Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.597
Filter
1.
Cereb Cortex ; 34(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087881

ABSTRACT

Perception integrates both sensory inputs and internal models of the environment. In the auditory domain, predictions play a critical role because of the temporal nature of sounds. However, the precise contribution of cortical and subcortical structures in these processes and their interaction remain unclear. It is also unclear whether these brain interactions are specific to abstract rules or if they also underlie the predictive coding of local features. We used high-field 7T functional magnetic resonance imaging to investigate interactions between cortical and subcortical areas during auditory predictive processing. Volunteers listened to tone sequences in an oddball paradigm where the predictability of the deviant was manipulated. Perturbations in periodicity were also introduced to test the specificity of the response. Results indicate that both cortical and subcortical auditory structures encode high-order predictive dynamics, with the effect of predictability being strongest in the auditory cortex. These predictive dynamics were best explained by modeling a top-down information flow, in contrast to unpredicted responses. No error signals were observed to deviations of periodicity, suggesting that these responses are specific to abstract rule violations. Our results support the idea that the high-order predictive dynamics observed in subcortical areas propagate from the auditory cortex.


Subject(s)
Acoustic Stimulation , Auditory Cortex , Auditory Perception , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Male , Female , Adult , Auditory Perception/physiology , Young Adult , Acoustic Stimulation/methods , Auditory Cortex/physiology , Auditory Cortex/diagnostic imaging , Brain Mapping/methods
2.
Brain Res ; : 149167, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153590

ABSTRACT

OBJECTIVES: Stroke can lead to significant restructuring of brain structure and function. However, the precise changes in the coordination between brain structure and function in subcortical stroke patients remain unclear. We investigated alterations in brain structural-functional coupling (SC-FC coupling) and their impact on cognitive function in subcortical basal ganglia infarction patients. METHODS: The study comprised 40 patients with mild stroke with basal ganglia region infarcts and 29 healthy controls (HC) who underwent multidimensional neuroimaging examination and neuropsychological testing. The subcortical stroke patients were divided into post-stroke cognitive impairment (PSCI) and stroke with no cognitive impairment (NPSCI) groups based on cognitive performance, with 22 individuals undergoing follow-up examination after three months. We investigated differences in brain structural-functional coupling across three groups, and their associations with cognitive functions. RESULTS: Compared to both HC participants and NPSCI, PSCI exhibited significantly reduced structural-functional coupling strength in specific brain regions. After a three-month period, there was observed an increase in structural-functional coupling strength within the frontal lobe (precentral gyrus and paracentral lobule). The strength of SC-FC coupling within the precentral gyrus, precuneus, and paracentral lobule regions demonstrated a decline correlating with the deterioration of cognitive function (MoCA, memory and visual motor speed functions). CONCLUSIONS: After subcortical basal ganglia stroke, PSCI patients demonstrated decreased SC-FC coupling in the frontal lobe region, correlating with multidimensional cognitive impairment. Three months later, there was an increase in SC-FC coupling in the frontal lobe, suggesting a compensatory mechanism during the recovery phase of cognitive impairment following stroke.

3.
Neurosci Bull ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168960

ABSTRACT

General anesthesia plays a significant role in modern medicine. However, the precise mechanism of general anesthesia remains unclear, posing a key scientific challenge in anesthesiology. Advances in neuroscience techniques have enabled targeted manipulation of specific neural circuits and the capture of brain-wide neural activity at high resolution. These advances hold promise for elucidating the intricate mechanisms of action of general anesthetics. This review aims to summarize our current understanding of the role of cortical and subcortical nuclei in modulating general anesthesia, providing new evidence of cortico-cortical and thalamocortical networks in relation to anesthesia and consciousness. These insights contribute to a comprehensive understanding of the neural network mechanisms underlying general anesthesia.

4.
Eur J Neurosci ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113267

ABSTRACT

Brain iron increases in several neurodegenerative diseases are associated with disease progression. However, the causes of increased brain iron remain unclear. This study investigates relationships between subcortical iron, systemic iron and inflammatory status. Brain magnetic resonance imaging (MRI) scans and blood plasma samples were collected from cognitively healthy females (n = 176, mean age = 61.4 ± 4.5 years, age range = 28-72 years) and males (n = 152, mean age = 62.0 ± 5.1 years, age range = 32-74 years). Regional brain iron was quantified using quantitative susceptibility mapping. To assess systemic iron, haematocrit, ferritin and soluble transferrin receptor were measured, and total body iron index was calculated. To assess systemic inflammation, C-reactive protein (CRP), neutrophil:lymphocyte ratio (NLR), macrophage colony-stimulating factor 1 (MCSF), interleukin 6 (IL6) and interleukin 1ß (IL1ß) were measured. We demonstrated that iron levels in the right hippocampus were higher in males compared with females, while iron in the right caudate was higher in females compared with males. There were no significant associations observed between subcortical iron levels and blood markers of iron and inflammatory status indicating that such blood measures are not markers of brain iron. These results suggest that brain iron may be regulated independently of blood iron and so directly targeting global iron change in the treatment of neurodegenerative disease may have differential impacts on blood and brain iron.

5.
Alpha Psychiatry ; 25(3): 413-420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39148597

ABSTRACT

Objective: Schizophrenia is often associated with volumetric reductions in cortices and expansions in basal ganglia, particularly the putamen. Recent genome-wide association studies have highlighted the significance of variants in the 3' regulatory region adjacent to the kinectin 1 gene (KTN1) in regulating gray matter volume (GMV) of the putamen. This study aimed to comprehensively investigate the involvement of this region in schizophrenia. Methods: We analyzed 1136 single-nucleotide polymorphisms (SNPs) covering the entire 3' regulatory region in 4 independent dbGaP samples (4604 schizophrenia patients vs. 4884 healthy subjects) and 3 independent Psychiatric Genomics Consortium samples (107 240 cases vs. 210 203 controls) to identify consistent associations. Additionally, we examined the regulatory effects of schizophrenia-associated alleles on KTN1 mRNA expression in 16 brain areas among 348 subjects, as well as GMVs of 7 subcortical nuclei in 38 258 subjects, and surface areas (SA) and thickness (TH) of the entire cortex and 34 cortical areas in 36 936 subjects. Results: The major alleles (f > 0.5) of 25 variants increased (ß > 0) the risk of schizophrenia across 2 to 5 independent samples (8.4 × 10-4 ≤ P ≤ .049). These schizophrenia-associated alleles significantly elevated (ß > 0) GMVs of basal ganglia, including the putamen (6.0 × 10-11 ≤ P ≤ 1.1 × 10-4), caudate (8.7 × 10-4 ≤ P ≤ 9.4 × 10-3), pallidum (P = 6.0 × 10-4), and nucleus accumbens (P = 2.7 × 10-5). Moreover, they potentially augmented (ß > 0) the SA of posterior cingulate and insular cortices, as well as the TH of frontal (pars triangularis and medial orbitofrontal), parietal (superior, precuneus, and inferior), and temporal (transverse) cortices, but potentially reduced (ß < 0) the SA of the whole, frontal (medial orbitofrontal), and temporal (pole, superior, middle, and entorhinal) cortices, as well as the TH of rostral middle frontal and superior frontal cortices (8.9 × 10-4 ≤ P ≤ .050). Conclusion: Our findings identify significant and functionally relevant risk alleles in the 3' regulatory region adjacent to KTN1, implicating their crucial roles in the development of schizophrenia.

6.
Turk J Med Sci ; 54(3): 588-597, 2024.
Article in English | MEDLINE | ID: mdl-39049994

ABSTRACT

Background/aim: Amnestic mild cognitive impairment (aMCI) is a risk factor for dementia, and thus, it is of interest to enlighten specific brain atrophy patterns in aMCI patients. We aim to define the longitudinal atrophy pattern in subcortical structures and its effect on cognition in patients with aMCI. Materials and methods: Twenty patients with aMCI and 20 demographically matched healthy controls with baseline and longitudinal structural magnetic resonance imaging scans and neuropsychological assessments were studied. The algorithm FIRST (FMRIB's integrated registration and segmentation tool) was used to obtain volumes of subcortical structures (thalamus, putamen, caudate nucleus, nucleus accumbens, globus pallidus, hippocampus, and amygdala). Correlations between volumes and cognitive performance were assessed. Results: Compared with healthy controls, aMCI demonstrated subcortical atrophies in the hippocampus (p = 0.001), nucleus accumbens (p = 0.003), and thalamus (p = 0.003) at baseline. Significant associations were found for the baseline volumes of the thalamus, nucleus accumbens, and hippocampus with memory, the thalamus with visuospatial skills. Conclusion: aMCI demonstrated subcortical atrophies associated with cognitive deficits. The thalamus, nucleus accumbens, and hippocampus may provide additional diagnostic information for aMCI.


Subject(s)
Atrophy , Cognitive Dysfunction , Magnetic Resonance Imaging , Humans , Cognitive Dysfunction/pathology , Male , Female , Atrophy/pathology , Aged , Longitudinal Studies , Middle Aged , Neuropsychological Tests , Amnesia/pathology , Amnesia/diagnostic imaging , Cognition/physiology , Brain/pathology , Brain/diagnostic imaging , Hippocampus/pathology , Hippocampus/diagnostic imaging , Case-Control Studies
7.
Alzheimers Dement ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051173

ABSTRACT

INTRODUCTION: Early-onset Alzheimer's disease (EOAD) shows a higher burden of neuropsychiatric symptoms than late-onset Alzheimer's disease (LOAD). We aim to determine the differences in the severity of neuropsychiatric symptoms and locus coeruleus (LC) integrity between EOAD and LOAD accounting for disease stage. METHODS: One hundred four subjects with AD diagnosis and 32 healthy controls were included. Participants underwent magnetic resonance imaging (MRI) to measure LC integrity, measures of noradrenaline levels in cerebrospinal fluid (CSF) and Neuropsychiatric Inventory (NPI). We analyzed LC-noradrenaline measurements and clinical and Alzheimer's disease (AD) biomarker associations. RESULTS: EOAD showed higher NPI scores, lower LC integrity, and similar levels of CSF noradrenaline compared to LOAD. Notably, EOAD exhibited lower LC integrity independently of disease stage. LC integrity negatively correlated with neuropsychiatric symptoms. Noradrenaline levels were increased in AD correlating with AD biomarkers. DISCUSSION: Decreased LC integrity negatively contributes to neuropsychiatric symptoms. The higher LC degeneration in EOAD compared to LOAD could explain the more severe neuropsychiatric symptoms in EOAD. HIGHLIGHTS: LC degeneration is greater in early-onset AD (EOAD) compared to late-onset AD. Tau-derived LC degeneration drives a higher severity of neuropsychiatric symptoms. EOAD harbors a more profound selective vulnerability of the LC system. LC degeneration is associated with an increase of cerebrospinal fluid noradrenaline levels in AD.

8.
Cereb Circ Cogn Behav ; 6: 100229, 2024.
Article in English | MEDLINE | ID: mdl-38974908

ABSTRACT

Background: There are conflicting results whether serum lipid pattern is related to the amount of white matter hyperintensities (WMHs) on magnetic resonance imaging. Little is known of the associations between lipid concentrations and the subsequent risk of the subcortical small vessel type of dementia (SSVD), in which WMHs are a prominent manifestation. Here, we determined whether lipid levels are associated with the risk of SSVD, Alzheimer's disease (AD), or mixed dementia (combined AD and SSVD). Methods: This was a longitudinal, prospective study of 329 patients with subjective or objective mild cognitive impairment at baseline. The statistical analyses included Cox proportional hazards regression with adjustments for age, gender, education, body mass index, current smoking, hypertension, diabetes mellitus, and APOE ε4 genotype. Results: During the follow-up (mean 4.1 years), 80 patients converted to dementia [SSVD, n = 15 (5 %); AD, n = 39 (12 %); and mixed dementia, n = 26 (8 %)]. Serum high-density lipoprotein cholesterol (HDL, per SD increase) was inversely associated with the risk of SSVD, whereas triglycerides (TG), low-density lipoprotein cholesterol (LDL)/HDL ratio, and TG/HDL ratio were positively associated with SSVD risk. Furthermore, the lowest HDL tertile was associated with a sevenfold, and the highest tertile of TG/HDL ratio with a threefold, increase in SSVD risk. There were no associations with the risk of AD or mixed dementia after adjustment for covariates. Conclusion: In a memory clinic population, low HDL and high TG/HDL ratio were independent risk factors of SSVD, but not of AD or mixed dementia.

9.
Neuroradiology ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039147

ABSTRACT

PURPOSE: Due to the indistinguishable clinical features of corticobasal syndrome (CBS), the antemortem differentiation between corticobasal degeneration (CBD) and its mimics remains challenging. However, the utility of conventional magnetic resonance imaging (MRI) for the diagnosis of CBD has not been sufficiently evaluated. This study aimed to investigate the diagnostic performance of conventional MRI findings in differentiating pathologically confirmed CBD from its mimics. METHODS: Semiquantitative visual rating scales were employed to assess the degree and distribution of atrophy and asymmetry on conventional T1-weighted and T2-weighted images. Additionally, subcortical white matter hyperintensity (SWMH) on fluid-attenuated inversion recovery images were visually evaluated. RESULTS: In addition to 19 patients with CBD, 16 with CBD mimics (progressive supranuclear palsy (PSP): 9, Alzheimer's disease (AD): 4, dementia with Lewy bodies (DLB): 1, frontotemporal lobar degeneration with TAR DNA-binding protein of 43 kDa(FTLD-TDP): 1, and globular glial tauopathy (GGT): 1) were investigated. Compared with the CBD group, the PSP-CBS subgroup showed severe midbrain atrophy without SWMH. The non-PSP-CBS subgroup, comprising patients with AD, DLB, FTLD-TDP, and GGT, showed severe temporal atrophy with widespread asymmetry, especially in the temporal lobes. In addition to over half of the patients with CBD, two with FTLD-TDP and GGT showed SWMH, respectively. CONCLUSION: This study elucidates the distinct structural changes between the CBD and its mimics based on visual rating scales. The evaluation of atrophic distribution and SWMH may serve as imaging biomarkers of conventional MRI for detecting background pathologies.

10.
Eur Radiol ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39060491

ABSTRACT

OBJECTIVES: This study aimed to investigate the dilation of lenticulostriate artery (LSA) identified by whole-brain vessel wall imaging (WB-VWI) in differentiating the etiologic subtypes of single subcortical infarction (SSI) and to determine whether the appearance of dilated LSA was associated with 90-day clinical outcomes in parental atherosclerotic disease (PAD)-related SSI. METHODS: Patients with acute SSI were prospectively enrolled and categorized into PAD-related SSI and cerebral small-vessel disease (CSVD)-related SSI groups. The imaging features of LSA morphology (branches, length, dilation, and tortuosity), plaques (burden, remodeling index, enhancement degree, and hyperintense plaque), and CSVD (white matter hyperintensity, lacunes, cerebral microbleed, and enlarged perivascular space) were evaluated. The logistic regression was performed to determine the association of dilated LSA with PAD-related SSI and 90-day clinical outcomes. RESULTS: In total, 131 patients (mean age, 52.2 ± 13.2 years; 99 men) were included. The multivariate logistic regression analysis revealed that the presence of dilated LSAs (odds ratio (OR), 7.40; 95% confidence interval (CI): 1.88-29.17; p = 0.004)) was significantly associated with PAD-related SSI. Moreover, after adjusting for confounding factors, the association of poor outcomes with the total length of LSAs (OR, 0.94; 95% CI: 0.90-0.99; p = 0.011), dilated LSAs (OR, 0.001; 95% CI: 0.0001-0.08; p = 0.002), and plaque burden (OR, 1.35; 95% CI: 1.11-1.63; p = 0.002) remained statistically significant. CONCLUSION: The dilation of LSA visualized on WB-VWI could differentiate various subtypes of SSI within LSA territory and was a prognostic imaging marker for 90-day clinical outcomes for PAD-related SSI. CLINICAL RELEVANCE STATEMENT: Evaluation of LSA morphology based on WB-VWI can differentiate the pathogenesis and predict clinical outcomes in SSI, providing crucial insights into the etiologic mechanisms, risk stratification, and tailored therapies for these patients. KEY POINTS: The prognosis of SSIs within lenticulostriate territory depend on the etiology of the disease. LSA dilation on WB-VWI was associated with parental atherosclerosis and better 90-day outcomes. Accurately identifying the etiology of SSIs in lenticulostriate territory assists in treatment decision-making.

11.
Schizophr Bull ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973257

ABSTRACT

BACKGROUND AND HYPOTHESIS: The gut-brain axis plays important roles in both gastrointestinal diseases (GI diseases) and schizophrenia (SCZ). Moreover, both GI diseases and SCZ exhibit notable abnormalities in brain subcortical volumes. However, the genetic mechanisms underlying the comorbidity of these diseases and the shared alterations in brain subcortical volumes remain unclear. STUDY DESIGN: Using the genome-wide association studies data of SCZ, 14 brain subcortical volumes, and 8 GI diseases, the global polygenic overlap and local genetic correlations were identified, as well as the shared genetic variants among those phenotypes. Furthermore, we conducted multi-trait colocalization analyses to bolster our findings. Functional annotations, cell-type enrichment, and protein-protein interaction (PPI) analyses were carried out to reveal the critical etiology and pathology mechanisms. STUDY RESULTS: The global polygenic overlap and local genetic correlations informed the close relationships between SCZ and both GI diseases and brain subcortical volumes. Moreover, 84 unique lead-shared variants were identified. The associated genes were linked to vital biological processes within the immune system. Additionally, significant correlations were observed with key immune cells and the PPI analysis identified several histone-associated hub genes. These findings highlighted the pivotal roles played by the immune system for both SCZ and GI diseases, along with the shared alterations in brain subcortical volumes. CONCLUSIONS: These findings revealed the shared genetic architecture contributing to SCZ and GI diseases, as well as their shared alterations in brain subcortical volumes. These insights have substantial implications for the concurrent development of intervention and therapy targets for these diseases.

12.
Elife ; 132024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017662

ABSTRACT

Asymmetries in the size of structures deep below the cortex explain how alpha oscillations in the brain respond to shifts in attention.


Subject(s)
Attention , Humans , Attention/physiology , Alpha Rhythm/physiology , Brain/physiology
13.
Elife ; 122024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017666

ABSTRACT

Evidence suggests that subcortical structures play a role in high-level cognitive functions such as the allocation of spatial attention. While there is abundant evidence in humans for posterior alpha band oscillations being modulated by spatial attention, little is known about how subcortical regions contribute to these oscillatory modulations, particularly under varying conditions of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the role of subcortical structures in controlling the allocation of attentional resources by employing a cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemispheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemispheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, and thalamus predicted attention-related modulations of posterior alpha oscillations. When the perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry of the thalamus predicted alpha band modulation when neither component of the task was perceptually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha oscillations with spatial attention, our finding might also have clinical applications. We provide a framework that could be followed for detecting how structural changes in subcortical regions that are associated with neurological disorders can be reflected in the modulation of oscillatory brain activity.


Subject(s)
Alpha Rhythm , Attention , Magnetic Resonance Imaging , Humans , Attention/physiology , Male , Female , Adult , Alpha Rhythm/physiology , Young Adult , Magnetoencephalography , Thalamus/physiology , Thalamus/diagnostic imaging , Brain/physiology , Brain/diagnostic imaging , Basal Ganglia/physiology , Functional Laterality/physiology
14.
J Gen Fam Med ; 25(4): 239-240, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966653

ABSTRACT

A 68-year-old man presented with a headache that had started 1 month earlier. The scalp vein dilatation was observed at presentation. The findings of computed tomography and magnetic resonance imaging raised suspicion of a dural arteriovenous fistula, leading to the definitive diagnosis by digital subtraction angiography. Scalp vein signs can be a useful clue to suspect intracranial abnormalities, including dural arteriovenous fistula.

15.
Trends Genet ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955588

ABSTRACT

Oocyte maturation and preimplantation embryo development are critical to successful pregnancy outcomes and the correct establishment and maintenance of genomic imprinting. Thanks to novel technologies and omics studies in human patients and mouse models, the importance of the proteins associated with the cytoplasmic lattices (CPLs), highly abundant structures found in the cytoplasm of mammalian oocytes and preimplantation embryos, in the maternal to zygotic transition is becoming increasingly evident. This review highlights the recent discoveries on the role of these proteins in protein storage and other oocyte cytoplasmic processes, epigenetic reprogramming, and zygotic genome activation (ZGA). A better comprehension of these events may significantly improve clinical diagnosis and pave the way for targeted interventions aiming to correct or mitigate female fertility issues and genomic imprinting disorders.

16.
Article in English | MEDLINE | ID: mdl-38957123

ABSTRACT

Objective: Previous studies have suggested a link between dysregulation of cortical iron levels and neuronal loss in amyotrophic lateral sclerosis (ALS) patients. However, few studies have reported differences in quantitative susceptibility mapping (QSM) values in subcortical nuclei between patients with ALS and healthy controls (HCs). Methods: MRI was performed using a 3 Tesla Prisma scanner (64-channel head coil), including 3D T1-MPRAGE and multi-echo 3D GRE for QSM reconstruction. Automated QSM segmentation was used to measure susceptibility values in the subcortical nuclei, which were compared between the groups. Correlations with clinical scales were analyzed. Group comparisons were performed using independent t-tests, with p < 0.05 considered significant. Correlations were assessed using Pearson's correlation, with p < 0.05 considered significant. Cohen's d was reported to compare the standardized mean difference (SMD) of QSM. Results: Twelve patients with limb-onset ALS (mean age 48.7 years, 75% male) and 13 age-, sex-, and handedness-matched HCs (mean age 44.6 years, 69% male) were included. Compared to HCs, ALS patients demonstrated significantly lower susceptibility in the left caudate nucleus (CN) (SMD = -0.845), right CN (SMD = -0.851), whole CN (SMD = -1.016), and left subthalamic nucleus (STN) (SMD = -1.000). Susceptibility in the left putamen (SMD = -0.857), left thalamus (SMD = -1.081), and whole thalamus (SMD = -0.968) was significantly higher in the patients. The susceptibility of the substantia nigra (SN), CN, and pulvinar was positively correlated with disease duration. Conclusions: QSM detects abnormal iron accumulation patterns in the subcortical gray matter of ALS patients, which correlates with disease characteristics, supporting its potential as a neuroimaging biomarker.

17.
Sci Rep ; 14(1): 17161, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39060551

ABSTRACT

White matter hyperintensities (WMH) are markers of subcortical ischemic vascular cognitive impairment (SIVCI) associated with impaired postural balance. Physical reserve (PR) is a recently established construct that reflects one's capacity to maintain physical function despite brain pathology. This cross-sectional study aims to map functional networks associated with PR, and examining the relationship between PR, WMH, and postural balance. PR was defined in 22 community-dwelling older adults with SIVCI. Functional networks of PR were computed using general linear model. Subsequent analyses examined whether PR and relevant networks moderated the relationship between WMH and postural balance under two conditions-eyes open while standing on foam (EOF) or on floor (EONF). We found that PR and the relevant networks-frontoparietal network (FPN) and default mode network (DMN)-significantly moderated the association between WMH and postural balance. For individuals with high PR, postural balance remained stable regardless of the extent of WMH load; whereas for those with low PR, postural balance worsened as WMH load increased. These results suggest the attenuated effects of WMH on postural stability due to PR may be underpinned by functional neural network reorganization in the FPN and DMN as a part of compensatory processes.


Subject(s)
Cognitive Dysfunction , Nerve Net , Postural Balance , White Matter , Humans , Aged , Male , Female , Postural Balance/physiology , White Matter/physiopathology , White Matter/diagnostic imaging , White Matter/pathology , Cognitive Dysfunction/physiopathology , Cross-Sectional Studies , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Magnetic Resonance Imaging , Aged, 80 and over
18.
J Affect Disord ; 363: 192-197, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39029692

ABSTRACT

BACKGROUND: Having multiple previous generations with depression in the family increases offspring risk for psychopathology. Parental depression has been associated with smaller subcortical brain volumes in their children, but whether two prior generations with depression is associated with further decreases is unclear. METHODS: Using two independent cohorts, 1) a Three-Generation Study (TGS, N = 65) with direct clinical interviews of adults and children across all three generations, and 2) the Adolescent Brain Cognitive Development Study (ABCD, N = 10,626) of 9-10 year-old children with family history assessed by a caregiver, we tested whether having more generations of depression in the family was associated with smaller subcortical volumes (using structural MRI). RESULTS: In TGS, caudate, pallidum and putamen showed decreasing volumes with higher familial risk for depression. Having a parent and a grandparent with depression was associated with decreased volume compared to having no familial depression in these regions. Putamen volume was associated with depression at eight-year follow-up. In ABCD, smaller pallidum and putamen were associated with family history, which was driven by parental depression, regardless of grandparental depression. LIMITATIONS: Discrepancies between cohorts could be due to interview type (clinical or self-report) and informant (individual or common informant), sample size or age. Future analyses of follow-up ABCD waves will be able to assess whether effects of grandparental depression on brain markers become more apparent as the children enter young adulthood. CONCLUSIONS: Basal ganglia regional volumes are significantly smaller in offspring with a family history of depression in two independent cohorts.


Subject(s)
Child of Impaired Parents , Magnetic Resonance Imaging , Putamen , Humans , Child , Female , Male , Child of Impaired Parents/psychology , Child of Impaired Parents/statistics & numerical data , Cohort Studies , Adult , Putamen/diagnostic imaging , Putamen/pathology , Globus Pallidus/diagnostic imaging , Globus Pallidus/pathology , Caudate Nucleus/diagnostic imaging , Caudate Nucleus/pathology , Adolescent , Brain/diagnostic imaging , Brain/pathology , Parents/psychology , Organ Size , Depressive Disorder/genetics , Depressive Disorder/pathology , Depression/genetics , Grandparents/psychology , Extended Family
19.
J Headache Pain ; 25(1): 120, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044141

ABSTRACT

Migraine is a neurological disorder characterized by episodes of severe headache. Cortical spreading depression (CSD), the electrophysiological equivalent of migraine aura, results in opening of pannexin 1 megachannels that release ATP and triggers parenchymal neuroinflammatory signaling cascade in the cortex. Migraine symptoms suggesting subcortical dysfunction bring subcortical spread of CSD under the light. Here, we investigated the role of purinergic P2X7 receptors on the subcortical spread of CSD and its consequent neuroinflammation using a potent and selective P2X7R antagonist, JNJ-47965567. P2X7R antagonism had no effect on the CSD threshold and characteristics but increased the latency to hypothalamic voltage deflection following CSD suggesting that ATP acts as a mediator in the subcortical spread. P2X7R antagonism also prevented cortical and subcortical neuronal activation following CSD, revealed by bilateral decrease in c-fos positive neuron count, and halted CSD-induced neuroinflammation revealed by decreased neuronal HMGB1 release and decreased nuclear translocation of NF-kappa B-p65 in astrocytes. In conclusion, our data suggest that P2X7R plays a role in CSD-induced neuroinflammation, subcortical spread of CSD and CSD-induced neuronal activation hence can be a potential target.


Subject(s)
Cortical Spreading Depression , Neuroinflammatory Diseases , Purinergic P2X Receptor Antagonists , Receptors, Purinergic P2X7 , Cortical Spreading Depression/drug effects , Cortical Spreading Depression/physiology , Animals , Purinergic P2X Receptor Antagonists/pharmacology , Male , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/drug effects , Optogenetics , Mice , Migraine Disorders/physiopathology , Migraine Disorders/metabolism , Migraine Disorders/drug therapy , Neurons/drug effects , Mice, Inbred C57BL , Niacinamide/analogs & derivatives , Piperazines
SELECTION OF CITATIONS
SEARCH DETAIL