Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Allergy Clin Immunol Glob ; 3(3): 100282, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952894

ABSTRACT

Background: Asthma is a chronic inflammatory disease of the airways that is heterogeneous and multifactorial, making its accurate characterization a complex process. Therefore, identifying the genetic variations associated with asthma and discovering the molecular interactions between the omics that confer risk of developing this disease will help us to unravel the biological pathways involved in its pathogenesis. Objective: We sought to develop a predictive genetic panel for asthma using machine learning methods. Methods: We tested 3 variable selection methods: Boruta's algorithm, the top 200 genome-wide association study markers according to their respective P values, and an elastic net regression. Ten different algorithms were chosen for the classification tests. A predictive panel was built on the basis of joint scores between the classification algorithms. Results: Two variable selection methods, Boruta and genome-wide association studies, were statistically similar in terms of the average accuracies generated, whereas elastic net had the worst overall performance. The predictive genetic panel was completed with 155 single-nucleotide variants, with 91.18% accuracy, 92.75% sensitivity, and 89.55% specificity using the support vector machine algorithm. The markers used range from known single-nucleotide variants to those not previously described in the literature. Our study shows potential in creating genetic prediction panels with tailored penalties per marker, aiding in the identification of optimal machine learning methods for intricate results. Conclusions: This method is able to classify asthma and nonasthma effectively, proving its potential utility in clinical prediction and diagnosis.

2.
Front Genet ; 15: 1278201, 2024.
Article in English | MEDLINE | ID: mdl-38645486

ABSTRACT

The high prevalence of obesity in Mexico starting from the early stages of life is concerning and represents a major public health problem. Genetic association studies have reported that single nucleotide variants (SNVs) in SIRT1, an NAD+-dependent deacetylase that plays an important role in the regulation of metabolic cellular functions, are associated with multiple metabolic disorders and the risk of obesity. In the present study, we analyzed the effect that the SNVs rs1467568 and rs7895833 of the SIRT1 gene may have on cardiometabolic risk factors in a young adult population from Mexico. A cross-sectional study was carried out with young adults between the ages of 18 and 25 who had a body mass index (BMI) greater than 18.5 kg/m2. This study included 1122 young adults who were classified into the normal weight (n = 731), overweight group (n = 277), and obesity group (n = 114) according to BMI of whom 405 and 404 volunteers were genotyped for rs1467568 and rs7895833 respectively using TaqMan probes through allelic discrimination assays. We found that the male sex carrying the G allele of rs7895833 had slightly lower BMI levels (p = 0.009). Furthermore, subjects carrying rs1467568 (G allele) showed a 34% lower probability of presenting with hyperbetalipoproteinemia where female carrying rs1467568 had lower levels of total cholesterol (p = 0.030), triglycerides (p = 0.026) and LDL cholesterol (p = 0.013). In conclusion, these findings suggest that the presence of both SNVs could have a non-risk effect against dyslipidemia in the Mexican population.

3.
Pathogens ; 12(11)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38003785

ABSTRACT

Host genetic factors significantly influence susceptibility to SARS-CoV-2 infection and COVID-19 severity. Among these genetic factors are single-nucleotide variants (SNVs). IFNAR2 and IFNAR1 genes have been associated with severe COVID-19 in populations from the United Kingdom, Africa, and Latin America. IFNAR1 and IFNAR2 are subunits forming the type I interferon receptor (IFNAR). SNVs in the IFNAR genes impact protein function, affecting antiviral response and disease phenotypes. This systematic review aimed to describe IFNAR1 and IFNAR2 variants associated with COVID-19 susceptibility and severity. Accordingly, the current review focused on IFNAR1 and IFNAR2 studies published between January 2021 and February 2023, utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol. The electronic search was conducted in PubMed databases using Boolean operators and inclusion and exclusion criteria. Of the 170 literature pieces, 11 studies were included. We include case reports of rare SNVs, defined by minor allele frequency (MAF) < 1%, and genome-wide associated studies (GWAS). Variants in IFNAR1 and IFNAR2 could potentially be new targets for therapies that limit the infection and the resulting inflammation by SARS-CoV-2 infection.

4.
Front Immunol ; 14: 1232488, 2023.
Article in English | MEDLINE | ID: mdl-37908348

ABSTRACT

Introduction: Leishmaniasis continues to pose a substantial health burden in 97 countries worldwide. The progression and outcome of Leishmania infection are influenced by various factors, including the cytokine milieu, the skin microbiota at the infection site, the specific Leishmania species involved, the genetic background of the host, and the parasite load. In endemic regions to leishmaniasis, only a fraction of individuals infected actually develops the disease. Overexpression of IL-13 in naturally resistant C57BL/6 mice renders them susceptible to L. major infection. Haplotypes constructed from several single nucleotide variant (SNV) along a chromosome fragment may provide insight into any SNV near the fragment that may be genuinely associated with a phenotype in genetic association studies. Methods: We investigated nine SNVs (SNV1rs1881457A>C, SNV2rs1295687C>G, SNV3rs2069744C>T, SNV4rs2069747C>T, SNV5rs20541A>G, SNV6rs1295685A>G, SNV7rs848A>C, SNV8rs2069750G >C, and SNV9rs847T>C) spanning the entire IL13 gene in patients with L. guyanensis cutaneous leishmaniasis (Lg-CL). Results: Our analysis did not reveal any significant association between the SNVs and susceptibility/protection against Lg-CL development. However, haplotype analysis, excluding SNV4rs2069747 and SNV8rs2069750 due to low minor allele frequency, revealed that carriers of the haplotype CCCTAAC had a 93% reduced likelihood developing Lg-CL. Similarly, the haplotypes ACCCGCT (ORadj=0.02 [95% CI 0.00-0.07]; p-value, 6.0×10-19) and AGCTAAC (ORadj=0.00[95% CI 0.00-0.00]; p-value 2.7×10-12) appeared to provide protection against the development of Lg-CL. Conversely, carriers of haplotype ACCTGCC have 190% increased likelihood of developing Lg-CL (ORadj=2.9 [95%CI 1.68-5.2]; p-value, 2.5×10-6). Similarly, haplotype ACCCAAT (ORadj=2.7 [95%CI 1.5-4.7]; p-value, 3.2×10-5) and haplotype AGCCGCC are associated with susceptibility to the development of Lg-CL (ORadj=1.7[95%CI 1.04-2.8]; p-value, 0.01). In our investigation, we also found a correlation between the genotypes of rs2069744, rs20541, rs1295685, rs847, and rs848 and plasma IL-5 levels among Lg-Cl patients. Furthermore, rs20541 showed a correlation with plasma IL-13 levels among Lg-Cl patients, while rs2069744 and rs848 showed a correlation with plasma IL-4 levels among the same group. Conclusions: Overall, our study identifies three haplotypes of IL13 associated with resistance to disease development and three haplotypes linked to susceptibility. These findings suggest the possibility of a variant outside the gene region that may contribute, in conjunction with other genes, to differences in susceptibility and partially to the pathology.


Subject(s)
Leishmania guyanensis , Leishmaniasis, Cutaneous , Animals , Humans , Mice , Cytokines/genetics , Genetic Predisposition to Disease , Haplotypes , Interleukin-13/genetics , Interleukin-4/genetics , Interleukin-5/genetics , Leishmania guyanensis/genetics , Leishmaniasis, Cutaneous/parasitology , Mice, Inbred C57BL , Nucleotides , Polymorphism, Single Nucleotide
5.
Pharmacogenomics ; 24(14): 747-760, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37846556

ABSTRACT

Purpose: This work was designed to identify the pharmacogenetic profile of Brazilian psychiatric patients receiving psychoactive drug treatment according to ethnicity. Methods: Based on the GnTech® database, this cross-sectional study analyzed data from self-reported sociodemographic and genetic results from the next-generation sequencing panel composed of 26 pharmacogenes from 359 psychotropic drug users. Results: Variant frequencies of multiple pharmacogenes presented differences between ethnicities (CYP3A5, CYP2D6, CYP1A2, CYP2B6, CYP3A4, UGT1A4, UGT2B15, ABCB1 rs1045642, ADRA2A rs1800544, COMT rs4680, GRIK4 rs1954787, GSK3B rs334558, GSK3B rs6438552, HTR1A rs6295, HTR2A rs7997012, HTR2C rs1414334, MTHFR rs1801131, OPRM1 rs1799971 and 5-HTTLPR), endorsing the necessity of individual-level analyses in drug treatment. Conclusion: A discussion of pharmacogenomic test implementation in psychiatric clinical practice is needed to improve treatment choices, especially in Brazil, a multiethnic country.


Subject(s)
Pharmacogenetics , Humans , Alleles , Brazil , Cross-Sectional Studies , Phenotype
6.
Malar J ; 22(1): 283, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752491

ABSTRACT

BACKGROUND: Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is an X-linked disorder affecting over 400 million people worldwide. Individuals with molecular variants associated with reduced enzymatic activity are susceptible to oxidative stress in red blood cells, thereby increasing the risk of pathophysiological conditions and toxicity to anti-malarial treatments. Globally, the prevalence of G6PDd varies among populations. Accordingly, this study aims to characterize G6PDd distribution within the Ecuadorian population and to describe the spatial distribution of reported malaria cases. METHODS: Molecular variants associated with G6PDd were genotyped in 581 individuals from Afro-Ecuadorian, Indigenous, Mestizo, and Montubio ethnic groups. Additionally, spatial analysis was conducted to identify significant malaria clusters with high incidence rates across Ecuador, using data collected from 2010 to 2021. RESULTS: The A- c.202G > A and A- c.968T > C variants underpin the genetic basis of G6PDd in the studied population. The overall prevalence of G6PDd was 4.6% in the entire population. However, this frequency increased to 19.2% among Afro-Ecuadorian people. Spatial analysis revealed 12 malaria clusters, primarily located in the north of the country and its Amazon region, with relative risks of infection of 2.02 to 87.88. CONCLUSIONS: The findings of this study hold significant implications for public health interventions, treatment strategies, and targeted efforts to mitigate the burden of malaria in Ecuador. The high prevalence of G6PDd among Afro-Ecuadorian groups in the northern endemic areas necessitates the development of comprehensive malaria eradication strategies tailored to this geographical region.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Malaria , Humans , Ecuador/epidemiology , Erythrocytes , Ethnicity , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/genetics , Malaria/epidemiology
7.
BMC Genom Data ; 24(1): 47, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37592284

ABSTRACT

BACKGROUND: Inherited genetic defects in immune system-related genes can result in Inborn Errors of Immunity (IEI), also known as Primary Immunodeficiencies (PID). Diagnosis of IEI disorders is challenging due to overlapping clinical manifestations. Accurate identification of disease-causing germline variants is crucial for appropriate treatment, prognosis, and genetic counseling. However, genetic sequencing is challenging in low-income countries like Brazil. This study aimed to perform genetic screening on patients treated within Brazil's public Unified Health System to identify candidate genetic variants associated with the patient's phenotype. METHODS: Thirteen singleton unrelated patients from three hospitals in Rio de Janeiro were enrolled in this study. Genomic DNA was extracted from the peripheral blood lymphocytes of each patient, and whole exome sequencing (WES) analyses were conducted using Illumina NextSeq. Germline genetic variants in IEI-related genes were prioritized using a computational framework considering their molecular consequence in coding regions; minor allele frequency ≤ 0.01; pathogenicity classification based on American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines gathered from the VarSome clinical database; and IEI-related phenotype using the Franklin tool. The genes classification into IEI categories follows internationally recognized guidelines informed by the International Union of Immunological Societies Expert Committee. Additional methods for confirmation of the variant included Sanger sequencing, phasing analysis, and splice site prediction. RESULTS: A total of 16 disease-causing variants in nine genes, encompassing six different IEI categories, were identified. X-Linked Agammaglobulinemia, caused by BTK variations, emerged as the most prevalent IEI disorder in the cohort. However, pathogenic and likely pathogenic variants were also reported in other known IEI-related genes, namely CD40LG, CARD11, WAS, CYBB, C6, and LRBA. Interestingly, two patients with suspected IEI exhibited pathogenic variants in non-IEI-related genes, ABCA12 and SLC25A13, potentially explaining their phenotypes. CONCLUSIONS: Genetic screening through WES enabled the detection of potentially harmful variants associated with IEI disorders. These findings contribute to a better understanding of patients' clinical manifestations by elucidating the genetic basis underlying their phenotypes.


Subject(s)
Genetic Counseling , Genetic Testing , Brazil/epidemiology , Phenotype , Gene Frequency
8.
Leuk Lymphoma ; 64(13): 2165-2177, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37647140

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype and dependent on angiogenesis (AG), whose main effectors are VEGFA and VEGFR2. Functional single nucleotide variants (SNVs) are described in VEGFA and KDR genes. However, it still unknown whether VEGFA - 2578C/A, -2489C/T, -1154G/A, -634G/C, -460C/T and KDR-604T/C, -271G/A, +1192G/A and +1719A/T SNVs act on DLBCL risk and angiogenic features. Genomic DNA from 168 DLBCL patients and 205 controls was used for SNV genotyping. Angiogenesis was immunohistochemically assessed in tumor biopsies, with reactions for VEGFA, VEGFR2, and CD34. VEGFA -1154GG genotype were associated with 1.6-fold higher DLBCL risk. KDR + 1192GG plus KDR + 1719 TT and KDR + 1192GG plus VEGFA - 2578CC combined genotypes are associated with 2.19- and 2.04-fold higher risks of DLBCL, respectively. VEGFA - 634GG or GC genotypes are associated with increased microvessel density and VEGFA levels. No relationship was observed between SNVs and cell-of-origin classification of DLBCL, but higher VEGFA and VEGFR2 were seen in non-germinal center tumors.


Subject(s)
Genetic Predisposition to Disease , Lymphoma, Large B-Cell, Diffuse , Humans , Polymorphism, Single Nucleotide , Genotype , Lymphoma, Large B-Cell, Diffuse/genetics , Nucleotides , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics
9.
Methods Protoc ; 6(3)2023 May 26.
Article in English | MEDLINE | ID: mdl-37367997

ABSTRACT

The Multidrug Resistance protein (ABCB1, MDR1) is involved in the transport of xenobiotics and antiretroviral drugs. Some variants of the ABCB1 gene are of clinical importance; among them, exon 12 (c.1236C>T, rs1128503), 21 (c.2677G>T/A, rs2032582), and 26 (c.3435C>T, rs1045642) have a high incidence in Caucasians. Several protocols have been used for genotyping the exon 21 variants, such as allele-specific PCR-RFLP using adapted primer to generate a digestion site for several enzymes and automatic sequencing to detect the SNVs, TaqMan Allele Discrimination assay and High-Resolution Melter analysis (HRMA). The aim was to describe a new approach to genotype the three variants c.2677G>T/A for the exon 21 doing only one PCR with the corresponding primers and the digestion of the PCR product with two restriction enzymes: BrsI to identify A allele and BseYI to differentiate between G or T. An improvement of this methodology was also described. The proposal technique here described is demonstrated to be very efficient, easy, fast, reproducible, and cost-effective.

10.
BMC Genom Data ; 24(1): 36, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391719

ABSTRACT

OBJECTIVES: Inborn error of immunity (IEI) comprises a broad group of inherited immunological disorders that usually display an overlap in many clinical manifestations challenging their diagnosis. The identification of disease-causing variants from whole-exome sequencing (WES) data comprises the gold-standard approach to ascertain IEI diagnosis. The efforts to increase the availability of clinically relevant genomic data for these disorders constitute an important improvement in the study of rare genetic disorders. This work aims to make available WES data of Brazilian patients' suspicion of IEI without a genetic diagnosis. We foresee a broad use of this dataset by the scientific community in order to provide a more accurate diagnosis of IEI disorders. DATA DESCRIPTION: Twenty singleton unrelated patients treated at four different hospitals in the state of Rio de Janeiro, Brazil were enrolled in our study. Half of the patients were male with mean ages of 9 ± 3, while females were 12 ± 10 years old. The WES was performed in the Illumina NextSeq platform with at least 90% of sequenced bases with a minimum of 30 reads depth. Each sample had an average of 20,274 variants, comprising 116 classified as rare pathogenic or likely pathogenic according to American College of Medical Genetics and Genomics and the Association (ACMG) guidelines. The genotype-phenotype association was impaired by the lack of detailed clinical and laboratory information, besides the unavailability of molecular and functional studies which, comprise the limitations of this study. Overall, the access to clinical exome sequencing data is limited, challenging exploratory analyses and the understanding of genetic mechanisms underlying disorders. Therefore, by making these data available, we aim to increase the number of WES data from Brazilian samples despite contributing to the study of monogenic IEI-disorders.


Subject(s)
Affect , Genomics , Male , Female , Humans , Brazil/epidemiology , Exome Sequencing , Hospitals , Rare Diseases
11.
J Vitreoretin Dis ; 7(1): 33-42, 2023.
Article in English | MEDLINE | ID: mdl-37008391

ABSTRACT

Purpose: To clinically and molecularly study a newly found family with North Carolina macular dystrophy (NCMD/MCDR1) from Mexico. Methods: This retrospective study comprised 6 members of a 3-generation Mexican family with NCMD. Clinical ophthalmic examinations, including fundus imaging, spectral-domain optical coherence tomography, electroretinography, and electrooculography, were performed. Genotyping with polymorphic markers in the MCDR1 region was performed to determine haplotypes. Whole-genome sequencing (WGS) was performed followed by variant filtering and copy number variant analysis. Results: Four subjects from 3 generations were found to have macular abnormalities. The proband presented with lifelong bilateral vision impairment with bilaterally symmetric vitelliform Best disease-like appearing macular lesions. Her 2 children had bilateral large macular coloboma-like malformations, consistent with autosomal dominant NCMD. The 80-year-old mother of the proband had drusen-like lesions consistent with grade 1 NCMD. WGS and subsequent Sanger sequencing found a point mutation at chr6:99593030G>C (hg38) in the noncoding region of the DNase I site thought to be a regulatory element of the retinal transcription factor gene PRDM13. This mutation is the identical site/nucleotide as in the original NCMD family (#765) but is a guanine to cytosine change rather than a guanine to thymine mutation, as found in the original NCMD family. Conclusions: We report a new noncoding mutation at the same locus (chr6:99593030G>C) involving the same DNase I site regulating the retinal transcription factor gene PRDM13. This suggests that this site, chr6:99593030, is a mutational hotspot.

12.
Antioxidants (Basel) ; 12(4)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37107290

ABSTRACT

Osteoporosis is characterized by a decline in bone mineral density (BMD) and increased fracture risk. Free radicals and antioxidant systems play a central role in bone remodeling. This study was conducted to illustrate the role of oxidative-stress-related genes in BMD and osteoporosis. A systematic review was performed following the PRISMA guidelines. The search was computed in PubMed, Web of Sciences, Scopus, EBSCO, and BVS from inception to November 1st, 2022. The risk of bias was evaluated using the Joanna Briggs Institute Critical Appraisal Checklist tool. A total of 427 potentially eligible articles exploring this search question were detected. After removing duplicates (n = 112) and excluding irrelevant manuscripts based on screenings of their titles and abstracts (n = 317), 19 articles were selected for full-text review. Finally, 14 original articles were included in this systematic review after we applied the exclusion and inclusion criteria. Data analyzed in this systematic review indicated that oxidative-stress-related genetic polymorphisms are associated with BMD at different skeletal sites in diverse populations, influencing the risk of osteoporosis or osteoporotic fracture. However, it is necessary to look deep into their association with bone metabolism to determine if the findings can be translated into the clinical management of osteoporosis and its progression.

13.
Braz J Psychiatry ; 45(3): 226-235, 2023.
Article in English | MEDLINE | ID: mdl-36918037

ABSTRACT

OBJECTIVES: Gene-environment interactions increase the risk of psychosis. The objective of this study was to investigate gene-gene and gene-environment interactions in psychosis, including single nucleotide variants (SNVs) of dopamine-2 receptor (D2R), N-methyl-d-aspartate receptor (NMDAR), and cannabinoid receptor type 1 (CB1R), lifetime cannabis use, and childhood trauma. METHODS: Twenty-three SNVs of genes encoding D2R (DRD2: rs1799978, rs7131056, rs6275), NMDAR (GRIN1: rs4880213, rs11146020; GRIN2A: rs1420040, rs11866328; GRIN2B: rs890, rs2098469, rs7298664), and CB1R (CNR1: rs806380, rs806379, rs1049353, rs6454674, rs1535255, rs2023239, rs12720071, rs6928499, rs806374, rs7766029, rs806378, rs10485170, rs9450898) were genotyped in 143 first-episode psychosis patients (FEPp) and 286 community-based controls by Illumina HumanCoreExome-24 BeadChip. Gene-gene and gene-environment associations were assessed using nonparametric Multifactor Dimensionality Reduction software. RESULTS: Single-locus analyses among the 23 SNVs for psychosis and gene-gene interactions were not significant (p > 0.05 for all comparisons); however, both environmental risk factors showed an association with psychosis (p < 0.001). Moreover, gene-environment interactions were significant for an SNV in CNR1 and cannabis use. The best-performing model was the combination of CNR1 rs12720071 and lifetime cannabis use (p < 0.001), suggesting an increased risk of psychosis. CONCLUSION: Our study supports the hypothesis of gene-environment interactions for psychosis involving T-allele carriers of CNR1 SNVs, childhood trauma, and cannabis use.


Subject(s)
Adverse Childhood Experiences , Cannabis , Psychotic Disorders , Humans , Cannabis/adverse effects , Genotype , Polymorphism, Single Nucleotide/genetics , Psychotic Disorders/genetics , Receptor, Cannabinoid, CB1/genetics
14.
Cancers (Basel) ; 15(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36980643

ABSTRACT

BACKGROUND: Cisplatin (CDDP) is a major ototoxic chemotherapy agent for head and neck squamous cell carcinoma (HNSCC) treatment. Clinicopathological features and genotypes encode different stages of CDDP metabolism, as their coexistence may influence the prevalence and severity of hearing loss. METHODS: HNSCC patients under CDDP chemoradiation were prospectively provided with baseline and post-treatment audiometry. Clinicopathological features and genetic variants encoding glutathione S-transferases (GSTT1, GSTM1, GSTP1), nucleotide excision repair (XPC, XPD, XPF, ERCC1), mismatch repair (MLH1, MSH2, MSH3, EXO1), and apoptosis (P53, CASP8, CASP9, CASP3, FAS, FASL)-related proteins were analyzed regarding ototoxicity. RESULTS: Eighty-nine patients were included, with a cumulative CDDP dose of 260 mg/m2. Moderate/severe ototoxicity occurred in 26 (29%) patients, particularly related to hearing loss at frequencies over 3000 Hertz. Race, body-mass index, and cumulative CDDP were independent risk factors. Patients with specific isolated and combined genotypes of GSTM1, GSTP1 c.313A>G, XPC c.2815A>C, XPD c.934G>A, EXO1 c.1762G>A, MSH3 c.3133A>G, FASL c.-844A>T, and P53 c.215G>C SNVs had up to 32.22 higher odds of presenting moderate/severe ototoxicity. CONCLUSIONS: Our data present, for the first time, the association of combined inherited nucleotide variants involved in CDDP efflux, DNA repair, and apoptosis with ototoxicity, which could be potential predictors in future clinical and genomic models.

15.
Gene ; 849: 146908, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36167182

ABSTRACT

Familial hypercholesterolemia (FH) is a prevalent autosomal genetic disease associated with increased risk of early cardiovascular events and death due to chronic exposure to very high levels of low-density lipoprotein cholesterol (LDL-c). Pathogenic variants in the coding regions of LDLR, APOB and PCSK9 account for most FH cases, and variants in non-coding regions maybe involved in FH as well. Variants in the upstream region of LDLR, APOB and PCSK9 were screened by targeted next-generation sequencing and their effects were explored using in silico tools. Twenty-five patients without pathogenic variants in FH-related genes were selected. 3 kb upstream regions of LDLR, APOB and PCSK9 were sequenced using the AmpliSeq (Illumina) and Miseq Reagent Nano Kit v2 (Illumina). Sequencing data were analyzed using variant discovery and functional annotation tools. Potentially regulatory variants were selected by integrating data from public databases, published data and context-dependent regulatory prediction score. Thirty-four single nucleotide variants (SNVs) in upstream regions were identified (6 in LDLR, 15 in APOB, and 13 in PCSK9). Five SNVs were prioritized as potentially regulatory variants (rs934197, rs9282606, rs36218923, rs538300761, g.55038486A > G). APOB rs934197 was previously associated with increased rate of transcription, which in silico analysis suggests that could be due to reducing binding affinity of a transcriptional repressor. Our findings highlight the importance of variant screening outside of coding regions of all relevant genes. Further functional studies are necessary to confirm that prioritized variants could impact gene regulation and contribute to the FH phenotype.


Subject(s)
Hyperlipoproteinemia Type II , Proprotein Convertase 9 , Humans , Proprotein Convertase 9/genetics , Cholesterol, LDL/genetics , Receptors, LDL/genetics , Brazil , Mutation , Hyperlipoproteinemia Type II/genetics , Phenotype , Apolipoproteins B/genetics , Nucleotides
16.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; Braz. J. Psychiatry (São Paulo, 1999, Impr.);45(3): 226-235, May-June 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447586

ABSTRACT

Objectives: Gene-environment interactions increase the risk of psychosis. The objective of this study was to investigate gene-gene and gene-environment interactions in psychosis, including single nucleotide variants (SNVs) of dopamine-2 receptor (D2R), N-methyl-d-aspartate receptor (NMDAR), and cannabinoid receptor type 1 (CB1R), lifetime cannabis use, and childhood trauma. Methods: Twenty-three SNVs of genes encoding D2R (DRD2: rs1799978, rs7131056, rs6275), NMDAR (GRIN1: rs4880213, rs11146020; GRIN2A: rs1420040, rs11866328; GRIN2B: rs890, rs2098469, rs7298664), and CB1R (CNR1: rs806380, rs806379, rs1049353, rs6454674, rs1535255, rs2023239, rs12720071, rs6928499, rs806374, rs7766029, rs806378, rs10485170, rs9450898) were genotyped in 143 first-episode psychosis patients (FEPp) and 286 community-based controls by Illumina HumanCoreExome-24 BeadChip. Gene-gene and gene-environment associations were assessed using nonparametric Multifactor Dimensionality Reduction software. Results: Single-locus analyses among the 23 SNVs for psychosis and gene-gene interactions were not significant (p > 0.05 for all comparisons); however, both environmental risk factors showed an association with psychosis (p < 0.001). Moreover, gene-environment interactions were significant for an SNV in CNR1 and cannabis use. The best-performing model was the combination of CNR1 rs12720071 and lifetime cannabis use (p < 0.001), suggesting an increased risk of psychosis. Conclusion: Our study supports the hypothesis of gene-environment interactions for psychosis involving T-allele carriers of CNR1 SNVs, childhood trauma, and cannabis use.

17.
Genes (Basel) ; 13(12)2022 12 02.
Article in English | MEDLINE | ID: mdl-36553538

ABSTRACT

The immune system plays a critical role in bone homeostasis and, consequently, in the pathophysiology of postmenopausal osteoporosis (OP) since estrogen deficiency induces the inflammasome and increases production of pro-inflammatory cytokines, such as IL-1ß and IL-18. NLRP3 inflammasome complex genes have been related with bone homeostasis in cellular and animal models. Here, we performed an association study evaluating SNVs (single-nucleotide variants) in inflammasome NLRP3 pathway genes (NLRP3, CARD8, CASP1, IL-18, and IL-1ß) to assess whether variants in these genes could be related to susceptibility to primary OP in postmenopausal women. METHODS: We genotyped 196 postmenopausal OP patients and 103 healthy controls using SNV-specific Taqman® probes. Data and statistical analyses were performed using the SNPstats and GraphPad Prism 8 software. RESULTS: We showed an association between NLRP3 rs35829419 CA genotype and lower bone mineral density (BMD) mean at the lumbar spine (p = 0.001); we also observed an association between IL-1ß rs16944 AA genotype and higher BMD mean at the total hip (p = 0.009). The IL-1ß rs16944 GG was associated with lower alkaline phosphatase levels (ALP) (p = 0.009), and the IL-18 rs1946519 AA was associated with lower vitamin D levels (p = 0.018). Additionally, OP patients presented deficient vitamin D and parathyroid hormone (PTH). CONCLUSIONS: The NLRP3 inflammasome complex SNVs were associated with OP severity, possibly indicating these genes' participation in bone metabolism and its dysregulation.


Subject(s)
Inflammasomes , Osteoporosis, Postmenopausal , Humans , Female , Inflammasomes/genetics , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18/genetics , Interleukin-18/metabolism , Polymorphism, Single Nucleotide , Osteoporosis, Postmenopausal/genetics , Vitamin D , Neoplasm Proteins/genetics , CARD Signaling Adaptor Proteins/genetics
18.
Mol Biol Rep ; 49(11): 11193-11199, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36104585

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease of autoimmune origin with many associated genetic traits, including genes related to the control of inflammation. The A20 protein, encoded by the TNFAIP3 gene, is a negative regulator of NF-kB mediated inflammation. Several single nucleotide variants (SNVs) of TNFAIP3 are associated with susceptibility to RA in different ethnic groups, none of which has been evaluated in Mexican patients. OBJECTIVE: To examine the possible association of eight TNFAIP3 SNVs in Mexican patients with RA. MATERIALS: We studied 471 patients with RA and 500 controls, as well as eight TNFAIP3 SNVs: including, rs10499194C/T, rs6920220G/A, and rs2230926T/G, which have been associated with RA in European or Asian patients, in addition to rs373421182G/C, rs139054966T/G, rs5029924C/T, rs59693083A/G and rs61593413T/A, not previously examined in RA. All SNVs were evaluated by means of an allelic discrimination assay using TaqMan probes. RESULTS: The allelic and genotypic frequencies of all SNVs examined were similar between cases and controls, and none of them was associated with RA under the allelic, codominant, dominant, and recessive models, as well as in haplotype combinations. CONCLUSION: Our data indicate that TNFAIP3 SNVs evaluated herein are not risk factors for RA in Mexican subjects.


Subject(s)
Arthritis, Rheumatoid , Genetic Predisposition to Disease , Humans , Polymorphism, Single Nucleotide/genetics , Nuclear Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , DNA-Binding Proteins/genetics , Case-Control Studies , Arthritis, Rheumatoid/genetics , Genotype , Inflammation , Nucleotides , Tumor Necrosis Factor alpha-Induced Protein 3/genetics
19.
Ann Hum Genet ; 86(6): 297-327, 2022 11.
Article in English | MEDLINE | ID: mdl-35946314

ABSTRACT

Eye color prediction based on an individual's genetic information is of interest in the field of forensic genetics. In recent years, researchers have studied different genes and markers associated with this externally visible characteristic and have developed methods for its prediction. The IrisPlex represents a validated tool for homogeneous populations, though its applicability in populations of mixed ancestry is limited, mainly regarding the prediction of intermediate eye colors. With the aim of validating the applicability of this system in an admixed population from Argentina (n = 302), we analyzed the six single nucleotide variants used in that multiplex for eye color and four additional SNPs, and evaluated its prediction ability. We also performed a genotype-phenotype association analysis. This system proved to be useful when dealing with the extreme ends of the eye color spectrum (blue and brown) but presented difficulties in determining the intermediate phenotypes (green), which were found in a large proportion of our population. We concluded that these genetic tools should be used with caution in admixed populations and that more studies are required in order to improve the prediction of intermediate phenotypes.


Subject(s)
DNA , Eye Color , Humans , Eye Color/genetics , Argentina , Genotype , Phenotype , Polymorphism, Single Nucleotide , Nucleotides , Genetics, Population
20.
J Pers Med ; 12(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35743735

ABSTRACT

Dihydropyrimidine dehydrogenase is one of the main pharmacological metabolizers of fluoropyrimidines, a group of drugs widely used in clinical oncology. Around 20 to 30% of patients treated with fluoropyrimidines experience severe toxicity caused by a partial or total decrease in enzymatic activity. This decrease is due to molecular variants in the DPYD gene. Their prevalence and allelic frequencies vary considerably worldwide, so their description in heterogeneous groups such as the Ecuadorian population will allow for the description of pharmacogenetic variants and proper characterization of this population. Thus, we genotyped all the molecular variants with a predictive value for DPYD in a total of 410 Ecuadorian individuals belonging to Mestizo, Afro-Ecuadorian, and Indigenous ethnic groups. Moreover, we developed a genetic ancestry analysis using 46 autosomal ancestry informative markers. We determined 20 genetic variations in 5 amplified regions, including 3 novel single nucleotide variants. The allele frequencies for DPYD variants c.1627G>A (*5, rs1801159), c.1129-15T>C (rs56293913), c.1218G>A (rs61622928), rs1337752, rs141050810, rs2786783, rs2811178, and g.97450142G>A (chr1, GRCh38.p13) are significantly related to Native American and African ancestry proportions. In addition, the FST calculated from these variants demonstrates the closeness between Indigenous and Mestizo populations, and evidences genetic divergence between Afro-Ecuadorian groups when compared with Mestizo and Indigenous ethnic groups. In conclusion, the genetic variability in the DPYD gene is related to the genetic component of ancestral populations in different Ecuadorian ethnic groups. The absence and low frequency of variants with predictive value for fluoropyrimidine toxicity such as DPYD *2A, HapB3, and c.2846A>T (prevalent in populations with European ancestry) is consistent with the genetic background found.

SELECTION OF CITATIONS
SEARCH DETAIL