Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinspir Biomim ; 18(5)2023 08 08.
Article in English | MEDLINE | ID: mdl-37552773

ABSTRACT

Recent observations of wingless animals, including jumping nematodes, springtails, insects, and wingless vertebrates like geckos, snakes, and salamanders, have shown that their adaptations and body morphing are essential for rapid self-righting and controlled landing. These skills can reduce the risk of physical damage during collision, minimize recoil during landing, and allow for a quick escape response to minimize predation risk. The size, mass distribution, and speed of an animal determine its self-righting method, with larger animals depending on the conservation of angular momentum and smaller animals primarily using aerodynamic forces. Many animals falling through the air, from nematodes to salamanders, adopt a skydiving posture while descending. Similarly, plant seeds such as dandelions and samaras are able to turn upright in mid-air using aerodynamic forces and produce high decelerations. These aerial capabilities allow for a wide dispersal range, low-impact collisions, and effective landing and settling. Recently, small robots that can right themselves for controlled landings have been designed based on principles of aerial maneuvering in animals. Further research into the effects of unsteady flows on self-righting and landing in small arthropods, particularly those exhibiting explosive catapulting, could reveal how morphological features, flow dynamics, and physical mechanisms contribute to effective mid-air control. More broadly, studying apterygote (wingless insects) landing could also provide insight into the origin of insect flight. These research efforts have the potential to lead to the bio-inspired design of aerial micro-vehicles, sports projectiles, parachutes, and impulsive robots that can land upright in unsteady flow conditions.


Subject(s)
Robotics , Animals , Flight, Animal/physiology , Insecta , Gravitation , Seeds , Biomechanical Phenomena
2.
Bioinspir Biomim ; 17(4)2022 05 17.
Article in English | MEDLINE | ID: mdl-35443236

ABSTRACT

Autorotating samaras have evolved to propagate successfully to their germination sites with the help of wind. This wind, in turn, is inherently unsteady across an extensive range of scales in the atmospheric boundary layer. To generate lift, samaras rely on the formation of a stably-attached leading-edge vortex (LEV) on the suction side of their wings. The kinematics of autorotating samaras experiencing gusts were examined experimentally in order to provide insights into the aerodynamic mechanisms responsible for successful propagation. The gust response of seven mature Boxelder Maple (Acer negundo) samaras was investigated using a small unsteady wind tunnel able to create vertical gusts. Interestingly, the samaras were found to have a stable tip-speed ratio (λ) during the gust phase, thus suggesting that the LEV remained stably-attached. Inspired by samaras, we designed a three-bladed rotor that incorporates key aerodynamic and geometric properties of samaras so as to exhibit a stably-attached LEV. The gust response of the samara-inspired rotor was examined using a towing-tank facility. The gust was emulated in the towing tank by accelerating the rotor from an initial steady speed to a final steady speed. Different gust intensities were tested by varying the rotor's normalized inertia number (I*) by systematically increasing the rotor moment of inertia (I). Similar to the natural samaras, the rotor exhibited a robust tip-speed ratio during all simulated gusts. The rotor's tip-speed ratio increased by a maximum of 11% and 6% during the slowest and fastest simulated gusts, respectively. By maintaining a stable tip-speed ratio during the gust, the samara-inspired rotor is thought to maintain stable LEVs resulting in stable autorotation. Therefore, by learning from the samara-inspired rotor, we suggest that samaras propagate successfully from their parent trees in unsteady (realistic) environments in part due to their robust autorotation properties.


Subject(s)
Models, Biological , Wings, Animal , Animals , Biomechanical Phenomena/physiology , Wings, Animal/physiology
3.
Biomimetics (Basel) ; 6(2)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805294

ABSTRACT

Maple trees (genus Acer) accomplish the task of distributing objects to a wide area by producing seeds, known as samaras, which are carried by the wind as they autorotate and slowly descend to the ground. With the goal of supporting engineering applications, such as gathering environmental data over a broad area, we developed 3D-printed artificial samaras. Here, we compare the behavior of both natural and artificial samaras in both still-air laboratory experiments and wind dispersal experiments in the field. We show that the artificial samaras are able to replicate (within one standard deviation) the behavior of natural samaras in a lab setting. We further use the notion of windage to compare dispersal behavior, and show that the natural samara has the highest mean windage, corresponding to the longest flights during both high wind and low wind experimental trials. This study demonstrated a bioinspired design for the dispersed deployment of sensors and provides a better understanding of wind-dispersal of both natural and artificial samaras.

4.
J R Soc Interface ; 14(126)2017 01.
Article in English | MEDLINE | ID: mdl-28077761

ABSTRACT

Botanical samaras spin about their centre of mass and create vertical aerodynamic forces which slow their rate of descent. Descending autorotation of animal wings, however, has never been documented. We report here that isolated wings from Anna's hummingbirds, and also from 10 species of insects, can stably autorotate and achieve descent speeds and aerodynamic performance comparable to those of samaras. A hummingbird wing loaded at its base with the equivalent of 50% of the bird's body mass descended only twice as fast as an unloaded wing, and rotated at frequencies similar to those of the wings in flapping flight. We found that even entire dead insects could stably autorotate depending on their wing postures. Feather removal trials showed no effect on descent velocity when the secondary feathers were removed from hummingbird wings. By contrast, partial removal of wing primaries substantially improved performance, except when only the outer primary was present. A scaling law for the aerodynamic performance of autorotating wings is well supported if the wing aspect ratio and the relative position of the spinning axis from the wing base are included. Autorotation is a useful and practical method that can be used to explore the aerodynamics of wing design.


Subject(s)
Birds/physiology , Flight, Animal/physiology , Models, Biological , Movement/physiology , Wings, Animal/physiology , Animals , Birds/anatomy & histology , Wings, Animal/anatomy & histology
5.
N Z Vet J ; 64(3): 182-7, 2016 May.
Article in English | MEDLINE | ID: mdl-26593855

ABSTRACT

CASE HISTORY AND CLINICAL FINDINGS: During April and May 2014 four horses aged between 5 months and 9 years, located in the Canterbury, Marlborough and Southland regions, presented with a variety of clinical signs including recumbency, stiffness, lethargy, dehydration, depression, and myoglobinuria suggestive of acute muscle damage. Two horses were subjected to euthanasia and two recovered. In all cases seeds of sycamore maple (Acer pseudoplatanus) or box elder (A. negundo) were present in the area where the horse had been grazing. LABORATORY INVESTIGATION: The samaras (seeds) of some Acer spp. may contain hypoglycin A, that has been associated with cases of atypical myopathy in Europe and North America. To determine if hypoglycin A is present in the samaras of Acer spp. in New Zealand, samples were collected from trees throughout the country that were associated with historical and/or current cases of atypical myopathy, and analysed for hypoglycin A. Serum samples from the four cases and four unaffected horses were analysed for the presence of hypoglycin A, profiles of acylcarnitines (the definitive diagnosis for atypical myopathy) and activities of creatine kinase and aspartate aminotransferase.Markedly elevated serum activities of creatine kinase and aspartate aminotransferase, and increased concentrations of selected acylcarnitines were found in the case horses. Hypoglycin A was detected in the serum of those horses but not in the healthy controls. Hypoglycin A was detected in 10/15 samples of samaras from sycamore maple and box elder from throughout New Zealand. DIAGNOSIS: Cases of atypical myopathy were diagnosed on properties where samaras containing hypoglycin A were also found. CLINICAL RELEVANCE: Sycamore and box elder trees in New Zealand are a source of hypoglycin A associated with the development of atypical myopathy. If pastured horses present with clinical and biochemical signs of severe muscle damage then the environment should be checked for the presence of these trees. Horses should be prevented from grazing samaras from Acer spp. in the autumn.


Subject(s)
Acer/chemistry , Horse Diseases/chemically induced , Hypoglycins/toxicity , Muscular Diseases/veterinary , Seeds/chemistry , Animals , Horse Diseases/epidemiology , Horses , Hypoglycins/chemistry , Male , Muscular Diseases/chemically induced , New Zealand/epidemiology , Plants, Toxic/chemistry , Plants, Toxic/toxicity
6.
J Intercult Ethnopharmacol ; 4(1): 6-11, 2015.
Article in English | MEDLINE | ID: mdl-26401377

ABSTRACT

BACKGROUND: Aiming the continuity of the studies of Austroplenckia populnea, Brazilian species of the Celastraceae family, in the present study, it was investigated the effect of crude extracts obtained with ethanol, ethyl acetate and chloroform and two purified constituents, proanthocyanidin A and 4'-O-methylepigallocatechin, both isolated from its samaras, on cancer cell proliferation assays. MATERIALS AND METHODS: The human cancer cells lines MCF-7 (ductal breast carcinoma), A549 (lung cancer), HS578T (ductal breast carcinoma) and non-cancer HEK293 (embryonic kidney cells) were treated with different concentrations of extracts and constituents and the effect was observed through the acid phosphatase method. The chemical structures of the purified compounds were identified by the respective IR and (1)H and (13)C nuclear magnetic resonance spectral data. RESULTS: While crude extracts from samaras of the folk medicine A. populnea can trigger cell proliferative effects in human cell lines, the purified compounds (proanthocyanidin A and 4'-O-methyl-epigallocatechin) isolated from the same extracts can have an opposite (anti-proliferative) effect. CONCLUSION: Based on the results, it was possible to suggest that extracts from samaras of A. populnea should be further investigated for possible cancer-promoting activities; and the active extracts can also represent a source of compounds that have anti-cancer properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...