s)
Carbon/metabolism , Helianthus/parasitology , Orobanche/metabolism , Plant Leaves/parasitology , Helianthus/anatomy & histology , Helianthus/metabolism , Nitrogen/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Water/metabolism
9.
J Plant Physiol ; 227: 31-44, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29395124

ABSTRACT

Improving or maintaining crop productivity under conditions of long term change of soil water availability and atmosphere demand for water is one the big challenges of this century. It requires a deep understanding of crop water acquisition properties, i.e. root system architecture and root hydraulic properties among other characteristics of the soil-plant-atmosphere continuum. A root pressure probe technique was used to measure the root hydraulic conductances of seven-week old maize and lupine plants grown in sandy soil. Unbranched root segments were excised in lateral, seminal, crown and brace roots of maize, and in lateral roots of lupine. Their total hydraulic conductance was quantified under steady-state hydrostatic gradient for progressively shorter segments. Furthermore, the axial conductance of proximal root regions removed at each step of root shortening was measured as well. Analytical solutions of the water flow equations in unbranched roots developed recently and relating root total conductance profiles to axial and radial conductivities were used to retrieve the root radial hydraulic conductivity profile along each root type, and quantify its uncertainty. Interestingly, the optimized root radial conductivities and measured axial conductances displayed significant differences across root types and species. However, the measured root total conductances did not differ significantly. As compared to measurements reported in the literature, our axial and radial conductivities concentrate in the lower range of herbaceous species hydraulic properties. In a final experiment, the hydraulic conductances of root junctions to maize stem were observed to highly depend on root type. Surprisingly maize brace root junctions were an order of magnitude more conductive than the other crown and seminal roots, suggesting potential regulation mechanism for root water uptake location and a potential role of the maize brace roots for water uptake more important than reported in the literature.


Subject(s)
Lupinus/physiology , Plant Roots/physiology , Plant Shoots/physiology , Zea mays/physiology , Lupinus/anatomy & histology , Lupinus/metabolism , Plant Roots/anatomy & histology , Plant Shoots/anatomy & histology , Plant Shoots/metabolism , Soil , Water/metabolism , Zea mays/anatomy & histology , Zea mays/metabolism
10.
Plant J ; 89(3): 510-526, 2017 02.
Article in English | MEDLINE | ID: mdl-27754576

ABSTRACT

Dehydration-responsive element binding factors (DREBs) play important roles in plant growth, development, and stress signaling pathways in model plants. However, little is known about the function of DREBs in apple (Malus × domestica), a widely cultivated crop that is frequently threatened by drought. We isolated a DREB gene from Malus sieversii (Ledeb.) Roem., MsDREB6.2, and investigated its functions using overexpression analysis and chimeric repressor gene-silencing technology (CRES-T). We identified possible target genes of the protein encoded by MsDREB6.2 using electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation (ChIP). Overexpression of MsDREB6.2 increased the expression of a key cytokinin (CK) catabolism gene, MdCKX4a, which led to a significant reduction in endogenous CK levels, and caused a decrease in shoot:root ratio in transgenic apple plants. Overexpression of MsDREB6.2 resulted in a decrease in stomatal aperture and density and an increase in root hydraulic conductance (L0 ), and thereby enhanced drought tolerance in transgenic plants. Furthermore, manipulating the level of MsDREB6.2 expression altered the expression of two aquaporin (AQP) genes. The effect of the two AQP genes on L0 was further characterized using the AQP inhibitor HgCl2 . Based on these observations, we conclude that MsDREB6.2 enhances drought tolerance and that its function may be due, at least in part, to its influence on stomatal opening, root growth, and AQP expression. These results may have applications in apple rootstock breeding programs aimed at developing drought-resistant apple varieties.


Subject(s)
Cytokinins/metabolism , Droughts , Malus/metabolism , Plant Proteins/metabolism , Adaptation, Physiological/genetics , Aquaporins/genetics , Aquaporins/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Malus/genetics , Malus/growth & development , Phenotype , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Stomata/genetics , Plant Stomata/metabolism , Plant Stomata/physiology , Plants, Genetically Modified , Protein Binding , Stress, Physiological
11.
J Nanobiotechnology ; 14(1): 42, 2016 Jun 08.
Article in English | MEDLINE | ID: mdl-27278384

ABSTRACT

BACKGROUND: Carbon nanotubes have been shown to improve the germination and growth of some plant species, extending the applicability of the emerging nano-biotechnology field to crop science. RESULTS: In this work, exploitation of commercial multiwalled carbon nanotubes (MWCNTs) in control and 100 mM NaCl-treated broccoli was performed. Transmission electron microscopy demonstrated that MWCNTs can enter the cells in adult plants with higher accumulation under salt stress. Positive effect of MWCNTs on growth in NaCl-treated plants was consequence of increased water uptake, promoted by more-favourable energetic forces driving this process, and enhanced net assimilation of CO2. MWCNTs induced changes in the lipid composition, rigidity and permeability of the root plasma membranes relative to salt-stressed plants. Also, enhanced aquaporin transduction occurred, which improved water uptake and transport, alleviating the negative effects of salt stress. CONCLUSION: Our work provides new evidences about the effect of MWCNTs on plasma membrane properties of the plant cell. The positive response to MWCNTs in broccoli plants opens novel perspectives for their technological uses in new agricultural practices, especially when 1plants are exposed to saline environments.


Subject(s)
Brassica/growth & development , Brassica/metabolism , Nanotubes, Carbon/analysis , Water/metabolism , Brassica/cytology , Carbon Dioxide/metabolism , Cell Proliferation , Lipid Metabolism , Lipids/analysis , Permeability , Plant Roots/cytology , Plant Roots/growth & development , Plant Roots/metabolism , Salinity , Sodium Chloride/metabolism
12.
Front Plant Sci ; 7: 196, 2016.
Article in English | MEDLINE | ID: mdl-26941762

ABSTRACT

Silicon (Si) can improve drought tolerance in plants, but the mechanism is still not fully understood. Previous research has been concentrating on Si's role in leaf water maintenance in Si accumulators, while little information is available on its role in water uptake and in less Si-accumulating plants. Here, we investigated the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato (Solanum lycopersicum 'Zhongza No.9') under water stress. Tomato seedlings were subjected to water stress induced by 10% (w/v) polyethylene glycol-6000 in the absence or presence of 2.5 mM added silicate. The results showed that Si addition ameliorated the inhibition in tomato growth and photosynthesis, and improved water status under water stress. The root hydraulic conductance of tomato plants was decreased under water stress, and it was significantly increased by added Si. There was no significant contribution of osmotic adjustment in Si-enhanced root water uptake under water stress. The transcriptions of plasma membrane aquaporin genes were not obviously changed by Si under water stress. Water stress increased the production of reactive oxygen species and induced oxidative damage, while added Si reversed these. In addition, Si addition increased the activities of superoxide dismutase and catalase and the levels of ascorbic acid and glutathione in the roots under stress. It is concluded that Si enhances the water stress tolerance via enhancing root hydraulic conductance and water uptake in tomato plants. Si-mediated decrease in membrane oxidative damage may have contributed to the enhanced root hydraulic conductance.

13.
Tree Physiol ; 36(4): 407-20, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26546365

ABSTRACT

There are increasing concerns about trace metal levels such as copper (Cu) in industrial sites and the broader environment. Different studies have highlighted the role of mycorrhizal associations in plant tolerance to trace metals, modulating some of the plant metabolic and physiological responses. In this study, we investigated the role of the symbiotic association betweenRhizophagus irregularisandSalix purpureaL. in modulating plant responses under Cu stress. We measured Cu accumulation, oxidative stress-related, photosynthetic-related and hydraulic traits, for non-inoculated (non-arbuscular mycorrhizal fungi) and inoculated saplings exposed to different Cu concentrations. We found thatS. purpureais a suitable option for phytoremediation of Cu, acting as a phytostabilizer of this trace metal in its root system. We observed that the symbiotic association modulates a broad spectrum of metabolic and physiological responses inS. purpureaunder Cu conditions, including (i) a reduction in gas exchange associated with chlorophyll content changes and (ii) the sequestration of Cu into the cell walls, modifying vessels anatomy and impacting leaf specific conductivity (KL) and root hydraulic conductance (LP). UpholdingKLandLPunder Cu stress might be related to a dynamic Aquaporin gene regulation ofPIP1;2along with an up-regulation ofTIP2;2in the roots of inoculatedS. purpurea.


Subject(s)
Copper/metabolism , Mycorrhizae/physiology , Salix/microbiology , Symbiosis , Biodegradation, Environmental , DNA, Mitochondrial , Gene Expression Profiling , Genes, Plant , Oxidation-Reduction , Plant Roots/microbiology , Plant Roots/physiology , Salix/growth & development , Soil Microbiology , Stress, Physiological
14.
Front Plant Sci ; 6: 759, 2015.
Article in English | MEDLINE | ID: mdl-26442072

ABSTRACT

Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for 2 weeks were exposed to 65 mM NaCl solution for another 1 week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp), but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na(+) concentration in the leaves while increasing K(+) concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na(+) content by increasing polyamine accumulation.

15.
AoB Plants ; 72015 Sep 02.
Article in English | MEDLINE | ID: mdl-26333825

ABSTRACT

Fertilization of agricultural plants with ammonium [Formula: see text] is often desirable because it is less susceptible to leaching than nitrate [Formula: see text] reducing environmental pollution, risk to human health and economic loss. However, a number of important agricultural species exhibit a reduction in growth when fertilized with [Formula: see text] and increasing the tolerance to [Formula: see text] may be of importance for the establishment of sustainable agricultural systems. The present study explored the feasibility of using calcium (Ca) to increase the tolerance of bell pepper (Capsicum annuum) to [Formula: see text] fertilization. Although [Formula: see text] at proportions ≥25 % of total nitrogen (N) decreased leaf dry mass (DM), supplementary Ca ameliorated this decrease. Increasing [Formula: see text] resulted in decreased root hydraulic conductance (Lo) and root water content (RWC), suggesting that water uptake by roots was impaired. The [Formula: see text]-induced reductions in Lo and RWC were mitigated by supplementary Ca. Ammonium induced increased damage to the cell membranes through lipid peroxidation, causing increased electrolyte leakage; Ca did not reduce lipid peroxidation and resulted in increased electrolyte leakage, suggesting that the beneficial effects of Ca on the tolerance to [Formula: see text] may be more of a reflection on its effect on the water status of the plant. Bell pepper plants that received [Formula: see text] had a low concentration of [Formula: see text] in the roots but a high concentration in the leaves, probably due to the high nitrate reductase activity observed. Ammonium nutrition depressed the uptake of potassium, Ca and magnesium, while increasing that of phosphorus. The results obtained in the present study indicate that [Formula: see text] caused growth reduction, nutrient imbalance, membrane integrity impairment, increased activity of antioxidant enzymes and affected water relations. Supplementary Ca partially restored growth of leaves by improving root Lo and water relations, and our results suggest that it may be used as a tool to increase the tolerance to [Formula: see text] fertilization.

16.
J Plant Physiol ; 177: 93-99, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25703773

ABSTRACT

The aim of this study was to evaluate the differential sensitivity of sugarcane genotypes to H2O2 in root medium. As a hypothesis, the drought tolerant genotype would be able to minimize the oxidative damage and maintain the water transport from roots to shoots, reducing the negative effects on photosynthesis. The sugarcane genotypes IACSP94-2094 (drought tolerant) and IACSP94-2101 (drought sensitive) were grown in a growth chamber and exposed to three levels of H2O2 in nutrient solution: control; 3 mmol L(-1) and 80 mmol L(-1). Leaf gas exchange, photochemical activity, root hydraulic conductance (Lr) and antioxidant metabolism in both roots and leaves were evaluated after 15 min of treatment with H2O2. Although, root hydraulic conductance, stomatal aperture, apparent electron transport rate and instantaneous carboxylation efficiency have been reduced by H2O2 in both genotypes, IACSP94-2094 presented higher values of those variables as compared to IACSP94-2101. There was a significant genotypic variation in relation to the physiological responses of sugarcane to increasing H2O2 in root tissues, being root changes associated with modifications in plant shoots. IACSP94-2094 presented a root antioxidant system more effective against H2O2 in root medium, regardless H2O2 concentration. Under low H2O2 concentration, water transport and leaf gas exchange of IACSP94-2094 were less affected as compared to IACSP94-2101. Under high H2O2 concentration, the lower sensitivity of IACSP94-2094 was associated with increases in superoxide dismutase activity in roots and leaves and increases in catalase activity in roots. In conclusion, we propose a general model of sugarcane reaction to H2O2, linking root and shoot physiological responses.


Subject(s)
Antioxidants/pharmacology , Hydrogen Peroxide/pharmacology , Saccharum/drug effects , Droughts , Oxidative Stress , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Transpiration/drug effects , Saccharum/genetics , Saccharum/metabolism
17.
J Exp Bot ; 65(17): 4747-56, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24879770

ABSTRACT

The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier.


Subject(s)
Aquaporins/genetics , Osmotic Pressure , Plant Proteins/genetics , Silicon/physiology , Sorghum/physiology , Water/metabolism , Aquaporins/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/physiology , Polymerase Chain Reaction , Seedlings/physiology , Sorghum/genetics , Up-Regulation
18.
Tree Physiol ; 34(4): 404-14, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24682534

ABSTRACT

In resprouting species, fire-induced topkill causes a reduction in height and leaf area without a comparable reduction in the size of the root system, which should lead to an increase in the efficiency of water transport after fire. However, large plants undergo a greater relative reduction in size, compared with small plants, so we hypothesized that this enhancement in hydraulic efficiency would be greatest among large growth forms. In the ecotone between long-leaf pine (Pinus palustris Mill.) savannas and wetlands, we measured stomatal conductance (gs), mid-day leaf water potential (Ψleaf), leaf-specific whole-plant hydraulic conductance (KL.p), leaf area and height of 10 species covering a range of growth forms in burned and unburned sites. As predicted, KL.p was higher in post-fire resprouts than in unburned plants, and the post-fire increase in KL.p was positively related to plant size. Specifically, large-statured species tended to undergo the greatest relative reductions in leaf area and height, and correspondingly experienced the greatest increases in KL.p. The post-fire increase in KL.p was smaller than expected, however, due to a decrease in absolute root hydraulic conductance (i.e., not scaled to leaf area). The higher KL.p in burned sites was manifested as an increase in gs rather than an increase in Ψleaf. Post-fire increases in gs should promote high rates of photosynthesis for recovery of carbohydrate reserves and aboveground biomass, which is particularly important for large-statured species that require more time to recover their pre-fire size.


Subject(s)
Magnoliopsida/physiology , Photosynthesis/physiology , Plant Transpiration/physiology , Water/physiology , Biomass , Fires , Forests , Magnoliopsida/growth & development , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Roots/growth & development , Plant Roots/physiology , Plant Stems/growth & development , Plant Stems/physiology , Plant Stomata/growth & development , Plant Stomata/physiology
19.
Plant Cell Environ ; 37(1): 132-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23701708

ABSTRACT

The vapor pressure deficit (D) of the atmosphere can negatively affect plant growth as plants reduce stomatal conductance to water vapor (g(wv)) in response to increasing D, limiting the ability of plants to assimilate carbon. The sensitivity of g(wv) to changes in D varies among species and has been correlated with the hydraulic conductance of leaves (K(leaf) ), but the hydraulic conductance of other tissues has also been implicated in plant responses to changing D. Among the 19 grass species, we found that K(leaf) was correlated with the hydraulic conductance of large longitudinal veins (K(lv), r(2) = 0.81), but was not related to K(root) (r(2) = 0.01). Stomatal sensitivity to D was correlated with K(leaf) relative to total leaf area (r(2) = 0.50), and did not differ between C3 and C4 species. Transpiration (E) increased in response to D, but 8 of the 19 plants showed a decline in E at high D, indicative of an 'apparent feedforward' response. For these individuals, E began to decline at lower values of D in plants with low K(root) (r(2) = 0.72). These results show the significance of both leaf and root hydraulic conductance as drivers of plant responses to evaporative demand.


Subject(s)
Plant Stomata/physiology , Plant Transpiration/physiology , Poaceae/physiology , Organ Specificity , Plant Leaves/physiology , Plant Roots/physiology , Vapor Pressure , Water/physiology
20.
New Phytol ; 143(3): 485-493, 1999 Sep.
Article in English | MEDLINE | ID: mdl-33862892

ABSTRACT

Water relations, xylem embolism, root and shoot hydraulic conductance of both young plants in the field and potted seedlings of Quercus pubescens have been studied with the aim of investigating whether these variables may account for the well known adaptation of this oak species to arid habitats. Our data revealed that Q. pubescens is able to maintain high leaf relative water contents under water stress conditions. In fact, relative water contents measured in summer (July) did not differ from those recorded in April. This was apparently achieved by compensating water loss by an equal amount of water uptake. Such a drought avoidance strategy was made possible by the recorded high hydraulic efficiency of stems and roots under water stress. In fact, root hydraulic conductance of field-grown plants was maintained high in summer when the percentage loss of hydraulic conductance of stems was lowest. The hydraulic architecture of young plants of Q. pubescens measured in terms of partitioning of hydraulic resistances along the water pathway revealed that the highest hydraulic resistance was located in stems of the current year's growth. This hydraulic architecture is interpreted as consistent with the adaptation of Q. pubescens to arid habitats as a consequence of the recorded seasonal changes in water relation parameters as well as in root and stem hydraulics.

SELECTION OF CITATIONS
SEARCH DETAIL