Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Sci ; 14(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38672001

ABSTRACT

Dyslexia is a neurodevelopmental disorder that presents a deficit in accuracy and/or fluency while reading or spelling that is not expected given the level of cognitive functioning. Research indicates brain structural changes mainly in the left hemisphere, comprising arcuate fasciculus (AF) and corona radiata (CR). The purpose of this systematic review is to better understand the possible methods for analyzing Diffusion Tensor Imaging (DTI) data while accounting for the characteristics of dyslexia in the last decade of the literature. Among 124 articles screened from PubMed and Scopus, 49 met inclusion criteria, focusing on dyslexia without neurological or psychiatric comorbidities. Article selection involved paired evaluation, with a third reviewer resolving discrepancies. The selected articles were analyzed using two topics: (1) a demographic and cognitive assessment of the sample and (2) DTI acquisition and analysis. Predominantly, studies centered on English-speaking children with reading difficulties, with preserved non-verbal intelligence, attention, and memory, and deficits in reading tests, rapid automatic naming, and phonological awareness. Structural differences were found mainly in the left AF in all ages and in the bilateral superior longitudinal fasciculus for readers-children and adults. A better understanding of structural brain changes of dyslexia and neuroadaptations can be a guide for future interventions.

2.
Alzheimers Dement ; 20(5): 3228-3250, 2024 05.
Article in English | MEDLINE | ID: mdl-38501336

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) lack mechanistic biophysical modeling in diverse, underrepresented populations. Electroencephalography (EEG) is a high temporal resolution, cost-effective technique for studying dementia globally, but lacks mechanistic models and produces non-replicable results. METHODS: We developed a generative whole-brain model that combines EEG source-level metaconnectivity, anatomical priors, and a perturbational approach. This model was applied to Global South participants (AD, bvFTD, and healthy controls). RESULTS: Metaconnectivity outperformed pairwise connectivity and revealed more viscous dynamics in patients, with altered metaconnectivity patterns associated with multimodal disease presentation. The biophysical model showed that connectome disintegration and hypoexcitability triggered altered metaconnectivity dynamics and identified critical regions for brain stimulation. We replicated the main results in a second subset of participants for validation with unharmonized, heterogeneous recording settings. DISCUSSION: The results provide a novel agenda for developing mechanistic model-inspired characterization and therapies in clinical, translational, and computational neuroscience settings.


Subject(s)
Alzheimer Disease , Brain , Electroencephalography , Frontotemporal Dementia , Humans , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/pathology , Brain/physiopathology , Brain/pathology , Female , Alzheimer Disease/physiopathology , Male , Aged , Connectome , Middle Aged , Models, Neurological
3.
NMR Biomed ; 35(8): e4743, 2022 08.
Article in English | MEDLINE | ID: mdl-35429070

ABSTRACT

Cerebral small vessel disease (cSVD) has been widely studied using conventional magnetic resonance imaging (MRI) methods, although the association between MRI findings and clinical features of cSVD is not always concordant. We assessed the additional contribution of contrast agent-free, state-of-the-art MRI techniques, particularly diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI), to understand brain damage and structural and functional connectivity impairment related to cSVD. We performed a review following the PICOS worksheet and Search Strategy, including 152 original papers in English, published from 2000 to 2022. For each MRI method, we extracted information about their contributions regarding the origins, pathology, markers, and clinical outcomes in cSVD. In general, DTI studies have shown that changes in mean, radial, and axial diffusivity measures are related to the presence of cSVD. In addition to the classical deficit in executive functions and processing speed, fMRI studies indicate connectivity dysfunctions in other domains, such as sensorimotor, memory, and attention. Neuroimaging metrics have been correlated with the diagnosis, prognosis, and rehabilitation of patients with cSVD. In short, the application of contrast agent-free, state-of-the-art MRI techniques has provided a complete picture of cSVD markers and tools to explore questions that have not yet been clarified about this clinical condition. Longitudinal studies are desirable to look for causal relationships between image biomarkers and clinical outcomes.


Subject(s)
Cerebral Small Vessel Diseases , Diffusion Tensor Imaging , Biomarkers , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Contrast Media , Diffusion Tensor Imaging/methods , Humans , Magnetic Resonance Imaging/methods , Neuroimaging
4.
Neurol Sci ; 42(5): 1799-1809, 2021 May.
Article in English | MEDLINE | ID: mdl-32886260

ABSTRACT

The aging process is associated with many brain structural alterations. These changes are not associated with neuronal loss but can be due to cortical structural changes that may be related to white matter (WM) structural alterations. In this study, we evaluated age-related changes in WM and gray matter (GM) parameters and how they correlate for specific brain tracts in a cohort of 158 healthy individuals, aged between 18 and 83 years old. In the tract-cortical analysis, cortical regions connected by tracts demonstrated similar thinning patterns for the majority of tracts. Additionally, a significant relationship was found between mean cortical thinning rate with fractional anisotropy (FA) and mean diffusivity (MD) alteration rates. For all tracts, age was the main effect controlling diffusion parameter alterations. We found no direct correlations between cortical thickness and FA or MD, except for in the fornix, for which the subcallosal gyrus thickness was significantly correlated to FA and MD (p < 0.05 FDR corrected). Our findings lead to the conclusion that alterations in the WM diffusion parameters are explained by the aging process, also associated with cortical thickness changes. Also, the alteration rates of the structural parameters are correlated to the different brain tracts in the aging process.


Subject(s)
White Matter , Adolescent , Adult , Aged , Aged, 80 and over , Brain/diagnostic imaging , Cerebral Cortical Thinning , Diffusion Tensor Imaging , Gray Matter/diagnostic imaging , Humans , Middle Aged , White Matter/diagnostic imaging , Young Adult
5.
Brain Connect ; 10(3): 143-154, 2020 04.
Article in English | MEDLINE | ID: mdl-32183565

ABSTRACT

Human cognition and behavior emerge from neuronal interactions on a brain structural architecture. The convergence (or divergence) between functional dynamics and structural connectivity (SC) and their relationship with cognition are still a pivotal question about the brain. We focused on the information processing speed (IPS), assessed by the Symbol Digit Modalities Test (SDMT), once delayed IPS underlies attention deficits in various clinical conditions. We hypothesize that the SC constrains but does not determine functional connectivity, and such a relationship is related to the cognitive performance. Blood oxygenation level-dependent and diffusion tensor images of healthy young volunteers were acquired in a 3T magnetic resonance imaging machine. Activation maps included the left and right middle frontal gyri, left superior parietal lobule, left precuneus, left inferior frontal gyrus (IFG), right cuneus, left lingual gyrus, and left declive. A network involving such regions and signal propagation from visual, through cognitive, up to motor regions was proposed. Random effects Bayesian model selection showed that the top-down connections have the highest expected and exceedance probabilities. Moreover, all pairs of task-related regions were connected by at least one tract, except for the left declive with the left IFG. The interactions between the right cuneus with left declive were related to the interindividual variability in SDMT performance. Altogether, our findings suggest that the IPS functional network is related to the highest SDMT scores when its effective endogenous connections are suppressed to the detriment of modulation caused by the experimental conditions, with the underlying structure providing low diffusion environments.


Subject(s)
Attention/physiology , Cerebellar Vermis , Cerebral Cortex , Connectome , Motor Activity/physiology , Nerve Net , Pattern Recognition, Visual/physiology , Psychomotor Performance/physiology , Adolescent , Adult , Cerebellar Vermis/anatomy & histology , Cerebellar Vermis/diagnostic imaging , Cerebellar Vermis/physiology , Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Connectome/methods , Diffusion Tensor Imaging , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/anatomy & histology , Nerve Net/diagnostic imaging , Nerve Net/physiology , Neuropsychological Tests , White Matter/anatomy & histology , White Matter/diagnostic imaging , White Matter/physiology , Young Adult
6.
Front Neurol ; 10: 903, 2019.
Article in English | MEDLINE | ID: mdl-31507513

ABSTRACT

The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) and semantic variant (svPPA) of frontotemporal dementia (FTD) are neurodegenerative diseases. Previous works have shown alterations of fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor images (DTIs). This manuscript is aimed at using DTI images to build a global tractography and to identify atrophy patterns of white matter in each variant. Twenty patients with svPPA, 20 patients with nfvPPA, 26 patients with behavioral variant of FTD (bvFTD) and, 33 controls were included. An analysis based on the connectivity of structural networks showed changes in FA and MD in svPPA and nfvPPA with respect to bvFTD. Much damage in the internal networks of the left temporal lobe was found in svPPA patients; in contrast, patients with nfvPPA showed atrophy in networks from the basal ganglia to motor and premotor areas. Those findings support the dual stream model of speech and language.

7.
Brain Connect ; 6(7): 519-23, 2016 09.
Article in English | MEDLINE | ID: mdl-27353747

ABSTRACT

Diffusion tensor imaging (DTI) studies showed that microstructural alterations are correlated to reading skills. In this study, we aim to investigate white matter microstructure of a group of Portuguese speakers with poor reading level, using different parameters of DTI. To perform this analysis, we selected children ranging from 8 to 12 years of age, poor readers (n = 17) and good readers (n = 23), evaluated in the word-level ability based on a Latent Class Analysis (LCA) of Academic Performance Test (TDE). Poor readers exhibited significant fractional anisotropy (FA) reductions in many tracts of both hemispheres, but small and restricted clusters of increased radial diffusivity (RD) in the left hemisphere. Spatial coherence of fibers might be the main source of differences, as changes in FA were not similarly accompanied in terms of extension by changes in RD. Widespread structural alterations in the white matter could prevent good reading ability at word level, which is consistent with recent studies demonstrating the involvement of multiple cortical regions and white matter tracts in reading disabilities.


Subject(s)
Brain/anatomy & histology , Reading , White Matter/anatomy & histology , Anisotropy , Aptitude , Aptitude Tests , Child , Diffusion Tensor Imaging , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL