Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Adv Sci (Weinh) ; : e2405367, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207041

ABSTRACT

Peritendinous adhesion that forms after tendon injury substantially limits daily life. The pathology of adhesion involves inflammation and the associated proliferation. However, the current studies on this condition are lacking, previous studies reveal that cyclooxygenase-2 (COX2) gene inhibitors have anti-adhesion effects through reducing prostaglandin E2 (PGE2) and the proliferation of fibroblasts, are contrary to the failure in anti-adhesion through deletion of EP4 (prostaglandin E receptor 4) gene in fibroblasts in mice of another study. In this study, single-cell RNA sequencing analysis of human and mouse specimens are combined with eight types of conditional knockout mice and further reveal that deletion of COX2 in myeloid cells and deletion of EP4 gene in sensory nerves decrease adhesion and impair the biomechanical properties of repaired tendons. Furthermore, the COX2 inhibitor parecoxib reduces PGE2 but impairs the biomechanical properties of repaired tendons. Interestingly, PGE2 local treatment improves the biomechanical properties of the repaired tendons. These findings clarify the complex role of PGE2 in peritendinous adhesion formation (PAF) and tendon repair.

2.
Physiol Rep ; 12(12): e16125, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031618

ABSTRACT

Stimulation of the calcium-sensing receptor (CaSR) regulates vascular contractility, but cellular mechanisms involved remain unclear. This study investigated the role of perivascular sensory nerves in CaSR-induced relaxations of male rat mesenteric arteries. In fluorescence studies, colocalisation between synaptophysin, a synaptic vesicle marker, and the CaSR was present in the adventitial layer of arterial segments. Using wire myography, increasing external Ca2+ concentration ([Ca2+]o) from 1 to 10 mM induced vasorelaxations, previously shown to involve the CaSR, which were inhibited by pretreatment with capsaicin. [Ca2+]o-induced vasorelaxations were partially reduced by the calcitonin gene-related peptide (CGRP) receptor blockers, CGRP 8-37 and BIBN 4096, and the neurokinin 1 (NK1) receptor blocker L733,060. The inhibitory effect of CGRP 8-37 required a functional endothelium whereas the inhibitory action of L733,060 did not. Complete inhibition of [Ca2+]o-induced vasorelaxations occurred when CGRP 8-37 and L733,060 were applied together. [Ca2+]o-induced vasorelaxations in the presence of capsaicin were abolished by the ATP-dependent K+ channel (KATP) blocker PNU 37883, but unaffected by the endothelium nitric oxide synthase (eNOS) inhibitor L-NAME. We suggest that the CaSR on perivascular sensory nerves mediate relaxations in rat mesenteric arteries via endothelium-dependent and -independent mechanisms involving CGRP and NK1 receptor-activated NO production and KATP channels, respectively.


Subject(s)
Calcitonin Gene-Related Peptide , Mesenteric Arteries , Receptors, Calcium-Sensing , Receptors, Neurokinin-1 , Vasodilation , Animals , Male , Receptors, Calcium-Sensing/metabolism , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Receptors, Neurokinin-1/metabolism , Mesenteric Arteries/drug effects , Mesenteric Arteries/physiology , Mesenteric Arteries/metabolism , Rats , Vasodilation/drug effects , Vasodilation/physiology , Rats, Wistar , Neurokinin-1 Receptor Antagonists/pharmacology , Calcium/metabolism , Capsaicin/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Signal Transduction/physiology
3.
Ageing Res Rev ; 99: 102372, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880342

ABSTRACT

Understanding the intricate interplay between sensory nerves and bone tissue cells is of paramount significance in the field of bone biology and clinical medicine. The regulatory role of sensory nerves in bone homeostasis offers a novel perspective for the development of targeted therapeutic interventions for a spectrum of bone-related diseases, including osteoarthritis, osteoporosis, and intervertebral disc degeneration. By elucidating the mechanisms through which sensory nerves and their neuropeptides influence the differentiation and function of bone tissue cells, this review aims to shed light on emerging therapeutic targets that harness the neuro-skeletal axis for the treatment and management of debilitating bone disorders. Moreover, a comprehensive understanding of sensory nerve-mediated bone regulation may pave the way for the development of innovative strategies to promote bone health and mitigate the burden of skeletal pathologies in clinical practice.


Subject(s)
Bone Diseases , Bone and Bones , Homeostasis , Sensory Receptor Cells , Humans , Homeostasis/physiology , Bone and Bones/physiology , Bone and Bones/metabolism , Animals , Sensory Receptor Cells/physiology , Bone Diseases/therapy , Bone Diseases/physiopathology
4.
Auton Neurosci ; 253: 103177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636284

ABSTRACT

BACKGROUND: Many esophageal striated muscles of mammals are dually innervated by the vagal and enteric nerves. Recently, substance P (SP)-sensory nerve terminals with calcitonin gene-related peptide (CGRP) were found on a few striated muscle fibers in the rat esophagus, implying that these muscle fibers are triply innervated. In this study, we examined the localization and origin of CGRP-nerve endings in striated muscles to consider their possible roles in the esophagus regarding triple innervation. METHODS: Wholemounts of the rat esophagus were immunolabeled to detect CGRP-nerve endings in striated muscles. Also, retrograde tracing was performed by injecting Fast Blue (FB) into the esophagus, and cryostat sections of the medulla oblongata, nodose ganglion (NG), and the tenth thoracic (T10) dorsal root ganglion (DRG) were immunostained to identify the origin of the CGRP-nerve endings. RESULTS: CGRP-fine, varicose nerve endings were localized in motor endplates on a few esophageal striated muscle fibers (4 %), most of which received nitric oxide (NO) synthase nerve terminals, and most of the CGRP nerve endings were SP- and transient receptor potential vanilloid member 1 (TRPV1)-positive. Retrograde tracing showed many FB-labeled CGRP-neurons positive for SP and TRPV1 in the NG and T10 DGR. CONCLUSIONS: This study suggests that the CGRP-varicose nerve endings containing SP and TRPV1 in motor endplates are sensory, and a few esophageal striated muscle fibers are triply innervated. The nerve endings may detect acetylcholine-derived acetic acid from the vagal motor nerve endings and NO from esophageal intrinsic nerve terminals in the motor endplates to regulate esophageal motility.


Subject(s)
Calcitonin Gene-Related Peptide , Esophagus , Nodose Ganglion , Sensory Receptor Cells , Animals , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/analysis , Esophagus/innervation , Esophagus/metabolism , Male , Sensory Receptor Cells/metabolism , Nodose Ganglion/metabolism , Motor Endplate/metabolism , Rats , Ganglia, Spinal/metabolism , Medulla Oblongata/metabolism , Substance P/metabolism , Muscle, Striated/innervation , Muscle, Striated/metabolism , Vagus Nerve/metabolism , Rats, Wistar , Rats, Sprague-Dawley , Muscle Fibers, Skeletal/metabolism , TRPV Cation Channels/metabolism , Amidines
5.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542511

ABSTRACT

Pulmonary fibrosis results from the deposition and proliferation of extracellular matrix components in the lungs. Despite being an airway disorder, pulmonary fibrosis also has notable effects on the pulmonary vasculature, with the development and severity of pulmonary hypertension tied closely to patient mortality. Furthermore, the anatomical proximity of blood vessels, the alveolar epithelium, lymphatic tissue, and airway spaces highlights the need to identify shared pathogenic mechanisms and pleiotropic signaling across various cell types. Sensory nerves and their transmitters have a variety of effects on the various cell types within the lungs; however, their effects on many cell types and functions during pulmonary fibrosis have not yet been investigated. This review highlights the importance of gaining a new understanding of sensory nerve function in the context of pulmonary fibrosis as a potential tool to limit airway and vascular dysfunction.


Subject(s)
Hypertension, Pulmonary , Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/metabolism , Lung/metabolism , Afferent Pathways , Hypertension, Pulmonary/metabolism , Respiratory Mucosa/metabolism
6.
Semin Plast Surg ; 38(1): 48-52, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38495065

ABSTRACT

Neuropathic pain affects a large percentage of the U.S. population and leads to tremendous morbidity. Numerous nonsurgical and surgical treatments have been utilized to try and manage neuropathic pain with varying degrees of success. Recent research investigating ways to improve prosthetic control have identified new mechanisms for preventing neuromas in both motor and sensory nerves with free muscle and dermal grafts, respectively. These procedures have been used to treat chronic neuropathic pain in nonamputees, as well, in order to reduce failure rates found with traditional neurectomy procedures. Herein, we focus our attention on Dermal Sensory-Regenerative Peripheral Nerve Interfaces (DS-RPNI, free dermal grafts) which can be used to physiologically "cap" sensory nerves following neurectomy and have been shown to significantly decrease neuropathic pain.

7.
Med ; 5(3): 254-270.e8, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38423011

ABSTRACT

BACKGROUND: Perineural invasion (PNI) and nerve density within the tumor microenvironment (TME) have long been associated with worse outcomes in head and neck squamous cell carcinoma (HNSCC). This prompted an investigation into how nerves within the tumor microenvironment affect the adaptive immune system and tumor growth. METHODS: We used RNA sequencing analysis of human tumor tissue from a recent HNSCC clinical trial, proteomics of human nerves from HNSCC patients, and syngeneic orthotopic murine models of HPV-unrelated HNSCC to investigate how sensory nerves modulate the adaptive immune system. FINDINGS: Calcitonin gene-related peptide (CGRP) directly inhibited CD8 T cell activity in vitro, and blocking sensory nerve function surgically, pharmacologically, or genetically increased CD8 and CD4 T cell activity in vivo. CONCLUSIONS: Our data support sensory nerves playing a role in accelerating tumor growth by directly acting on the adaptive immune system to decrease Th1 CD4 T cells and activated CD8 T cells in the TME. These data support further investigation into the role of sensory nerves in the TME of HNSCC and points toward the possible treatment efficacy of blocking sensory nerve function or specifically inhibiting CGRP release or activity within the TME to improve outcomes. FUNDING: 1R01DE028282-01, 1R01DE028529-01, 1P50CA261605-01 (to S.D.K.), 1R01CA284651-01 (to S.D.K.), and F31 DE029997 (to L.B.D.).


Subject(s)
Calcitonin Gene-Related Peptide , Head and Neck Neoplasms , Animals , Humans , Mice , Calcitonin Gene-Related Peptide/metabolism , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment
8.
Mol Cells ; 47(2): 100030, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38364960

ABSTRACT

Both brown and white adipose tissues (BAT/WAT) are innervated by the peripheral nervous system, including efferent sympathetic nerves that communicate from the brain/central nervous system out to the tissue, and afferent sensory nerves that communicate from the tissue back to the brain and locally release neuropeptides to the tissue upon stimulation. This bidirectional neural communication is important for energy balance and metabolic control, as well as maintaining adipose tissue health through processes like browning (development of metabolically healthy brown adipocytes in WAT), thermogenesis, lipolysis, and adipogenesis. Decades of sensory nerve denervation studies have demonstrated the particular importance of adipose sensory nerves for brown adipose tissue and WAT functions, but far less is known about the tissue's sensory innervation compared to the better-studied sympathetic nerves and their neurotransmitter norepinephrine. In this review, we cover what is known and not yet known about sensory nerve activities in adipose, focusing on their effector neuropeptide actions in the tissue.


Subject(s)
Adipose Tissue, Brown , Adipose Tissue, White , Humans , Adipose Tissue, White/innervation , Adipose Tissue, White/metabolism , Adipose Tissue, Brown/metabolism , Obesity/metabolism , Thermogenesis , Peripheral Nervous System/metabolism
9.
J Control Release ; 367: 791-805, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341179

ABSTRACT

Epidural fibrosis (EF), associated with various biological factors, is still a major troublesome clinical problem after laminectomy. In the present study, we initially demonstrate that sensory nerves can attenuate fibrogenic progression in EF animal models via the secretion of calcitonin gene-related peptide (CGRP), suggesting a new potential therapeutic target. Further studies showed that CGRP could inhibit the reprograming activation of fibroblasts through PI3K/AKT signal pathway. We subsequently identified metformin (MET), the most widely prescribed medication for obesity-associated type 2 diabetes, as a potent stimulator of sensory neurons to release more CGRP via activating CREB signal way. We copolymerized MET with innovative polycaprolactone (PCL) nanofibers to develop a metformin-grafted PCL nanoscaffold (METG-PCLN), which could ensure stable long-term drug release and serve as favorable physical barriers. In vivo results demonstrated that local implantation of METG-PCLN could penetrate into dorsal root ganglion cells (DRGs) to promote the CGRP synthesis, thus continuously inhibit the fibroblast activation and EF progress for 8 weeks after laminectomy, significantly better than conventional drug loading method. In conclusion, this study reveals the unprecedented potential of sensory neurons to counteract EF through CGRP signaling and introduces a novel strategy employing METG-PCLN to obstruct EF by fine-tuning sensory nerve-regulated fibrogenesis.


Subject(s)
Calcitonin Gene-Related Peptide , Diabetes Mellitus, Type 2 , Polyesters , Animals , Calcitonin Gene-Related Peptide/metabolism , Phosphatidylinositol 3-Kinases , Fibrosis , Fibroblasts/metabolism
10.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256202

ABSTRACT

Homeostatic maintenance is essential for pulp function. Disrupting pulp homeostasis may lead to pulp degeneration, such as fibrosis and calcifications. Sensory nerves constitute a crucial component of the dental pulp. However, the precise involvement of sensory nerves in pulp homeostasis remains uncertain. In this study, we observed the short-term and long-term histological changes in the dental pulp after inferior alveolar nerve transection. Additionally, we cultured primary dental pulp cells (DPCs) from the innervated and denervated groups and compared indicators of cellular senescence and cellular function. The results revealed that pulp fibrosis occurred at 2 w after the operation. Furthermore, the pulp area, as well as the height and width of the pulp cavity, showed accelerated reductions after sensory denervation. Notably, the pulp area at 16 w after the operation was comparable to that of 56 w old rats. Sensory denervation induced excessive extracellular matrix (ECM) deposition and increased predisposition to mineralization. Furthermore, sensory denervation promoted the senescence of DPCs. Denervated DPCs exhibited decelerated cell proliferation, arrest in the G2/M phase of the cell cycle, imbalance in the synthesis and degradation of ECM, and enhanced mineralization. These findings indicate that sensory nerves play an essential role in pulp homeostasis maintenance and dental pulp cell fate decisions, which may provide novel insights into the prevention of pulp degeneration.


Subject(s)
Calcinosis , Dental Pulp Diseases , Animals , Rats , Dental Pulp , Afferent Pathways , Homeostasis , Fibrosis , Denervation
11.
J Allergy Clin Immunol ; 153(4): 894-903, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37952833

ABSTRACT

The immune system protects the host from infection and works to heal damaged tissue after infection or injury. There is increasing evidence that the immune system and the nervous system work in concert to achieve these goals. The sensory nervous system senses injury, infection, and inflammation, which results in a direct pain signal. Direct activation of peripheral sensory nerves can drive an inflammatory response in the skin. Immune cells express receptors for numerous transmitters released from sensory and autonomic nerves, which allows the nervous system to communicate directly with the immune system. This communication is bidirectional because immune cells can also produce neurotransmitters. Both innate and adaptive immune cells respond to neuronal signaling, but T cells appear to be at the helm of neuroimmune communication.


Subject(s)
Neuroimmunomodulation , T-Lymphocytes , Humans , Skin , Inflammation , Signal Transduction
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1029447

ABSTRACT

Objective:To observe any effect of cooling on the amplitude of vibration-induced sensory nerve action potentials (SNAPs) in human digits.Methods:The middle fingers of 15 healthy adults were either cooled to about 22℃ using an ice pack or kept at about 32℃. A vibrator was applied to the joint connecting the middle finger and the palm vibrating with an amplitude of 2mm at a frequency of 60Hz. The amplitudes of middle finger SNAPs before, during and right after the vibration were recorded.Results:The SNAP amplitude at a given temperature was lower during vibration than before it, but it immediately returned to the pre-vibration level after the vibration ceased. The middle finger SNAP amplitudes at 22℃ were significantly higher than those at 32℃ throughout. The decrease in amplitude at 32℃ (61.7±15.1%) was significantly greater than that at 22℃ (24.1±7.0%).Conclusions:Cooling significantly reduces the effect of vibration on the amplitude of digital SNAPs. That suggests a way to protect the sensory nerves in hand-arm vibration syndrome.

13.
Mol Metab ; 78: 101817, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806487

ABSTRACT

Interoception plays an important role in homeostatic regulation of energy intake and metabolism. Major interoceptive pathways include gut-to-brain and adipose tissue-to brain signaling via vagal sensory nerves and hormones, such as leptin. However, signaling via spinal sensory neurons is rapidly emerging as an additional important signaling pathway. Here we provide an in-depth review of the known anatomy and functions of spinal sensory pathways and discuss potential mechanisms relevant for energy balance homeostasis in health and disease. Because sensory innervation by dorsal root ganglia (DRG) neurons goes far beyond vagally innervated viscera and includes adipose tissue, skeletal muscle, and skin, it is in a position to provide much more complete metabolic information to the brain. Molecular and anatomical identification of function specific DRG neurons will be important steps in designing pharmacological and neuromodulation approaches to affect energy balance regulation in disease states such as obesity, diabetes, and cancer.


Subject(s)
Sensory Receptor Cells , Vagus Nerve , Humans , Sensory Receptor Cells/metabolism , Vagus Nerve/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Ganglia, Spinal/metabolism
14.
Front Physiol ; 14: 1198066, 2023.
Article in English | MEDLINE | ID: mdl-37342800

ABSTRACT

Introduction: Inflammatory bowel disease involves aberrant immune responses and is associated with both cardiovascular disease risk and altered intestinal blood flow. However, little is known about how inflammatory bowel disease affects regulation of perivascular nerves that mediate blood flow. Previous work found perivascular nerve function is impaired in mesenteric arteries with Inflammatory bowel disease. The purpose of this study was to determine the mechanism of impaired perivascular nerve function. Methods: RNA sequencing was performed on mesenteric arteries from IL10-/- mice treated with H. hepaticus to induce disease (inflammatory bowel disease) or left non-gavaged (Control). For all other studies, Control and Inflammatory bowel disease mice received either saline or clodronate liposome injections to study the effect of macrophage depletion. Perivascular nerve function was assessed using pressure myography and electrical field stimulation. Leukocyte populations, and perivascular nerves, and adventitial neurotransmitter receptors were labeled using fluorescent immunolabeling. Results: Inflammatory bowel disease was associated with increases in macrophage-associated gene expression, and immunolabeling showed accumulation of adventitial macrophages. Clodronate liposome injection eliminated adventitial macrophages, which reversed significant attenuation of sensory vasodilation, sympathetic vasoconstriction and sensory inhibition of sympathetic constriction in inflammatory bowel disease. Acetylcholine-mediated dilation was impaired in inflammatory bowel disease and restored after macrophage depletion, but sensory dilation remained nitric oxide independent regardless of disease and/or macrophage presence. Conclusion: Altered neuro-immune signaling between macrophages and perivascular nerves in the arterial adventitia contributes to impaired vasodilation, particularly via dilatory sensory nerves. Targeting the adventitial macrophage population may help preserve intestinal blood flow in Inflammatory bowel disease patients.

15.
Am J Physiol Renal Physiol ; 325(2): F235-F247, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37348026

ABSTRACT

Renal nerves have been an attractive target for interventions aimed at lowering blood pressure; however, the specific roles of renal afferent (sensory) versus efferent sympathetic nerves in mediating hypertension are poorly characterized. A number of studies have suggested that a sympathoexcitatory signal conveyed by renal afferents elicits increases in blood pressure, whereas other studies identified sympathoinhibitory afferent pathways. These sympathoinhibitory pathways have been identified as protective against salt-sensitive increases in blood pressure through endothelin B (ETB) receptor activation. We hypothesized that ETB-deficient (ETB-def) rats, which are devoid of functional ETB receptors except in adrenergic tissues, lack appropriate sympathoinhibition and have lower renal afferent nerve activity following a high-salt diet compared with transgenic controls. We found that isolated renal pelvises from high salt-fed ETB-def animals lack a response to a physiological stimulus, prostaglandin E2, compared with transgenic controls but respond equally to a noxious stimulus, capsaicin. Surprisingly, we observed elevated renal afferent nerve activity in intact ETB-def rats compared with transgenic controls under both normal- and high-salt diets. ETB-def rats have been previously shown to have heightened global sympathetic tone, and we also observed higher total renal sympathetic nerve activity in ETB-def rats compared with transgenic controls under both normal- and high-salt diets. These data indicate that ETB receptors are integral mediators of the sympathoinhibitory renal afferent reflex (renorenal reflex), and, in a genetic rat model of ETB deficiency, the preponderance of sympathoexcitatory renal afferent nerve activity prevails and may contribute to hypertension.NEW & NOTEWORTHY Here, we found that endothelin B receptors are an important contributor to renal afferent nerve responsiveness to a high-salt diet. Rats lacking endothelin B receptors have increased afferent nerve activity that is not responsive to a high-salt diet.


Subject(s)
Hypertension , Kidney , Rats , Animals , Receptor, Endothelin B/genetics , Receptor, Endothelin B/metabolism , Kidney/metabolism , Blood Pressure/physiology , Afferent Pathways/metabolism , Sodium Chloride, Dietary/metabolism , Endothelin-1/metabolism , Receptor, Endothelin A/metabolism
16.
Front Oncol ; 13: 1029108, 2023.
Article in English | MEDLINE | ID: mdl-37274254

ABSTRACT

Introduction: Patients developing acute radiotherapy induced dermatitis or oral mucositis commonly experience pain. When severe, this radiotherapy-associated pain (RAP) can necessitate treatment breaks; unfortunately, in a variety of cancers, prolongation of the radiotherapy course has been associated with early cancer relapse and/or death. This is often attributed to accelerated repopulation, but it is unknown whether pain or pain signaling constituents might alter tumor behavior and hasten metastatic disease progression. We studied this by testing the hypothesis that severe acute RAP at one site can hasten tumor growth at a distant site. Methods: Mice underwent single fraction tongue irradiation (27 Gy, or 0 Gy "sham" control) to induce severe glossitis. At the time of maximal oral RAP, one of three luciferase-transfected tumor cell lines were injected via tail vein (4T1, B16F10, MOC2; each paired to their syngeneic host: BALB/c or C57BL/6); tumor burden was assessed via in vivo transthoracic bioluminescence imaging and ex vivo pulmonary nodule quantification. Survival was compared using Kaplan-Meier statistics. Results: Tongue irradiation and resultant RAP promoted lung tumor growth of 4T1-Luc2 cells in BALB/c mice. This effect was not a result of off-target radiation, nor an artefact of environmental stress caused by standard (subthermoneutral) housing temperatures. RAP did not affect the growth of B16F10-Luc2 cells, however, C57BL/6 mice undergoing tail vein injection of MOC2-Luc2 cells at the time of maximal RAP experienced early lung tumor-attributable death. Lung tumor growth was normalized when RAP was reduced by treatment with resiniferatoxin (300 µg/kg, subcutaneously, once). Discussion: This research points towards radiation-induced activation of capsaicin-responsive (TRPV1) neurons as the cause for accelerated growth of tumors at distant (unirradiated) sites.

17.
Proc Natl Acad Sci U S A ; 120(14): e2219624120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36996107

ABSTRACT

Gain-of-function mutations in voltage-gated sodium channel NaV1.7 cause severe inherited pain syndromes, including inherited erythromelalgia (IEM). The structural basis of these disease mutations, however, remains elusive. Here, we focused on three mutations that all substitute threonine residues in the alpha-helical S4-S5 intracellular linker that connects the voltage sensor to the pore: NaV1.7/I234T, NaV1.7/I848T, and NaV1.7/S241T in order of their positions in the amino acid sequence within the S4-S5 linkers. Introduction of these IEM mutations into the ancestral bacterial sodium channel NaVAb recapitulated the pathogenic gain-of-function of these mutants by inducing a negative shift in the voltage dependence of activation and slowing the kinetics of inactivation. Remarkably, our structural analysis reveals a common mechanism of action among the three mutations, in which the mutant threonine residues create new hydrogen bonds between the S4-S5 linker and the pore-lining S5 or S6 segment in the pore module. Because the S4-S5 linkers couple voltage sensor movements to pore opening, these newly formed hydrogen bonds would stabilize the activated state substantially and thereby promote the 8 to 18 mV negative shift in the voltage dependence of activation that is characteristic of the NaV1.7 IEM mutants. Our results provide key structural insights into how IEM mutations in the S4-S5 linkers may cause hyperexcitability of NaV1.7 and lead to severe pain in this debilitating disease.


Subject(s)
Erythromelalgia , Voltage-Gated Sodium Channels , Humans , NAV1.7 Voltage-Gated Sodium Channel/genetics , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain/genetics , Pain/metabolism , Mutation , Erythromelalgia/genetics , Erythromelalgia/metabolism , Erythromelalgia/pathology , Voltage-Gated Sodium Channels/genetics , Threonine/genetics
18.
Adv Healthc Mater ; 12(12): e2203027, 2023 05.
Article in English | MEDLINE | ID: mdl-36652677

ABSTRACT

To treat bone defects, repairing the nerve-rich periosteum is critical for repairing the local electric field. In this study, an endogenous electric field is coupled with 2D black phosphorus electroactive periosteum to explore its role in promoting bone regeneration through nerves. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to characterize the electrically active biomimetic periosteum. Here, the in vitro effects exerted by the electrically active periosteum on the transformation of Schwann cells into the repair phenotype, axon initial segment (AIS) and dense core vesicle (DCV) of sensory neurons, and bone marrow mesenchymal stem cells are assessed using SEM, immunofluorescence, RNA-sequencing, and calcium ion probes. The electrically active periosteum stimulates Schwann cells into a neuroprotective phenotype via the Fanconi anemia pathway, enhances the AIS effect of sensory neurons, regulates DCV transport, and releases neurotransmitters, promoting the osteogenic transformation of bone marrow mesenchymal stem cells. Microcomputed tomography and other in vivo techniques are used to study the effects of the electrically active periosteum on bone regeneration. The results show that the electrically active periosteum promotes nerve-induced osteogenic repair, providing a potential clinical strategy for bone regeneration.


Subject(s)
Fanconi Anemia , Periosteum , Humans , Periosteum/metabolism , Tissue Scaffolds , Tissue Engineering/methods , Biomimetics , Fanconi Anemia/metabolism , X-Ray Microtomography , Bone Regeneration/physiology , Osteogenesis , Signal Transduction
19.
J Appl Physiol (1985) ; 134(2): 307-315, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36603045

ABSTRACT

Inhalation of noxious irritants activates nociceptive sensory afferent nerves innervating the airways, inducing reflex regulation of autonomic networks and the modulation of respiratory drive and cardiovascular (CV) parameters such as heart rate and blood pressure. In healthy mammals, irritant-evoked pulmonary-cardiac reflexes cause parasympathetic-mediated bradycardia. However, in spontaneously hypertensive (SH) rats, irritant inhalation also increases sympathetic drive to the heart. This remodeled pulmonary-cardiac reflex may contribute to cardiovascular risk caused by inhalation of air pollutants/irritants in susceptible individuals with cardiovascular disease (CVD). Previous studies have shown that the cooling mimic l-menthol, an agonist for the cold-sensitive transient receptor potential melastatin 8 (TRPM8), can alleviate nasal inflammatory symptoms and respiratory reflexes evoked by irritants. Here, we investigated the impact of inhalation of TRPM8 agonists l-menthol and WS-12 on pulmonary-cardiac reflexes evoked by inhalation of the irritant allyl isothiocyanate (AITC) using radiotelemetry. l-Menthol, but not its inactive analog d-menthol, significantly reduced the AITC-evoked reflex tachycardia and premature ventricular contractions (PVCs) in SH rats but had no effect on the AITC-evoked bradycardia in either SH or normotensive Wistar-Kyoto (WKY) rats. WS-12 reduced AITC-evoked tachycardia and PVCs in SH rats, but this more potent TRPM8 agonist also reduced AITC-evoked bradycardia. l-Menthol had no effect on heart rate when given alone, whereas WS-12 evoked a minor bradycardia in WKY rats. We conclude that stimulation of TRPM8-expressing afferents within the airways reduces irritant-evoked pulmonary-cardiac reflexes, especially the aberrant reflex tachyarrhythmia in SH rats. Airway menthol treatment may be an effective therapy for reducing pollution-associated CV exacerbations.NEW & NOTEWORTHY Irritant-evoked pulmonary-cardiac reflexes are remodeled in spontaneously hypertensive (SH) rats-causing de novo sympathetic reflexes that drive tachyarrhythmia. This remodeling may contribute to air pollution-associated risk in susceptible individuals with cardiovascular disease. We found that inhalation of TRPM8 agonists, l-menthol and WS-12, but not the inactive analog d-menthol, selectively reduces the reflex tachyarrhythmia evoked by allyl isothiocyanate (AITC) inhalation in SH rats. Use of menthol may protect susceptible individuals from pollution-associated CV exacerbations.


Subject(s)
Cardiovascular Diseases , Hypertension , TRPM Cation Channels , Animals , Rats , Bradycardia/drug therapy , Irritants/pharmacology , Lung , Mammals , Menthol/pharmacology , Rats, Inbred SHR , Rats, Inbred WKY , Reflex , Tachycardia/drug therapy , TRPM Cation Channels/agonists
20.
J Bone Miner Metab ; 41(3): 415-427, 2023 May.
Article in English | MEDLINE | ID: mdl-36715764

ABSTRACT

INTRODUCTION: Cancer-induced bone pain (CIBP) is one of the most common and debilitating complications associated with bone metastasis. Although our understanding of the precise mechanism is limited, it has been known that bone is densely innervated, and that CIBP is elicited as a consequence of increased neurogenesis, reprogramming, and axonogenesis in conjunction with sensitization and excitation of sensory nerves (SNs) in response to the noxious stimuli that are derived from the tumor microenvironment developed in bone. Recent studies have shown that the sensitized and excited nerves innervating the tumor establish intimate communications with cancer cells by releasing various tumor-stimulating factors for tumor progression. APPROACHES: In this review, the role of the interactions of cancer cells and SNs in bone in the pathophysiology of CIBP will be discussed with a special focus on the role of the noxious acidic tumor microenvironment, considering that bone is in nature hypoxic, which facilitates the generation of acidic conditions by cancer. Subsequently, the role of SNs in the regulation of cancer progression in the bone will be discussed together with our recent experimental findings. CONCLUSION: It is suggested that SNs may be a newly-recognized important component of the bone microenvironment that contribute to not only in the pathophysiology of CIBP but also cancer progression in bone and dissemination from bone. Suppression of the activity of bone-innervating SNs, thus, may provide unique opportunities in the treatment of cancer progression and dissemination, as well as CIBP.


Subject(s)
Bone Neoplasms , Bone and Bones , Cancer Pain , Peripheral Nerves , Cancer Pain/etiology , Cancer Pain/physiopathology , Bone Neoplasms/complications , Bone Neoplasms/secondary , Bone and Bones/innervation , Humans , Peripheral Nerves/pathology , Peripheral Nerves/physiopathology , Disease Progression , Nociceptors/physiology , Tumor Microenvironment , src-Family Kinases/metabolism , HMGB1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL