Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Adv Sci (Weinh) ; : e2404893, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39099395

ABSTRACT

Water motion-induced energy harvesting has emerged as a prominent means of facilitating renewable electricity from the interaction between nanostructured materials and water over the past decade. Despite the growing interest, comprehension of the intricate solid-liquid interfacial phenomena related to solid state physics remains elusive and serves as a hindrance to enhancing energy harvesting efficiency up to the practical level. Herein, the study introduces the energy harvester by utilizing inversion on the majority charge carrier in graphene materials upon interaction with water molecules. Specifically, various metal electrode configurations are employed on reduced graphene oxide (rGO) to unravel its distinctive charge carriers that experience the inversion in semiconductor type upon water contact, and exploit this characteristic to leverage the efficacy of generated electricity. Through the strategic arrangement of the metal electrodes on rGO membrane, the open-circuit voltage (Voc) and short-circuit current (Isc) have exhibited a remarkable augmentation, reaching 1.05 V and 31.6 µA, respectively. The demonstration of effectively tailoring carrier dynamics via electrode configuration expands the practicality by achieving high power density and elucidating how the water-induced carrier density modulation occurs in 2D nanomaterials.

2.
Adv Healthc Mater ; : e2402266, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138999

ABSTRACT

Microwave (MW) therapy is an emerging therapy with high efficiency and deep penetration to combat the crisis of bacterial resistance. However, as the energy of MW is too low to induce electron transition, the mechanism of MW catalytic effect remains ambiguous. Herein, a cerium-based metal-organic framework (MOF) is fabricated and used in MW therapy. The MW-catalytic performance of CeTCPP is largely dependent on the ions in the liquid environment, and the electron transition is achieved through a "tribovoltaic effect" between water molecules and CeTCPP. By this way, CeTCPP can generate reactive oxygen species (ROS) in saline under pulsed MW irradiation, showing 99.9995 ± 0.0002% antibacterial ratio against Staphylococcus aureus (S. aureus) upon two cycles of MW irradiation. Bacterial metabolomics further demonstrates that the diffusion of ROS into bacteria led to the bacterial metabolic disorders. The bacteria are finally killed due to "amino acid starvation". In order to improve the applicability of CeTCPP, It is incorporated into alginate-based hydrogel, which maintains good MW catalytic antibacterial efficiency and also good biocompatibility. Therefore, this work provides a comprehensive instruction of using CeTCPP in MW therapy, from mechanism to application. This work also provides new perspectives for the design of antibacterial composite hydrogel.

3.
Heliyon ; 10(12): e32710, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975103

ABSTRACT

The study of solid/liquid interface is of great significance for understanding various phenomena such as the nanostructure of the interface, liquid wetting, crystal growth and nucleation. In this work, the nanostructure of the pyridinium ionic liquid [BPy]BF4 on different gold surfaces was studied by molecular dynamics simulation. The results indicate that the density of the ionic liquids near the gold surface is significantly higher than that in the bulk phase. Cation's tail (the alkyl chain) orients parallel to the surface under all studied conditions. Cation's head (the pyridine ring) orientation varies from parallel to perpendicular, which depends on the temperature and corrugation of the Au(hkl) surface. Interestingly, analysis of simulated mass and number densities revealed that surface corrugation randomizes the cations packing. On smooth Au(111) and Au(100) surfaces, parallel and perpendicular orientations are well distinguished for densely packed cations. While on corrugated Au(110), cations' packing density and order are decreased. Overall, this study explores the adsorption effect of the gold surface on ionic liquids, providing some valuable insights into their behavior on the solid/liquid interface.

4.
Water Res ; 261: 122022, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39002417

ABSTRACT

Controllable and recyclable magnetic porous microspheres (MPMs) have been proposed as a means for enhancing the anaerobic digestion (AD) of sludge, as they do not require continuous replenishment and can serve as carriers for anaerobes. However, the effects of MPMs on the interfacial thermodynamics of sludge and the biological responses triggered by abiotic effects in AD systems remain to be clarified. Herein, the underlying mechanisms by which MPMs alter the solid-liquid interface of sludge to drive methanogenesis were investigated. A significant increase in the contents of 13C and 2H (D) in methane molecules was observed in the presence of MPMs, suggesting that MPMs might enhance the CO2-reduction methanogenesis and participation of water in methane generation. Experimental results demonstrated that the addition of MPMs did not promote the anaerobic bioconversion of soluble organics for methanogenesis, suggesting that the enhanced methanogenesis and water participation were not achieved through promotion of the bioconversion of original liquid-state organics in sludge. Analyses of the capillary force, surface adhesion force, and interfacial proton-coupled electron transfer (PCET) of MPMs revealed that MPMs can enhance mass transfer, effective contact, and electron-proton transfer with sludge. These outcomes were confirmed by the statistical analyses of variations in the interfacial thermodynamics and PCET of sludge with and without MPMs during AD. It was thus proposed that the MPMs enhanced the PCET of sludge and PCET-driven release of protons from water by promoting the interfacial Lewis acid-base interactions of sludge, thereby resulting in the enrichment of free and attached methanogenic consortia and the high energy-conserving metabolic cooperation. This proposition was further confirmed by identifying the predominant syntrophic partners, suggesting that PCET-based efficient methanogenesis was attributable to the enrichment of genomes harbouring CO2-reducing pathway and genes encoding water-mediated proton transfer. These findings offer new insights into how substrate properties can be altered by exogenous materials to enable highly efficient methanogenesis.


Subject(s)
Methane , Microspheres , Sewage , Thermodynamics , Methane/metabolism , Porosity , Anaerobiosis
5.
Molecules ; 29(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38893538

ABSTRACT

Protocell models play a pivotal role in the exploration of the origin of life. Vesicles are one type of protocell model that have attracted much attention. Simple single-chain amphiphiles (SACs) and organic small molecules (OSMs) possess primitive relevance and were most likely the building blocks of protocells on the early Earth. OSM@SAC vesicles have been considered to be plausible protocell models. Pyrite (FeS2), a mineral with primitive relevance, is ubiquitous in nature and plays a crucial role in the exploration of the origin of life in the mineral-water interface scenario. "How do protocell models based on OSM@SAC vesicles interact with a mineral-water interface scenario that simulates a primitive Earth environment" remains an unresolved question. Hence, we select primitive relevant sodium monododecyl phosphate (SDP), isopentenol (IPN) and pyrite (FeS2) mineral particles to build a protocell model. The model investigates the basic physical and chemical properties of FeS2 particles and reveals the effects of the size, content and duration of interaction of FeS2 particles on IPN@SDP vesicles. This deepens the understanding of protocell growth mechanisms in scenarios of mineral-water interfaces in primitive Earth environments and provides new information for the exploration of the origin of life.

6.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893584

ABSTRACT

In this study, molecular dynamics (MD) simulations were employed to elucidate the processes and underlying mechanisms that govern the adsorption and accumulation of gas (represented by N2) at the hydrophobic solid-liquid interface, using the GROMACS program with an AMBER force field. Our findings indicate that, regardless of surface roughness, the presence of water molecules is a prerequisite for the adsorption and aggregation of N2 molecules on solid surfaces. N2 molecules dissolved in water can cluster even without a solid substrate. In the gas-solid-liquid system, the exclusion of water molecules at the hydrophobic solid-liquid interface and the adsorption of N2 molecules do not occur simultaneously. A loosely arranged layer of water molecules is initially formed on the hydrophobic solid surface. The two-stage process of N2 molecule adsorption and accumulation at the hydrophobic solid/liquid interface involves initial adsorption to the solid surface, displacing water molecules, followed by N2 accumulation via self-interaction after saturating the substrate's surface. The process and underlying mechanisms of gas adsorption and accumulation at hydrophobic solid/liquid interfaces elucidated in this study offer a molecular-level understanding of nano-gas layer formation.

7.
Annu Rev Phys Chem ; 75(1): 457-481, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941530

ABSTRACT

Reaction intermediates buried within a solid-liquid interface are difficult targets for physiochemical measurements. They are inherently molecular and locally dynamic, while their surroundings are extended by a periodic lattice on one side and the solvent dielectric on the other. Challenges compound on a metal-oxide surface of varied sites and especially so at its aqueous interface of many prominent reactions. Recently, phenomenological theory coupled with optical spectroscopy has become a more prominent tool for isolating the intermediates and their molecular dynamics. The following article reviews three examples of the SrTiO3-aqueous interface subject to the oxygen evolution from water: reaction-dependent component analyses of time-resolved intermediates, a Fano resonance of a mode at the metal-oxide-water interface, and reaction isotherms of metastable intermediates. The phenomenology uses parameters to encase what is unknown at a microscopic level to then circumscribe the clear and macroscopically tuned trends seen in the spectroscopic data.

8.
Nano Lett ; 24(21): 6255-6261, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743662

ABSTRACT

In this study, we clarify the liquid structure formed at the interface between LiCoO2 (LCO), the cathode material of Li-ion batteries, and propylene carbonate (PC), which is used as a solvent in the electrolyte, on a molecular scale. We apply sparse modeling-based modal analysis to force spectroscopy data measured by frequency modulation atomic force microscopy (FM-AFM) and show that each component in the FM-AFM force curve, such as oscillatory solvation force, background, and noise, can be automatically decomposed. Moreover, by combining detailed force curve analysis with solid/liquid interface simulations based on first-principles calculation, we have identified that there are distinct damped vibrational modes in the force curves at the LCO/PC interface with a period of about 0.57 nm and those with shorter periods, which likely correspond to the solvation forces associated with bulk-state PC molecules and those with PC molecules in "lying down" orientations.

9.
Adv Mater ; 36(32): e2401735, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38813786

ABSTRACT

The early stages of corrosion occurring at liquid-solid interfaces control the evolution of the material's degradation process, yet due to their transient state, their analysis remains a formidable challenge. Here corrosion tests are performed on a MgCa alloy, a candidate material for biodegradable implants using pure water as a model system. The corrosion reaction is suspended by plunge freezing into liquid nitrogen. The evolution of the early-stage corrosion process on the nanoscale by correlating cryo-atom probe tomography (APT) with transmission-electron microscopy (TEM) and spectroscopy, is studied. The outward growth of Mg hydroxide Mg(OH)2 and the inward growth of an intermediate corrosion layer consisting of hydrloxides of different compositions, mostly monohydroxide Mg(OH) instead of the expected MgO layer, are observed. In addition, Ca partitions to these newly formed hydroxides and oxides. Density-functional theory calculations suggest a domain of stability for this previously experimental unreported Mg(OH) phase. This new approach and these new findings advance the understanding of the early stages of magnesium corrosion, and in general reactions and processes at liquid-solid interfaces, which can further facilitate the development of corrosion-resistant materials or better control of the biodegradation rate of future implants.

10.
Micromachines (Basel) ; 15(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542666

ABSTRACT

Zeta potential (ζ potential) is a significant parameter to characterize the electric property of the electric double layer (EDL), which is important at the solid-liquid interface. Non-uniform ζ potential could be developed on a chemically uniform solid-liquid interface due to external flow. However, its influence on the flow has never been concerned. In this investigation, we numerically studied the influence of non-uniform 2D ζ potential on the flow at the solid-liquid interface. It is found, that even without any external electric field and only considering the influence of 2D ζ potential distribution, swirling flow can be generated near EDL, according to the rotational electric volume force. The streamwise vortices, which are important in the turbulent boundary layer, are theoretically predicted in this laminar flow model when considering the 2D distribution of ζ potential, implying the necessity of considering the origin of streamwise vortices of the turbulent boundary layer from the perspective of electrokinetic flow. In addition, the ζ potential distribution can promote the wall shear stress. Therefore, more attention must be paid to shear-sensitivity circumstances, like biomedical, medical devices, and in vivo. We hope that the current investigation can help us to better understand the effect of charge distribution on interfacial flow and provide theoretical guidance for the development of related applications in the future.

11.
ACS Appl Mater Interfaces ; 16(7): 9517-9531, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38324480

ABSTRACT

Transparent conductive oxides such as indium tin oxide (ITO) are standards for thin film electrodes, providing a synergy of high optical transparency and electrical conductivity. In an electrolytic environment, the determination of an inert electrochemical potential window is crucial to maintain a stable material performance during device operation. We introduce operando ellipsometry, combining cyclic voltammetry (CV) with spectroscopic ellipsometry, as a versatile tool to monitor the evolution of both complete optical (i.e., complex refractive index) and electrical properties under wet electrochemical operational conditions. In particular, we trace the degradation of ITO electrodes caused by electrochemical reduction in a pH-neutral, water-based electrolyte environment during electrochemical cycling. With the onset of hydrogen evolution at negative bias voltages, indium and tin are irreversibly reduced to the metallic state, causing an advancing darkening, i.e., a gradual loss of transparency, with every CV cycle, while the conductivity is mostly conserved over multiple CV cycles. Post-operando analysis reveals the reductive (loss of oxygen) formation of metallic nanodroplets on the surface. The reductive disruption of the ITO electrode happens at the solid-liquid interface and proceeds gradually from the surface to the bottom of the layer, which is evidenced by cross-sectional transmission electron microscopy imaging and complemented by energy-dispersive X-ray spectroscopy mapping. As long as a continuous part of the ITO layer remains at the bottom, the conductivity is largely retained, allowing repeated CV cycling. We consider operando ellipsometry a sensitive and nondestructive tool to monitor early stage material and property changes, either by tracing failure points, controlling intentional processes, or for sensing purposes, making it suitable for various research fields involving solid-liquid interfaces and electrochemical activity.

12.
J Phys Condens Matter ; 36(18)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38253003

ABSTRACT

In electrochemistry, reactions and charge-transfer are to a large extent determined by the atomistic structure of the solid-liquid interface. Yet due to the presence of the liquid electrolyte, many surface-science methods cannot be applied here. Hence, the exact microscopic structure that is present under operating conditions often remains unknown. Reflection anisotropy spectroscopy (RAS) is one of the few techniques that allow for anin operandoinvestigation of the structure of solid-liquid interfaces. However, an interpretation of RAS data on the atomistic scale can only be obtained by comparison to computational spectroscopy. While the number of computational RAS studies related to electrochemical systems is currently still limited, those studies so far have not taken into account the dynamic nature of the solid-liquid interface. In this work, we investigate the temporal evolution of the spectroscopic response of the Au(110) missing row reconstruction in contact with water by combiningab initiomolecular dynamics with computational spectroscopy. Our results show significant changes in the time evolution of the RA spectra, in particular providing an explanation for the typically observed differences in intensity when comparing theory and experiment. Moreover, these findings point to the importance of structural surface/interface variability while at the same time emphasising the potential of RAS for probing these dynamic interfaces.

13.
Angew Chem Int Ed Engl ; 63(9): e202317876, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38193266

ABSTRACT

Constructing uniform covalent organic framework (COF) film on substrates for electronic devices is highly desirable. Here, a simple and mild strategy is developed to prepare them by polymerization on a solid-liquid interface. The universality of the method is confirmed by the successful preparation of five COF films with different microstructures. These films have large lateral size, controllable thickness, and high crystalline quality. And COF patterns can also be directly achieved on substrates via hydrophilic and hydrophobic interface engineering, which is in favor of preparing device array. For application studies, the PyTTA-TPA (PyTTA: 4,4',4'',4'''-(1,3,6,8-Tetrakis(4-aminophenyl)pyrene and TPA: terephthalaldehyde) COF film has a high photoresponsivity of 59.79 µA W-1 at 420 nm for photoelectrochemical (PEC) detection. When employed as an active material for optoelectronic synaptic devices for the first attempt, it shows excellent light-stimulated synaptic plasticity properties such as short-term plasticity (STP), long-term plasticity (LTP), and the conversion of STP to LTP, which can be used to simulate biological synaptic functions.

14.
ACS Nano ; 18(1): 1181-1194, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38117206

ABSTRACT

When a surface is immersed in a solution, it usually acquires a charge, which attracts counterions and repels co-ions to form an electrical double layer. The ions directly adsorbed to the surface are referred to as the Stern layer. The structure of the Stern layer normal to the interface was described decades ago, but the lateral organization within the Stern layer has received scant attention. This is because instrumental limitations have prevented visualization of the ion arrangements except for atypical, model, crystalline surfaces. Here, we use high-resolution amplitude modulated atomic force microscopy (AFM) to visualize in situ the lateral structure of Stern layer ions adsorbed to polycrystalline gold, and amorphous silica and gallium nitride (GaN). For all three substrates, when the density of ions in the layer exceeds a system-dependent threshold, correlation effects induce the formation of close packed structures akin to Wigner crystals. Depending on the surface and the ions, the Wigner crystal-like structure can be hexagonally close packed, cubic, or worm-like. The influence of the electrolyte concentration, species, and valence, as well as the surface type and charge, on the Stern layer structures is described. When the system parameters are changed to reduce the Stern layer ion surface excess below the threshold value, Wigner crystal-like structures do not form and the Stern layer is unstructured. For gold surfaces, molecular dynamics (MD) simulations reveal that when sufficient potential is applied to the surface, ion clusters form with dimensions similar to the Wigner crystal-like structures in the AFM images. The lateral Stern layer structures presented, and in particular the Wigner crystal-like structures, will influence diverse applications in chemistry, energy storage, environmental science, nanotechnology, biology, and medicine.

15.
Molecules ; 28(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38138570

ABSTRACT

The adsorption mechanism of different polymers containing ionic polyamino acids monomers in the chain structure at the solid-liquid interface was investigated. Initially, the influence of molecular weight and solution pH on simple polyamino acids (poly(L-aspartic acid) and poly(L-lysine) binding was determined. Considering the obtained dependencies, the polymer adsorption layer conformation was proposed in the systems containing block copolymers (both diblock and symmetrical triblock) consisting of polypeptide as well as poly(ethylene glycol) fragments. The presented studies focused on the application of two experimental methods. The polymer adsorption was carried out using the batch method and the adsorbate concentration was determined spectrophotometrically. Then, the turbidimetric measurements were taken. The analysis of the obtained results showed that the adsorption process of block copolymers depends on two factors. Firstly, the solution pH determines both the nature of the interactions of the copolymer structural units with the solid surface and the conformation of the polypeptide chains. The second parameter influencing the adsorption layer structure is the ratio of the lengths of both blocks. Introducing a short PEG fragment into the polymer main chain may improve the polymer adsorption properties by increasing the number of interactions with the adsorbent surface.

16.
Environ Sci Pollut Res Int ; 30(55): 117676-117687, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37872338

ABSTRACT

The Fenton method to remediate oil-contaminated soils has long suffered from low utilization of ·OH, resulting in waste of costs during practical application. This study investigated the efficient utilization of ·OH in oxidation using three different soils contaminated with oil (S1, S2, and S3). The mechanisms of promoting oxidation of long-chain alkanes by self-produced surfactant-like substance at the solid-liquid interface were studied. These results (take S1 as an example) showed that the average ·OH utilization rate of oxidized long-chain alkanes (Ka) at the solid-liquid interface reached 88.34 (mg/kg∙(a.u.)), which was higher than the non-solid-liquid interface stage (I: 54.02 (mg/kg∙(a.u.)), II: 67.36 (mg/kg∙(a.u.))). Meanwhile, the average oxidation of long-chain alkanes could increase unit ·OH intensity added (Kb) in the solid-liquid interface (990.00 mg/kg), which was much higher than Kb of the non-solid-liquid interface stage (I: 228.34 mg/kg, II: -1.48 mg/kg). Furthermore, there was a significant correlation between the proportion of humic acid-like in soil organic matter and the oxidation of long-chain alkanes at the solid-liquid interface. Thus, the surfactant-like substance generated during oxidation promoted the oxidation of long-chain alkanes at the solid-liquid interface. Moreover, when the surfactant-like substance had a matching degree (φ) with the long-chain alkanes (S1 0.18, S2 0.15, and S3 0.25), the efficiency of the ·OH utilization reached the peak, and the direct oxidation of long-chain alkanes at the solid-liquid interface was finally achieved (S1: 1373.00 mg/kg, S2: 1473.18 mg/kg, and S3: 1034.37 mg/kg). The appropriate surfactant-like substance agents in the construction can reduce the dosing of H2O2 and the construction costs by improving the efficient utilization of ·OH. Study on the mechanism promoting oxidation of long-chain alkanes by self-produced surfactant-like substance at the solid-liquid interface.


Subject(s)
Alkanes , Surface-Active Agents , Hydrogen Peroxide , Soil , Humic Substances
17.
Adv Sci (Weinh) ; 10(32): e2303677, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37749877

ABSTRACT

The rational design of electrocatalysis has emerged as one of the most thriving means for mitigating energy and environmental crises. The key to this effort is the understanding of the complex electrochemical interface, wherein the electrode potential as well as various internal factors such as H-bond network, adsorbate coverage, and dynamic behavior of the interface collectively contribute to the electrocatalytic activity and selectivity. In this context, the authors have reviewed recent theoretical advances, and especially, the contributions to modeling the realistic electrocatalytic processes at complex electrochemical interfaces,  and illustrated the challenges and fundamental problems in this field. Specifically, the significance of the inclusion of explicit solvation and electrode potential as well as the strategies toward the design of highly efficient electrocatalysts are discussed. The structure-activity relationships and their dynamic responses to the environment and catalytic functionality under working conditions are illustrated to be crucial factors for understanding the complexed interface and the electrocatalytic activities. It is hoped that this review can help spark new research passion and ultimately bring a step closer to a realistic and systematic modeling method for electrocatalysis.

18.
Beilstein J Nanotechnol ; 14: 872-892, 2023.
Article in English | MEDLINE | ID: mdl-37674543

ABSTRACT

Nanoarchitectonics has attracted increasing attention owing to its potential applications in nanomachines, nanoelectronics, catalysis, and nanopatterning, which can contribute to overcoming global problems related to energy and environment, among others. However, the fabrication of ordered nanoarchitectures remains a challenge, even in two dimensions. Therefore, a deeper understanding of the self-assembly processes and substantial factors for building ordered structures is critical for tailoring flexible and desirable nanoarchitectures. Scanning tunneling microscopy is a powerful tool for revealing the molecular conformations, arrangements, and orientations of two-dimensional (2D) networks on surfaces. The fabrication of 2D assemblies involves non-covalent interactions that play a significant role in the molecular arrangement and orientation. Among the non-covalent interactions, dispersion interactions that derive from alkyl chain units are believed to be weak. However, alkyl chains play an important role in the adsorption onto substrates, as well as in the in-plane intermolecular interactions. In this review, we focus on the role of alkyl chains in the formation of ordered 2D assemblies at the solid/liquid interface. The alkyl chain effects on the 2D assemblies are introduced together with examples documented in the past decades.

19.
Small Methods ; : e2300407, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37462251

ABSTRACT

The roles of surface characteristics of the feldspar surface on ice nucleation have remained elusive. Here, simple strategies are reported to quantitatively analyze the effects of the surface morphology and molecular composition of the potassium-feldspar surface on ice nucleation. The steps are found to be responsible to the high ice nucleation efficacy according to the fact that water drop freezing temperature increases by about 4.5 °C atop the freshly cleavage feldspar surface being rich of steps comparing to the flattened ones. After the molecular component and atomic structure are destroyed by the fluorination, a tremendous decrease of the ice nucleation temperatures by around 9.0 °C is observed on both cleavage and flattened surfaces, and the steps still improve the ice nucleation activity of the hydrophobic cleavage surfaces. The influence of the surface composition also implies the importance of the molecular component and structure specificity on K-feldspar in facilitating ice nucleation.

20.
Angew Chem Int Ed Engl ; 62(37): e202309107, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37470435

ABSTRACT

A comprehensive understanding of surface reconstruction was critical to developing high performance lattice oxygen oxidation mechanism (LOM) based perovskite electrocatalysts. Traditionally, the primary determining factor of the surface reconstruction process was believed to be the oxygen vacancy formation energy. Hence, most previous studies focused on optimizing composition to reduce the oxygen vacancy formation energy, which in turn facilitated the surface reconstruction process. Here, for the first time, we found that adding oxyanions (SO4 2- , CO3 2- , NO3 - ) into the electrolyte could effectively regulate the solid-liquid interface, significantly accelerating the surface reconstruction process and enhancing oxygen evolution reaction (OER) activities. Further studies indicated that the added oxyanions would adsorb onto the solid-liquid interface layer, disrupting the dynamic equilibrium between the adsorbed OH- ions and the OH- ions generated during surface reconstruction process. As such, the OH- ions generated during surface reconstruction process could be more readily released into the electrolyte, thereby leading to an acceleration of the surface reconstruction. Thus, it was expected that our finding would provide a new layer of understanding to the surface reconstruction process in LOM-based perovskite electrocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL