Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.485
Filter
1.
Small ; : e2403821, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949043

ABSTRACT

Compared to the bulk heterojunction (BHJ) devices, the quasiplanar heterojunction (Q-PHJ) exhibits a more stable morphology and superior charge transfer performance. To achieve both high efficiency and long-term stability, it is necessary to design new materials for Q-PHJ devices. In this study, QxIC-CF3 and QxIC-CH3 are designed and synthesized for the first time. The trifluoromethylation of the central core exerts a modulatory effect on the molecular stacking pattern, leveraging the strong electrostatic potential and intermolecular interactions. Compared with QxIC-CH3, the single crystal structure reveals that QxIC-CF3 exhibits a more compact 2D linear stacking behavior. These benefits, combined with the separated electron and hole transport channels in Q-PHJ device, lead to increased charge mobility and reduced energy loss. The devices based on D18/QxIC-CF3 exhibit an efficiency of 18.1%, which is the highest power conversion efficiency (PCE) for Q-PHJ to date. Additionally, the thermodynamic stability of the active layer morphology enhances the lifespan of the aforementioned devices under illumination conditions. Specifically, the T80 is 420 h, which is nearly twice that of the renowned Y6-based BHJ device (T80 = 220 h). By combining the advantages of the trifluoromethylation and Q-PHJ device, efficient and stable organic solar cell devices can be constructed.

2.
Mol Cancer ; 23(1): 135, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951876

ABSTRACT

In cells, signal transduction heavily relies on the intricate regulation of protein kinases, which provide the fundamental framework for modulating most signaling pathways. Dysregulation of kinase activity has been implicated in numerous pathological conditions, particularly in cancer. The druggable nature of most kinases positions them into a focal point during the process of drug development. However, a significant challenge persists, as the role and biological function of nearly one third of human kinases remains largely unknown.Within this diverse landscape, cyclin-dependent kinases (CDKs) emerge as an intriguing molecular subgroup. In human, this kinase family encompasses 21 members, involved in several key biological processes. Remarkably, 13 of these CDKs belong to the category of understudied kinases, and only 5 having undergone broad investigation to date. This knowledge gap underscores the pressing need to delve into the study of these kinases, starting with a comprehensive review of the less-explored ones.Here, we will focus on the PCTAIRE subfamily of CDKs, which includes CDK16, CDK17, and CDK18, arguably among the most understudied CDKs members. To contextualize PCTAIREs within the spectrum of human pathophysiology, we conducted an exhaustive review of the existing literature and examined available databases. This approach resulted in an articulate depiction of these PCTAIREs, encompassing their expression patterns, 3D configurations, mechanisms of activation, and potential functions in normal tissues and in cancer.We propose that this effort offers the possibility of identifying promising areas of future research that extend from basic research to potential clinical and therapeutic applications.


Subject(s)
Cyclin-Dependent Kinases , Humans , Cyclin-Dependent Kinases/metabolism , Animals , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Signal Transduction , Structure-Activity Relationship , Protein Conformation
4.
Cell Mol Biol Lett ; 29(1): 98, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977956

ABSTRACT

Phospholipid Hydroperoxide Gluthatione Peroxidase also called Glutathione Peroxidase 4 is one of the 25 described human selenoproteins. It plays an essential role in eliminating toxic lipid hydroxy peroxides, thus inhibiting ferroptosis and favoring cell survival. GPX4 is differentially expressed according to myeloid differentiation stage, exhibiting lower expression in hematopoietic stem cells and polymorphonuclear leucocytes, while harboring higher level of expression in common myeloid progenitors and monocytes. In addition, GPX4 is highly expressed in most of acute myeloid leukemia (AML) subtypes compared to normal hematopoietic stem cells. High GPX4 expression is consistently correlated to poor prognosis in patients suffering AML. However, the role of GPX4 in the development of the myeloid lineage and in the initiation and progression of myeloid leukemia remains poorly explored. Given its essential role in the detoxification of lipid hydroperoxides, and its overexpression in most of myeloid malignancies, GPX4 inhibition has emerged as a promising therapeutic strategy to specifically trigger ferroptosis and eradicate myeloid leukemia cells. In this review, we describe the most recent advances concerning the role of GPX4 and, more generally ferroptosis in the myeloid lineage and in the emergence of AML. We also discuss the therapeutic interest and limitations of GPX4 inhibition alone or in combination with other drugs as innovative therapies to treat AML patients.


Subject(s)
Ferroptosis , Leukemia, Myeloid, Acute , Phospholipid Hydroperoxide Glutathione Peroxidase , Humans , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Ferroptosis/genetics , Cell Lineage/genetics , Animals , Myeloid Cells/metabolism , Myeloid Cells/pathology , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics
5.
Acta Pharmacol Sin ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987389

ABSTRACT

Influenza A virus (IAV) is a widespread pathogen that poses a significant threat to human health, causing pandemics with high mortality and pathogenicity. Given the emergence of increasingly drug-resistant strains of IAV, currently available antiviral drugs have been reported to be inadequate to meet clinical demands. Therefore, continuous exploration of safe, effective and broad-spectrum antiviral medications is urgently required. Here, we found that the small molecule compound J1 exhibited low toxicity both in vitro and in vivo. Moreover, J1 exhibits broad-spectrum antiviral activity against enveloped viruses, including IAV, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (HCoV-OC43), herpes simplex virus type 1 (HSV-1) and HSV-2. In this study, we explored the inhibitory effects and mechanism of action of J1 on IAV in vivo and in vitro. The results showed that J1 inhibited infection by IAV strains, including H1N1, H7N9, H5N1 and H3N2, as well as by oseltamivir-resistant strains. Mechanistic studies have shown that J1 blocks IAV infection mainly through specific interactions with the influenza virus hemagglutinin HA2 subunit, thereby blocking membrane fusion. BALB/c mice were used to establish a model of acute lung injury (ALI) induced by IAV. Treatment with J1 increased survival rates and reduced viral titers, lung index and lung inflammatory damage in virus-infected mice. In conclusion, J1 possesses significant anti-IAV effects in vitro and in vivo, providing insights into the development of broad-spectrum antivirals against future pandemics.

6.
Acta Pharm Sin B ; 14(7): 2815-2853, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027232

ABSTRACT

Regulated cell death (RCD) is a controlled form of cell death orchestrated by one or more cascading signaling pathways, making it amenable to pharmacological intervention. RCD subroutines can be categorized as apoptotic or non-apoptotic and play essential roles in maintaining homeostasis, facilitating development, and modulating immunity. Accumulating evidence has recently revealed that RCD evasion is frequently the primary cause of tumor survival. Several non-apoptotic RCD subroutines have garnered attention as promising cancer therapies due to their ability to induce tumor regression and prevent relapse, comparable to apoptosis. Moreover, they offer potential solutions for overcoming the acquired resistance of tumors toward apoptotic drugs. With an increasing understanding of the underlying mechanisms governing these non-apoptotic RCD subroutines, a growing number of small-molecule compounds targeting single or multiple pathways have been discovered, providing novel strategies for current cancer therapy. In this review, we comprehensively summarized the current regulatory mechanisms of the emerging non-apoptotic RCD subroutines, mainly including autophagy-dependent cell death, ferroptosis, cuproptosis, disulfidptosis, necroptosis, pyroptosis, alkaliptosis, oxeiptosis, parthanatos, mitochondrial permeability transition (MPT)-driven necrosis, entotic cell death, NETotic cell death, lysosome-dependent cell death, and immunogenic cell death (ICD). Furthermore, we focused on discussing the pharmacological regulatory mechanisms of related small-molecule compounds. In brief, these insightful findings may provide valuable guidance for investigating individual or collaborative targeting approaches towards different RCD subroutines, ultimately driving the discovery of novel small-molecule compounds that target RCD and significantly enhance future cancer therapeutics.

7.
Eur J Med Chem ; 275: 116622, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38959727

ABSTRACT

Blockade of the programmed cell death-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway is an attractive strategy for immunotherapy, but the clinical application of small molecule PD-1/PD-L1 inhibitors remains unclear. In this work, based on BMS-202 and our previous work YLW-106, a series of compounds with benzo[d]isothiazol structure as scaffold were designed and synthesized. Their inhibitory activity against PD-1/PD-L1 interaction was evaluated by a homogeneous time-resolved fluorescence (HTRF) assay. Among them, LLW-018 (27c) exhibited the most potent inhibitory activity with an IC50 value of 2.61 nM. The cellular level assays demonstrated that LLW-018 exhibited low cytotoxicity against Jurkat T and MDA-MB-231. Further cell-based PD-1/PD-L1 blockade bioassays based on PD-1 NFAT-Luc Jurkat cells and PD-L1 TCR Activator CHO cells indicated that LLW-018 could interrupt PD-1/PD-L1 interaction with an IC50 value of 0.88 µM. Multi-computational methods, including molecular docking, molecular dynamics, MM/GBSA, MM/PBSA, Metadynamics, and QM/MM MD were utilized on PD-L1 dimer complexes, which revealed the binding modes and dissociation process of LLW-018 and C2-symmetric small molecule inhibitor LCH1307. These results suggested that LLW-018 exhibited promising potency as a PD-1/PD-L1 inhibitor for further investigation.


Subject(s)
B7-H1 Antigen , Drug Design , Programmed Cell Death 1 Receptor , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Jurkat Cells , Molecular Docking Simulation , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/chemical synthesis , Animals , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Benzothiazoles/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry
8.
Small ; : e2403486, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-39031678

ABSTRACT

The development of high-performance organic photovoltaic materials is of crucial importance for the commercialization of organic solar cells (OSCs). Herein, two structurally simple donor-π-conjugated linker-acceptor (D-π-A)-configured small-molecule donors with methyl-substituted triphenylamine as D unit, 1,1-dicyanomethylene-3-indanone as A unit, and thiophene or furan as π-conjugated linker, named DTICPT and DTICPF, are developed. DTICPT and DTICPF are facilely prepared via a two-step synthetic process with simple procedures. DTICPF with a furan π-conjugated linker exhibits stronger and broader optical absorption, deeper highest occupied molecular orbital (HOMO) energy levels, and better charge transport, compared to its thiophene analog DTICPT. As a result, vacuum-deposited OSCs based on DTICPF: C70 show an impressive power conversion efficiency (PCE) of 9.36% (certified 9.15%) with short-circuit current density (Jsc) up to 17.49 mA cm-2 (certified 17.56 mA cm-2), which is the highest Jsc reported so far for vacuum-deposited OSCs. Besides, devices based on DTICPT: C70 and DTICPF: C70 exhibit excellent long-term stability under different aging conditions. This work offers important insights into the rational design of D-π-A configured small-molecule donors for high efficient and stable vacuum-deposited OSCs.

9.
J Basic Microbiol ; : e2400210, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014937

ABSTRACT

Research on fungal volatile organic compounds (VOCs) has increased worldwide in the last 10 years, but marine fungal volatilomes remain underexplored. Similarly, the hormone-signaling pathways, agronomic significance, and biocontrol potential of VOCs in plant-associated fungi make the area of research extremely promising. In the current investigation, VOCs of the isolates-Aspergillus sp. GSBT S13 and GSBT S14 from marine sediments, and Bulbithecium sp. GSBT E3 from Eucalyptus foliage were extracted using Head Space solid phase microextraction, followed by gas chromatography-mass spectrometry, identification, statistical analyses, and prediction of functions by KEGG COMPOUND and STITCH 5.0 databases. The significance of this research is fingerprinting VOCs of the isolates from distinct origins, identification of compounds using three libraries (NIST02, NIST14, and W9N11), and using bioinformatic tools to perform functional analysis. The most important findings include the identification of previously unreported compounds in fungi-1-methoxy naphthalene, diethyl phthalate, pentadecane, pristane, and nonanal; the prediction of the involvement of small molecules in the degradation of aromatic compound pathways and activation, inhibition, binding, and catalysis of metabolites with predicted protein partners. This study has ample opportunity to validate the findings and understand the mechanism or mode of action, the interspecies interactions, and the role of the metabolites in geochemical cycles.

10.
Adv Exp Med Biol ; 1459: 341-358, 2024.
Article in English | MEDLINE | ID: mdl-39017851

ABSTRACT

Myb was identified over four decades ago as the transforming component of acute leukemia viruses in chickens. Since then it has become increasingly apparent that dysregulated MYB activity characterizes many blood cancers, including acute myeloid leukemia, and that it represents the most "addictive" oncoprotein in many, if not all, such diseases. As a consequence of this tumor-specific dependency for MYB, it has become a major focus of efforts to develop specific antileukemia drugs. Much attention is being given to ways to interrupt the interaction between MYB and cooperating factors, in particular EP300/KAT3B and CBP/KAT3A. Aside from candidates identified through screening of small molecules, the most exciting prospect for novel drugs seems to be the design of peptide mimetics that interfere directly at the interface between MYB and its cofactors. Such peptides combine a high degree of target specificity with good efficacy including minimal effects on normal hematopoietic cells.


Subject(s)
Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-myb , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Humans , Proto-Oncogene Proteins c-myb/metabolism , Proto-Oncogene Proteins c-myb/genetics , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Molecular Targeted Therapy , Gene Expression Regulation, Leukemic/drug effects
11.
Methods Mol Biol ; 2826: 219-230, 2024.
Article in English | MEDLINE | ID: mdl-39017896

ABSTRACT

One way memory B cells provide protection is by rapidly differentiating into plasma cells. Plasma cells are vital in providing long-term protection against pathogens; however, they can also be detrimental to health in the case of antibody-mediated autoimmunity. Therefore, compounds which modulate the survival of plasma cells have been of interest for therapeutic intervention. Investigation of ex vivo plasma cell survival has previously been limited by the low frequency of plasma cells in the blood. Here we describe a novel ex vivo culture system that only requires 3000-5000 cells per condition. This method permits the assessment of human plasma cell survival derived from blood and can assess the impact of small molecule inhibitors on plasma cell viability.


Subject(s)
Cell Survival , Plasma Cells , Humans , Plasma Cells/immunology , Plasma Cells/cytology , Plasma Cells/drug effects , Cell Survival/drug effects , Cell Culture Techniques/methods , Cells, Cultured , Flow Cytometry/methods
12.
Bioorg Chem ; 151: 107650, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39042962

ABSTRACT

ATPases Associated with Diverse Cellular Activity (AAA+ATPases) are important enzymatic functional proteins in human cells. Thyroid Hormone Receptor Interacting Protein-13 (TRIP13) is a member of this protein superfamily, that partly regulates DNA repair pathways and spindle assembly checkpoints during mitosis. TRIP13 is reported as an oncogene involving multiple pathways in many human malignancies, including multiple myeloma, brain tumors, etc. The structure of TRIP13 reveals the mechanisms for ATP binding and how TRIP13 recognizes the Mitotic Arrest Deficiency-2 (MAD2) protein, with p31comet acting as an adapter protein. DCZ0415, TI17, DCZ5417, and DCZ5418 are the reported small-molecule inhibitors of TRIP13, which have been demonstrated to inhibit TRIP13's biological functions significantly and effective in suppressing various types of malignant cells, indicating that TRIP13 is a significant anticancer drug target. Currently, no systematic reviews are cutting across the functions, structure, and novel inhibitors of TRIP13. This review provides a comprehensive overview of TRIP13's biological functions, its roles in eighteen different cancers, four small molecule inhibitors, different underlying molecular mechanisms, and its functionality as a potential anticancer drug target.

13.
Mol Biol Rep ; 51(1): 848, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046562

ABSTRACT

The circadian clock is an important regulator of human homeostasis. Circadian rhythms are closely related to cell fate because they are necessary for regulating the cell cycle, cellular proliferation, and apoptosis. Clock dysfunction can result in the development of diseases such as cancer. Although certain tumors have been shown to have a malfunctioning clock, which may affect prognosis or treatment, this has been postulated but not proven in many types of cancer. Recently, important information has emerged about the basic characteristics that underpin the overt circadian rhythm and its influence on physiological outputs. This information implies that the circadian rhythm may be managed by using particular small molecules. Small-molecule clock modulators target clock components or different physiological pathways that influence the clock. Identifying new small-molecule modulators will improve our understanding of critical regulatory nodes in the circadian network and cancer. Pharmacological manipulation of the clock may be valuable for treating cancer. The discoveries of small-molecule clock modulators and their possible application in cancer treatment are examined in this review.


Subject(s)
Circadian Clocks , Circadian Rhythm , Neoplasms , Humans , Circadian Clocks/drug effects , Neoplasms/drug therapy , Circadian Rhythm/drug effects , Animals , Small Molecule Libraries/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
14.
Dent J (Basel) ; 12(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39056982

ABSTRACT

Our research explores the interplay between Aggregatibacter actinomycetemcomitans (Aa) cytolethal distending toxin (Cdt) and the host's inflammatory response in molar/incisor pattern periodontitis (MIPP). Cdt disrupts phosphatidylinositol-3,4,5-triphosphate (PIP3) signaling, influencing cytokine expression through canonical and non-canonical inflammasome activation as well as nuclear factor-κB (NF-κB) activation, leading to inflammation in MIPP. THP-1 differentiated macrophages (TDMs) exposed to Cdt exhibited an upregulation of pro-inflammatory genes and subsequent cytokine release. We analyzed the ability of a small molecule therapeutic, LGM2605, known for its anti-inflammatory properties, to reduce pro-inflammatory gene expression and cytokine release in Cdt-exposed and Aa-inoculated TDMs. LGM2605's mechanism of action involves inhibiting NF-κB while activating the Nrf2-transcription factor and antioxidants. Herein, we show that this small molecule therapeutic mitigates Cdt-induced pro-inflammatory cytokine expression and secretion. Our study also further defines Cdt's impact on osteoclast differentiation and maturation in MIPP. Cdt promotes increased TRAP+ cells, indicating heightened osteoclast differentiation, specific to Cdt's phosphatase activity. Cathepsin K levels rise during this process, reflecting changes in TRAP distribution between control and Cdt-treated cells. Exploring LGM2605's effect on Cdt-induced osteoclast differentiation and maturation, we found TRAP+ cells significantly reduced with LGM2605 treatment compared to Cdt alone. Upon LGM2605 treatment, immunocytochemistry revealed a decreased TRAP intensity and number of multinucleated cells. Moreover, immunoblotting showed reduced TRAP and cathepsin K levels, suggesting LGM2605's potential to curb osteoclast differentiation and maturation by modulating inflammatory cytokines, possibly involving Nrf2 activation. In summary, our research reveals the intricate connections between Cdt, pro-inflammatory cytokines, and osteoclast differentiation, offering novel therapeutic possibilities for managing these conditions.

15.
Biomed Pharmacother ; 178: 117179, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059347

ABSTRACT

Diabetes, a metabolic disease caused by abnormally high levels of blood glucose, has a high prevalence rate worldwide and causes a series of complications, including coronary heart disease, stroke, peripheral vascular disease, end-stage renal disease, and retinopathy. Small-molecule compounds have been developed as drugs for the treatment of diabetes because of their oral advantages. Insulin secretagogues are a class of small-molecule drugs used to treat diabetes, and include sulfonylureas, non-sulfonylureas, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase 4 inhibitors, and other novel small-molecule insulin secretagogues. However, many small-molecule compounds cause different side effects, posing huge challenges to drug monotherapy and drug selection. Therefore, the use of different small-molecule drugs must be improved. This article reviews the mechanism, advantages, limitations, and potential risks of small-molecule insulin secretagogues to provide future research directions on small-molecule drugs for the treatment of diabetes.

16.
Cancer Lett ; 598: 217126, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053726

ABSTRACT

The MDM2 oncogene is amplified and/or overexpressed in various human cancers and elevated expression of MDM2 protein acts as a survival factor promoting cancer progression through both p53-dependent and -independent pathways. Here, we report a novel small-molecule chemical compound (MX69-102) that we identified to induce MDM2 protein degradation, resulting in reactivation of p53, inhibition of XIAP, and potent cell growth inhibition and apoptosis in MDM2-overexpressing acute lymphoblastic leukemia (ALL) in vitro and in vivo. We have previously identified a compound (MX69) that binds to the MDM2 C-terminal RING domain and induces MDM2 protein degradation. In the present study, we performed structural modifications of MX69 and selected analog MX69-102, showing increased MDM2-targeting activity. MX69-102 exhibited significantly enhanced inhibitory and apoptotic effects on a group of MDM2-overexpressing ALL cell lines in vitro with IC50 values of about 0.2 µM, representing an approximately 38-fold increase in activity compared to MX69. MX69-102 also showed effective inhibition on xenografted human MDM2-overexpressing ALL in SCID mice. Importantly, MX69-102 had minimal or no inhibitory effect on normal human hematopoiesis in vitro and was very well tolerated in vivo in animal models. Based on the strong inhibitory and apoptotic activity against MDM2-overexpressing ALL, along with minimal or no toxicity to normal cells/tissues, MX69-102 is a candidate for further development as a novel MDM2-targeted therapeutic drug for refractory/MDM2-overexpressing ALL.

17.
Chembiochem ; : e202400255, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980259

ABSTRACT

Immuno-oncology has become a revolutionary strategy for cancer treatment. Therapeutic interventions based on adaptive immunity through immune checkpoint therapy or chimeric antigen receptor T cells have received clinical approval for monotherapy and combination treatment use in various cancers. Although these treatments have achieved clinical successes, only a minority of cancer patients show a response, highlighting the urgent need to discover new therapeutic molecules that could be exploited to improve clinical outcomes and pave the way for the next generation of immunotherapy. Given the critical role of the innate immune system against infection and cancer, substantial efforts have been dedicated to developing novel anticancer therapeutics that target these pathways. Targeting the stimulator of interferon genes (STING) pathway is a powerful strategy to generate durable antitumor response, and activation of the adaptor protein STING induces the initiation of transcriptional cascades, thereby producing type I interferons, pro-inflammatory cytokines and chemokines. Various STING agonists, including natural or synthetic cyclic dinucleotides (CDNs) have been developed as anticancer therapeutics. However, since most CDNs are confined to intratumoral administration, there has been a great interest in developing non-nucleotide agonists for systemic treatment. Here we review the current development of STING-activating therapeutics in both preclinical or clinical stages.

18.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000112

ABSTRACT

Androgen-receptor-negative, androgen-independent (ARneg-AI) prostate cancer aggressively proliferates and metastasizes, which makes treatment difficult. Hence, it is necessary to continue exploring cancer-associated markers, such as oncofetal Receptor Tyrosine Kinase like Orphan Receptor 1 (ROR1), which may serve as a form of targeted prostate cancer therapy. In this study, we identify that Penta-O-galloyl-ß-D-glucose (PGG), a plant-derived gallotannin small molecule inhibitor, modulates ROR1-mediated oncogenic signaling and mitigates prostate cancer phenotypes. Results indicate that ROR1 protein levels were elevated in the highly aggressive ARneg-AI PC3 cancer cell line. PGG was selectively cytotoxic to PC3 cells and induced apoptosis of PC3 (IC50 of 31.64 µM) in comparison to normal prostate epithelial RWPE-1 cells (IC50 of 74.55 µM). PGG was found to suppress ROR1 and downstream oncogenic pathways in PC3 cells. These molecular phenomena were corroborated by reduced migration, invasion, and cell cycle progression of PC3 cells. PGG minimally and moderately affected RWPE-1 and ARneg-AI DU145, respectively, which may be due to these cells having lower levels of ROR1 expression in comparison to PC3 cells. Additionally, PGG acted synergistically with the standard chemotherapeutic agent docetaxel to lower the IC50 of both compounds about five-fold (combination index = 0.402) in PC3 cells. These results suggest that ROR1 is a key oncogenic driver and a promising target in aggressive prostate cancers that lack a targetable androgen receptor. Furthermore, PGG may be a selective and potent anti-cancer agent capable of treating ROR1-expressing prostate cancers.


Subject(s)
Cell Proliferation , Glycogen Synthase Kinase 3 beta , Hydrolyzable Tannins , Prostatic Neoplasms , Proto-Oncogene Proteins c-akt , Receptor Tyrosine Kinase-like Orphan Receptors , Signal Transduction , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Hydrolyzable Tannins/pharmacology , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Signal Transduction/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Cell Movement/drug effects , PC-3 Cells , Gene Expression Regulation, Neoplastic/drug effects , Docetaxel/pharmacology
19.
Neoplasia ; 55: 101020, 2024 09.
Article in English | MEDLINE | ID: mdl-38991376

ABSTRACT

The 78-kDa glucose regulated protein (GRP78) commonly upregulated in a wide variety of tumors is an important prognostic marker and a promising target for suppressing tumorigenesis and treatment resistance. While GRP78 is well established as a major endoplasmic reticulum (ER) chaperone with anti-apoptotic properties and a master regulator of the unfolded protein response, its new role as a regulator of oncoprotein expression is just emerging. MYC is dysregulated in about 70 % of human cancers and is the most commonly activated oncoprotein. However, despite recent advances, therapeutic targeting of MYC remains challenging. Here we identify GRP78 as a new target for suppression of MYC expression. Using multiple MYC-dependent cancer models including head and neck squamous cell carcinoma and their cisplatin-resistant clones, breast and pancreatic adenocarcinoma, our studies revealed that GRP78 knockdown by siRNA or inhibition of its activity by small molecule inhibitors (YUM70 or HA15) reduced c-MYC expression, leading to onset of apoptosis and loss of cell viability. This was observed in 2D cell culture, 3D spheroid and in xenograft models. Mechanistically, we determined that the suppression of c-MYC is at the post-transcriptional level and that YUM70 and HA15 treatment potently upregulated the eukaryotic translation inhibitor 4E-BP1, which targets eIF4E critical for c-MYC translation initiation. Furthermore, knock-down of 4E-BP1 via siRNA rescued YUM70-mediated c-MYC suppression. As YUM70 is also capable of suppressing N-MYC expression, this study offers a new approach to suppress MYC protein expression through knockdown or inhibition of GRP78.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Endoplasmic Reticulum Chaperone BiP , Gene Expression Regulation, Neoplastic , Heat-Shock Proteins , Proto-Oncogene Proteins c-myc , Humans , Endoplasmic Reticulum Chaperone BiP/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Animals , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/antagonists & inhibitors , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Phosphoproteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/antagonists & inhibitors , Apoptosis/drug effects , Cell Survival/drug effects , Xenograft Model Antitumor Assays , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Up-Regulation/drug effects
20.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998978

ABSTRACT

The regulation of the cancer cell cycle heavily relies on cyclin-dependent kinases (CDKs). Targeting CDKs has been identified as a promising approach for effective cancer therapy. In recent years, there has been significant attention paid towards developing small-molecule CDK inhibitors in the field of drug discovery. Notably, five such inhibitors have already received regulatory approval for the treatment of different cancers, including breast tumors, lung malignancies, and hematological malignancies. This review provides an overview of the synthetic routes used to produce 17 representative small-molecule CDK inhibitors that have obtained regulatory approval or are currently being evaluated through clinical trials. It also discusses their clinical applications for treating CDK-related diseases and explores the challenges and limitations associated with their use in a clinical setting, which will stimulate the further development of novel CDK inhibitors. By integrating therapeutic applications, synthetic methodologies, and mechanisms of action observed in various clinical trials involving these CDK inhibitors, this review facilitates a comprehensive understanding of the versatile roles and therapeutic potential offered by interventions targeting CDKs.


Subject(s)
Antineoplastic Agents , Cyclin-Dependent Kinases , Neoplasms , Protein Kinase Inhibitors , Small Molecule Libraries , Humans , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/therapeutic use , Small Molecule Libraries/chemical synthesis , Animals , Drug Discovery , Clinical Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL