Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochimie ; 209: 95-102, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36646204

ABSTRACT

The maturation of tRNA and its quality control is crucial for aminoacylation and protein synthesis. The CCA enzyme, also known as tRNA nucleotidyltransferase, catalyzes the addition or repair of CCA at the 3'-terminus of tRNAs to facilitate aminoacylation. Structural studies of CCA enzyme in complex with ATP and CTP suggested that adding CCA at the 3'-terminus of tRNAs is a sequential process [1-4]. However, there are many inconsistent results of CCA addition from the biochemical studies, which raise the ambiguity about the CCA enzyme specificity in vitro [5-7]. On the other hand, there are no effective methods for preparing the 3'-amino-tailed tRNA to provide a stable amide linkage, which is vital to make homogeneous samples for structural studies of stalling peptides to understand ribosome mediated gene regulation [7-11]. In this study, we examined the functional specificity of the Class II CCA enzyme from E. coli, and optimized the benchmark experimental conditions to prepare the 3'-NH2-tRNA using the CCA enzyme. Our results suggest that the CCA enzyme has a specific ability to catalyze the CCA addition/repair activity within the stoichiometric range of the reactants, and excess amounts of nucleotides lead to non-specific polymerization of the tRNA. Further, we developed an efficient method for synthesizing 3'-amino tRNA, which can facilitate stable aminoacyl/peptidyl-tRNA preparation.


Subject(s)
Escherichia coli , RNA, Transfer , Escherichia coli/metabolism , RNA, Transfer/metabolism , RNA Nucleotidyltransferases/chemistry , Nucleotides , RNA Processing, Post-Transcriptional , Protein Biosynthesis
2.
Genes (Basel) ; 10(3)2019 03 26.
Article in English | MEDLINE | ID: mdl-30917604

ABSTRACT

The tRNAHis guanylyltransferase (Thg1) superfamily includes enzymes that are found in all three domains of life that all share the common ability to catalyze the 3' to 5' synthesis of nucleic acids. This catalytic activity, which is the reverse of all other known DNA and RNA polymerases, makes this enzyme family a subject of biological and mechanistic interest. Previous biochemical, structural, and genetic investigations of multiple members of this family have revealed that Thg1 enzymes use the 3' to 5' chemistry for multiple reactions in biology. Here, we describe the current state of knowledge regarding the catalytic features and biological functions that have been so far associated with Thg1 and its homologs. Progress toward the exciting possibility of utilizing this unusual protein activity for applications in biotechnology is also discussed.


Subject(s)
Nucleotidyltransferases/metabolism , RNA, Transfer/metabolism , DNA Repair , Synthetic Biology
3.
RNA Biol ; 15(4-5): 614-622, 2018.
Article in English | MEDLINE | ID: mdl-28901837

ABSTRACT

tRNAHis guanylyltransferase (Thg1) has unique reverse (3'-5') polymerase activity occurring in all three domains of life. Most eukaryotic Thg1 homologs are essential genes involved in tRNAHis maturation. These enzymes normally catalyze a single 5' guanylation of tRNAHis lacking the essential G-1 identity element required for aminoacylation. Recent studies suggest that archaeal type Thg1, which includes most archaeal and bacterial Thg1 enzymes is phylogenetically distant from eukaryotic Thg1. Thg1 is evolutionarily related to canonical 5'-3' forward polymerases but catalyzes reverse 3'-5'polymerization. Similar to its forward polymerase counterparts, Thg1 encodes the conserved catalytic palm domain and fingers domain. Here we investigate the minimal requirements for reverse polymerization. We show that the naturally occurring minimal Thg1 enzyme from Ignicoccus hospitalis (IhThg1), which lacks parts of the conserved fingers domain, is catalytically active. And adds all four natural nucleotides to RNA substrates, we further show that the entire fingers domain of Methanosarcina acetivorans Thg1 and Pyrobaculum aerophilum Thg1 (PaThg1) is dispensable for enzymatic activity. In addition, we identified residues in yeast Thg1 that play a part in preventing extended polymerization. Mutation of these residues with alanine resulted in extended reverse polymerization. PaThg1 was found to catalyze extended, template dependent tRNA repair, adding up to 13 nucleotides to a truncated tRNAHis substrate. Sequencing results suggest that PaThg1 fully restored the near correct sequence of the D- and acceptor stem, but also produced incompletely and incorrectly repaired tRNA products. This research forms the basis for future engineering efforts towards a high fidelity, template dependent reverse polymerase.


Subject(s)
Desulfurococcaceae/enzymology , Methanosarcina/enzymology , Nucleotidyltransferases/metabolism , Pyrobaculum/enzymology , RNA, Transfer, His/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Amino Acid Sequence , Binding Sites , Catalytic Domain , Conserved Sequence , Desulfurococcaceae/genetics , Gene Expression , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Methanosarcina/genetics , Models, Molecular , Mutation , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/genetics , Polymerization , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Engineering/methods , Pyrobaculum/genetics , RNA, Transfer, His/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Sequence Alignment , Sequence Homology, Amino Acid
4.
RNA Biol ; 13(12): 1182-1188, 2016 12.
Article in English | MEDLINE | ID: mdl-27661287

ABSTRACT

The removal of transcriptional 5' and 3' extensions is an essential step in tRNA biogenesis. In some bacteria, tRNA 5'- and 3'-end maturation require no further steps, because all their genes encode the full tRNA sequence. Often however, the ends are incomplete, and additional maturation, repair or editing steps are needed. In all Eukarya, but also many Archaea and Bacteria, e.g., the universal 3'-terminal CCA is not encoded and has to be added by the CCA-adding enzyme. Apart from such widespread "repair/maturation" processes, tRNA genes in some cases apparently cannot give rise to intact, functional tRNA molecules without further, more specific end repair or editing. Interestingly, the responsible enzymes as far as identified appear to be polymerases usually involved in regular tRNA repair after damage. Alternatively, enzymes are recruited from other non-tRNA pathways; e.g., in animal mitochondria, poly(A) polymerase plays a crucial role in the 3'-end repair/editing of tRNAs. While these repair/editing pathways apparently allowed peculiar tRNA-gene overlaps or mismatching mutations in the acceptor stem to become genetically fixed in some present-day organisms, they may have also driven some global changes in tRNA maturation on a greater evolutionary scale.


Subject(s)
Archaea/genetics , Bacteria/genetics , RNA, Transfer/metabolism , Animals , Archaea/metabolism , Bacteria/metabolism , Evolution, Molecular , RNA Editing , RNA Processing, Post-Transcriptional , RNA, Archaeal/genetics , RNA, Archaeal/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics
5.
RNA Biol ; 12(10): 1159-68, 2015.
Article in English | MEDLINE | ID: mdl-26361137

ABSTRACT

A faithful expression of the mitochondrial DNA is crucial for cell survival. Animal mitochondrial DNA (mtDNA) presents a highly compact gene organization. The typical 16.5 kbp animal mtDNA encodes 13 proteins, 2 rRNAs and 22 tRNAs. In the backyard pillbug Armadillidium vulgare, the rather small 13.9 kbp mtDNA encodes the same set of proteins and rRNAs as compared to animal kingdom mtDNA, but seems to harbor an incomplete set of tRNA genes. Here, we first confirm the expression of 13 tRNA genes in this mtDNA. Then we show the extensive repair of a truncated tRNA, the expression of tRNA involved in large gene overlaps and of tRNA genes partially or fully integrated within protein-coding genes in either direct or opposite orientation. Under selective pressure, overlaps between genes have been likely favored for strong genome size reduction. Our study underlines the existence of unknown biochemical mechanisms for the complete gene expression of A. vulgare mtDNA, and of co-evolutionary processes to keep overlapping genes functional in a compacted mitochondrial genome.


Subject(s)
DNA, Mitochondrial/genetics , Genome, Mitochondrial , RNA, Transfer/genetics , Animals , Crustacea/genetics , Gene Expression Regulation
6.
J Biol Chem ; 289(22): 15155-65, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24737330

ABSTRACT

Mitochondrial tRNA (mt-tRNA) 5'-editing was first described more than 20 years ago; however, the first candidates for 5'-editing enzymes were only recently identified in a eukaryotic microbe (protist), the slime mold Dictyostelium discoideum. In this organism, eight of 18 mt-tRNAs are predicted to be edited based on the presence of genomically encoded mismatched nucleotides in their aminoacyl-acceptor stem sequences. Here, we demonstrate that mt-tRNA 5'-editing occurs at all predicted sites in D. discoideum as evidenced by changes in the sequences of isolated mt-tRNAs compared with the expected sequences encoded by the mitochondrial genome. We also identify two previously unpredicted editing events in which G-U base pairs are edited in the absence of any other genomically encoded mismatches. A comparison of 5'-editing in D. discoideum with 5'-editing in another slime mold, Polysphondylium pallidum, suggests organism-specific idiosyncrasies in the treatment of U-G/G-U pairs. In vitro activities of putative D. discoideum editing enzymes are consistent with the observed editing reactions and suggest an overall lack of tRNA substrate specificity exhibited by the repair component of the editing enzyme. Although the presence of terminal mismatches in mt-tRNA sequences is highly predictive of the occurrence of mt-tRNA 5'-editing, the variability in treatment of U-G/G-U base pairs observed here indicates that direct experimental evidence of 5'-editing must be obtained to understand the complete spectrum of mt-tRNA editing events in any species.


Subject(s)
Dictyostelium/genetics , RNA Editing/genetics , RNA, Transfer/genetics , RNA/genetics , Base Pair Mismatch , DNA-Directed RNA Polymerases/metabolism , Dictyostelium/enzymology , Mitochondria/genetics , Myxomycetes/genetics , Nucleic Acid Conformation , RNA/chemistry , RNA, Mitochondrial , RNA, Transfer/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...