Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.080
Filter
1.
Mikrochim Acta ; 191(10): 573, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39227417

ABSTRACT

Tannic acid (TA)-derived carbon dots (TACDs) were synthesized for the first time via a solvothermal method using TA as one of the raw materials, which may effectively inhibit amyloid fibril aggregation and disaggregate mature fibril. The fluorescent property of TACDs were modulated by adjusting the ratio of TA to o-phenylenediamine (oPD), and TACDs fabricated with the precursor ratio as 1:1 showed the best fluorescent property. Circular dichroism spectra (CD) showed that the structure of ß-sheet decreased as the concentration of TACDs increased. The inhibition efficiency, as confirmed by thioflavin T (ThT) and transmission electron microscopy (TEM), is extraordinary at 98.16%, whereas disaggregation efficiency is noteworthy at 97.97%, and the disaggregated lysozyme fibrils did not reaggregate after 7 days. More critically, TACDs can also alleviate the cellular toxicity caused by Aß fibrils and improve cell viability. This work offers a new perspective on the design of scavengers for amyloid plaques.


Subject(s)
Carbon , Protein Aggregates , Tannins , Tannins/chemistry , Tannins/pharmacology , Carbon/chemistry , Humans , Protein Aggregates/drug effects , Muramidase/chemistry , Muramidase/metabolism , Cell Survival/drug effects , Quantum Dots/chemistry , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Amyloid/chemistry , Amyloid/metabolism , Phenylenediamines/chemistry , Phenylenediamines/pharmacology , Animals , Polyphenols
2.
J Environ Manage ; 370: 122391, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39244929

ABSTRACT

The recovery and upcycling of metals from electronic waste into functional materials for wastewater treatment is a win-win strategy for simultaneously realizing electronic waste recycling and wastewater purification. This study focused on converting Cu from waste printed boards (PCBs), a common Cu-rich electronic waste, into CuFe2O4 supported on a mesoporous carbon framework (PCFT) with the assistance of Fe3+ and tannic acid (TA). Compared to the PCF prepared without TA, the resulting PCFT exhibited excellent magnetic properties, high crystallinity, lower interfacial transfer resistance, more abundant oxygen vacancies (OV), and lower metal leaching. Moreover, PCFT can serve as a superior heterogeneous catalyst to activate peroxymonosulfate to remove reactive brilliant blue KN-R from wastewater, and its catalytic activity was markedly higher than that of CFT synthesized with Cu(NO3)2·3H2O, which may be due to its higher specific surface area and more abundant OV. The combined results of scavenging experiments, electron paramagnetic resonance analysis, and electrochemical measurements implied that both radical and nonradical processes promoted the elimination of KN-R; however, •OH and SO4•- were not the major contributors. Furthermore, the PCFT exhibited high adaptability to pH and water matrices, confirming its practical application potential. These findings provide a novel strategy for the upcycling of metals from electronic waste.

3.
Int J Biol Macromol ; 279(Pt 3): 135270, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233162

ABSTRACT

Proper wound dressing is essential to facilitate skin wound healing, stop bleeding, and prevent infections. Herein, carboxymethyl chitosan (CMC) was crosslinked with oxidized tannic acid (OTA) to form an adhesive and self-healing OTA/CMC hydrogel, and etamsylate was loaded to enhance the hemostatic effect of the hydrogel dressing. The resultant OTA/CMC/E hydrogel exhibited a spectrum of noteworthy attributes including excellent cell compatibility, high antioxidant activity, effective anti-bacterium, and excellent hemorrhage control. Functionally, it mitigated intracellular ROS levels, hindered the proliferation of Staphylococcus aureus, while also significantly reducing hemostasis duration and total blood loss. In vivo full-thickness skin incision results showed that the OTA/CMC/E hydrogel could efficiently accelerate in vivo wound closure and healing, promising as an advanced wound healing material.

4.
J Hazard Mater ; 479: 135654, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39217941

ABSTRACT

The resource of trace lead (Pb2+) from wastewater bearing intricate components is imperative for sustainable progression of the lead-acid battery industry. Herein, we fabricated a tannic acid-based covalent polymeric hydrogel (TA@PMAM) with antimicrobial properties and stability via facile Michael addition reaction. The incorporation of tannic acid (TA) through robust covalent bond leads to a stable porous 3D covalent polymer network with almost no loss of mechanical properties even after 20 compression cycles. Batch adsorption experiments of TA@PMAM revealed an extraordinary adsorption capacity of Pb2+(Qe =196.6 mg/g), achieving 87.2 % of Pb2+ adsorption within the first 5 min owing to porous structure, numerous adsorption sites and good hydrophilicity. Moreover, TA@PMAM demonstrated a strong affinity for Pb2+ in the presence of the interfere metal ions (Cu2+, Co2+, Mn2+etc.) due to the carbonyl and phenolic hydroxyl that can specifically pair with Pb2+. Stable adsorption properties of TA@PMAM were confirmed in fixed bed column adsorption experiment using lead-acid batteries wastewater, retaining 79.56 % of initial adsorption capacity even after 10 times' reuse. Besides, TA@PMAM possesses a broad spectrum of antimicrobial properties. This study sheds novel light on the design and fabrication of adsorbent, which holds great potential for commercialization in recovering lead from battery industrial wastewater.

5.
Carbohydr Polym ; 344: 122522, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218566

ABSTRACT

Rapid regeneration of the injured tissue or organs is necessary to achieve the usual functionalities of the damaged parts. However, bacterial infections delay the regeneration process, a severe challenge in the personalized healthcare sector. To overcome these challenges, 3D-printable multifunctional hydrogels of Zn/tannic acid-reinforced glycol functionalized chitosan for rapid wound healing were developed. Polyphenol strengthened intermolecular connections, while glutaraldehyde stabilized 3D-printed structures. The hydrogel exhibited enhanced viscoelasticity (G'; 1.96 × 104 Pa) and adhesiveness (210 kPa). The dual-crosslinked scaffolds showed remarkable antibacterial activity against Bacillus subtilis (∼81 %) and Escherichia coli (92.75 %). The hydrogels showed no adverse effects on human dermal fibroblasts (HDFs) and macrophages (RAW 264.7), indicating their superior biocompatibility. The Zn/TA-reinforced hydrogels accelerate M2 polarization of macrophages through the activation of anti-inflammatory transcription factors (Arg-1, VEGF, CD163, and IL-10), suggesting better immunomodulatory effects, which is favorable for rapid wound regeneration. Higher collagen deposition and rapid re-epithelialization occurred in scaffold-treated rat groups vis-à-vis controls, demonstrating superior wound healing. Taken together, the developed multifunctional hydrogels have great potential for rapidly regenerating bacteria-infected wounds in the personalized healthcare sector.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chitosan , Escherichia coli , Hydrogels , Printing, Three-Dimensional , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Animals , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , RAW 264.7 Cells , Escherichia coli/drug effects , Zinc/chemistry , Zinc/pharmacology , Rats , Bacillus subtilis/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Male , Macrophages/drug effects , Fibroblasts/drug effects , Cross-Linking Reagents/chemistry , Rats, Sprague-Dawley
6.
Chem Asian J ; : e202400864, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238279

ABSTRACT

Polyphenols form nanofilms with transition metal ions by coordination-driven assembly. The as-formed metal-polyphenol nanofilms can degrade in the presence of chelating ligands that exhibit high stability constant with the nanofilm-forming metal ions. We have demonstrated the degradation of Fe(III)-tannic acid nanofilms with hydroxyketone ligands, such as maltol, kojic acid, and deferiprone, which exhibit high availability and excellent cytocompatibility. The concentration screening experiments have been performed with different ligand concentrations ranging from 1 mM to 25 mM. It is important to note that only deferiprone degrades Fe(III)-TA nanofilms even at 1 mM, and it retains the degradation activity at pH 7.4. The characteristic degradation activity of hydroxyketone ligands to Fe(III)-TA nanofilms may depend upon their pKa value and stability constant. The degradation studies herein are attractive for the development of biomedical applications utilizing metal-polyphenol nanofilms as a sacrificial template.

7.
Int J Biol Macromol ; : 135381, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39244132

ABSTRACT

The majority of natural fungal ß-glucans exhibit diverse biological functionalities, such as immunomodulation and anti-inflammatory effects, attributed to their distinctive helix or highly branched conformation This study utilized ß-glucan with helix conformation and high-viscosity extracted from Hericium erinaceus, employing freeze-thaw and solvent exchange strategies to induce multiple hydrogen bonding between molecules, thereby initiating the self-assembly process of ß-glucan from random coil to stable helix conformation without chemical modifications. Subsequently, the natural bioactive compound tannic acid was introduced through physical entanglement, imparting exceptional antioxidant properties to the hydrogel. The HEBG/TA hydrogel exhibited injectable properties, appropriate mechanical characteristics, degradability, temperature-responsive tannic acid release, antioxidant activity, and hemostatic potential. In vivo experiments using skin full-thickness defect and deep second-degree burn wound models demonstrated significant therapeutic efficacy, including neovascularization, and tissue regeneration. Moreover, the HEBG/TA hydrogel demonstrated its ability to regulate cytokines by effectively inhibiting the production of inflammatory mediators (TNF-α, IL-6), while simultaneously enhancing the expression of cell proliferation factor KI-67 and markers associated with angiogenesis such as CD31 and α-SMA. This study highlights the potential of combining natural ß-glucan with bioactive molecules for skin repair.

8.
Sci Rep ; 14(1): 18533, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122764

ABSTRACT

The current study explores biodegradable packaging materials that have high food quality assurance, as food deterioration is mostly caused by UV degradation and oxidation, which can result in bad flavor and nutrition shortages. Thus, new multifunctional zinc oxide nanoparticles/tannic acid (ZnO@TA) with antioxidant and antibacterial activities were incorporated into polyvinyl alcohol/chitosan (PVA/CH) composite films with different ratios (1%, 3%, and 5% based on the total dry weight of the film) via a solution blending method in a neutral aqueous solution. Additionally, ZnO nanoparticles have unique antibacterial mechanisms through the generation of excessive reactive oxygen species (ROS) that may lead to intensify pathogen resistance to conventional antibacterial agents. Thus, minimizing the negative effects caused by excessive levels of ROS may be possible by developing unique, multifunctional ZnO nanoparticles with antioxidant potential via coordination bond between tannic acid and ZnO nanoparticles (ZnO@TA). ZnO@TA nanoparticles were examined using Fourier-transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The effect of the incorporation of ZnO@TA nanoparticles on the barrier, mechanical, thermal, antioxidant, antimicrobial, and UV blocking characteristics of chitosan/polyvinyl alcohol (ZnO@TA@CH/PVA) films was investigated. The lowest water vapor and oxygen permeability and the maximum antioxidant capacity% are 31.98 ± 1.68 g mm/m2 kPa day, 0.144 ± 5.03 × 10-2 c.c/m2.day, and 69.35 ± 1.6%, respectively, which are related to ZnO@TA(50)@CH/PVA. Furthermore, ZnO@TA(50)@CH/PVA film exhibits the maximum UV shielding capacity of UVB (99.994). ZnO@TA(50) @PVA/CH films displayed better tensile strength and Young`s modulus of 48.72 ± 0.23 MPa and 2163.46 ± 61.4 MPa, respectively, than the other film formulations. However, elongation % at break exhibited the most reduced value of 19.62 ± 2.3%. ZnO@TA@CH/PVA film exhibits the largest inhibition zones of 11 ± 1.0, 12.3 ± 0.57, and 13.6 ± 0.57 mm against Staphylococcus aureus, Aspergillus flavus, and Candida albicans, respectively. In accordance with these results, ZnO@TA@CH/PVA films could be utilized for food preservation for the long-term.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Chitosan , Food Packaging , Polyphenols , Polyvinyl Alcohol , Zinc Oxide , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Chitosan/chemistry , Food Packaging/methods , Microbial Sensitivity Tests , Nanoparticles/chemistry , Polyphenols/chemistry , Polyvinyl Alcohol/chemistry , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , X-Ray Diffraction , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
9.
Int J Biol Macromol ; 278(Pt 3): 134709, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39159797

ABSTRACT

In this work, tannic acid was selected as a green cross-linking agent to cross-link carboxymethyl chitosan to prepare a magnetic adsorbent (CC-OTA@Fe3O4), which was used to remove methylene blue (MB) and Cu2+. CC-OTA@Fe3O4 was characterized by FTIR, 13C NMR, XRD, VSM, TGA, BET and SEM. The adsorption behavior was studied using various parameters such as pH value, contact time, initial concentration of MB and Cu2+, and temperature. The results showed that adsorption of MB and Cu2+ followed the pseudo-second-order model and the Sips model. The maximum adsorption capacities were determined to be 560.92 and 104.25 mg/g MB and Cu2+ at 298 K, respectively. Thermodynamic analysis showed that the adsorption is spontaneous and endothermic in nature. According to the results of FTIR and XPS analyses, the electrostatic interaction was accompanied by π-π interaction and hydrogen bonding for MB adsorption, while complexation and electrostatic interaction were the predominant mechanism for Cu2+ adsorption. Furthermore, CC-OTA@Fe3O4 displayed remarkable stability in 0.1 M HNO3, exhibited promising recyclability, and could be easily separated from aqueous solutions in the magnetic field. This study demonstrates the potential of CC-OTA@Fe3O4 as an adsorbent for the removal of cationic dyes and heavy metals from wastewater.

10.
J Biochem Mol Toxicol ; 38(8): e23798, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39108104

ABSTRACT

Doxorubicin (DOX), which is frequently used in cancer treatment, has limited clinical use due to adverse effects on healthy tissues, especially the liver. Therefore, it is necessary to research the molecular basis of DOX-induced organ and tissue damage and protective agents. In this study, we aimed to examine the protective effects of tannic acid (TA) against DOX-induced hepatoxicity in experimental rat models. Rats were randomly divided into four experimental groups: the untreated control, DOX, TA, and cotreatment (DOX + TA) groups. We investigated the antioxidant system's main components and oxidative stress indicators. Moreover, we examined alterations in the mRNA expression of critical regulators that modulate apoptosis, inflammation, and cell metabolism to better understand the underlying factors of DOX-induced liver toxicity. The results showed that DOX exposure caused an increase in MDA levels and a significant depletion of GSH content in rat liver tissues. Consistent with oxidative stress-related metabolites, DOX was found to significantly suppress both mRNA expression and enzyme activities of antioxidant system components. Moreover, DOX exposure had significant adverse effects on regulating the other regulatory genes studied. However, it was determined that TA could alleviate many of the negative changes caused by DOX. The results of the present study indicated that TA might be considered a versatile candidate that could prevent DOX-induced hepatotoxicity, possibly by preserving cell physiology, viability, and especially redox balance.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Apoptosis , Chemical and Drug Induced Liver Injury , Doxorubicin , Liver , Polyphenols , Animals , Male , Rats , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Apoptosis/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Doxorubicin/adverse effects , Doxorubicin/toxicity , Liver/drug effects , Liver/metabolism , Liver/pathology , Oxidative Stress/drug effects , Polyphenols/pharmacology , Rats, Sprague-Dawley
11.
Braz J Microbiol ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179891

ABSTRACT

The increase in fungal resistance is a major public health concern. In this context, Candida spp. is an important genus related to invasive diseases, especially in immunosuppressed patients. The relevance of alternative approaches to increasing fungal resistance stands out, in which products of natural origin demonstrate potential antifungal activity in vitro against Candida spp. In this sense, this work aimed to evaluate the in vitro activity of tannic acid against Candida spp. Minimum inhibitory concentration (MIC) was determined for tannic acid and the antifungals, and the checkerboard assay was performed to analyze the interactions between them. Furthermore, we evaluated the tannic acid antibiofilm activity and its possible mechanism of action. Tannic acid showed MIC ranging to 0.06 to 0.5 µg/ml and showed no loss of effectiveness when combined with antifungals. Also, is safe at the concentrations it exerts its antifungal activity in pre-formed biofilms, as demonstrated by IC50 in murine fibroblasts cells and the hemolytic assay. Additionally, its mechanisms of action can be related with induction of signals that lead to apoptosis in fungal cells.

12.
Int J Biol Macromol ; 278(Pt 3): 134696, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147350

ABSTRACT

In recent years, flexible sensors constructed mainly from hydrogels have played an indispensable role in several fields. However, the traditional hydrogel preparation process involves complex and time-consuming steps and the freezing or volatilization of water in the water gel in extreme environments greatly limits the further use of the sensor. Therefore, an ionic conductive hydrogel (SnHTD) was designed, which was composed of tannic acid (TA), metal ions Sn2+, hydroxyethyl cellulose (HEC), and acrylamide (AM) in a deep eutectic solvent (DES) and water binary solvent. It is worth noting that the gel time is shortened to less than 3 min by introducing the Sn-TA redox system. The addition of DES makes the hydrogel have a wide temperature tolerance range (-20 to 60 °C) and the ability to store for a long time (30 days). The introduction of HEC increased the tensile stress of hydrogel from 140.17 kPa to 219.89 kPa. Additionally, the hydrogel also has high conductivity, repeatable adhesion and UV shielding properties. In general, this research opens up a new way for room temperature polymerization of environmentally resistant hydrogel materials and effectively meets the growing demand for wireless wearable sensing.

13.
Int J Biol Macromol ; 278(Pt 4): 134461, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153676

ABSTRACT

Cellulose, as a biomass resource, has attracted increasingly attention and extensive research by virtue of its widely sources, ideal degradability, good mechanical properties and easy modification due to its rich hydroxyl groups. Nevertheless, it is still a challenge to attain high performance cellulose-based composite film materials with diverse functional combinations. In this work, we developed a multifunctional cellulose-based film via a facile impregnation-curing strategy. Here, benzoxazine resin (BR) is used as an optically functional component to endow the microfibrillated cellulose (MFC) film with powerful light management capabilities including UV and blue light double shielding, high transmittance, and high haze. Meanwhile, the introduction of tannic acid (TA) substantially enhanced the mechanical properties of the film, including tensile strength and toughness, by constructing energy-sacrificial bonds. An effective self-healing of the film was achieved by controlling the degree of BR curing. The final films exhibited 98.24 % UV shielding and 89.98 % blue light blocking, good mechanical properties including a tensile strength of 202.21 MPa and tensile strain of 7.1 %, as well as desirable thermal healing properties supported by incompletely cured BR. This work may provide new insights into the high-value utilization of biomass resources.

14.
Int J Biol Macromol ; 278(Pt 3): 134896, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39168206

ABSTRACT

Oxidative stress caused by excessive reactive oxygen species (ROS) accumulation significantly hinders wound healing in patients with diabetes. Scavenging ROS and reducing inflammation are crucial for rapid healing. In this work, a multi-responsive sodium hyaluronate (HA)/tannic acid (TA) hydrogel was developed based on boronate ester bonds. Sodium hyaluronate with 3-aminophenyl boronic acid modification (HA-APBA) was mixed and crosslinked with TA to form HA-APBA/TA hydrogels. These hydrogels are injectable, self-healing, and biocompatible. The HA-APBA/TA hydrogels could release free TA through the collapse of the structure at low pH, high H2O2 concentration, and high glucose concentration, thus possessing good ROS scavenging ability. In full-thickness skin wounds of db/db mice, the HA-APBA/TA hydrogels promoted wound healing, collagen deposition, and significant angiogenesis. Furthermore, they have been shown to effectively reduce the levels of inflammatory factors in wounds and lower the expression of CD86, a pro-inflammatory macrophage surface marker. This resulted in a more effective transition of wound healing from the inflammatory phase to the proliferative phase. This study provides an optional strategy for alleviating oxidative stress and controlling excessive inflammation, thereby promoting diabetic wound healing.

15.
Sci Rep ; 14(1): 18596, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127757

ABSTRACT

Tannic acid (TA) has been reported as an efficient plant-based compound with inhibitory activity against viruses and bacteria. The combination of TA with Zinc Oxide (ZnO) nanostructures with ZnO is one of the most widely used nanoparticles for antimicrobial properties, have not yet fully elucidate especially their mechanisms of overall physicochemical and antimicrobial actions. Hence, to observe the influence of TA adsorption on ZnO, the investigations on the TA concentration and the effect of pH towards the physicochemical, optical and antimicrobial properties are demonstrated. The pure ZnO are synthesised via the chemical reduction method and the ZnO-TA nanostructures are further prepared using the dropwise methods to form variations of pH samples, which causes the formation of different mean particle size distribution, d m . The findings reveal that the performance of physicochemical and optical properties of pure ZnO and ZnO-TA are different due to the wrapped layers of TA which change the charged surface of all the particles. The protonation reactions yield strong pH dependence (pH 3 and 5), with uptake performance becoming more dominant at higher TA concentration loading (pH 3). The detailed optical energy bandgap and Urbach energy that concluded the nanoparticle growth and disorder condition of produced particles are presented. For antimicrobial efficiency, ZnO-TA shows improved effectiveness in growth inhibitions of S. aureus 99.69% compared to pure ZnO nanostructure (99.39%). This work reveals that the TA concentration increases the overall performance, and the discussion gives added support to their potential performance related to the field of ZnO compound.


Subject(s)
Polyphenols , Staphylococcus aureus , Zinc Oxide , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Nanoparticles/chemistry , Particle Size , Polyphenols/chemistry , Polyphenols/pharmacology , Staphylococcus aureus/drug effects , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
16.
Chemosphere ; 364: 143092, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39146986

ABSTRACT

Halocyclopentadienes (HCPDs) are an emerging class of alicyclic disinfection by-products (DBPs) with high toxicity in disinfected drinking water. However, their potential precursors remain unclear, which hinders the understanding of their formation and further development of control strategies. In this study, two HCPDs, 1,2,3,4-tetrachloro-1,3-cyclopentadiene (TCC) and 1,2,3,4,5,5-hexachloro-1,3-cyclopentadiene (HCC), were identified in chlorinated lignin and tannic acid samples for the first time. The chlorination of four lignin-like and two tannic-like phenolic model compounds confirmed that guaiacol and digallic acid can produce HCPDs. According to their structures, ortho-substituents of phenolic compounds were speculated to be crucial for HCPDs formation. The simulated disinfection of catechol, 2-ethoxyphenol (2-EOP), 2-propoxyphenol (2-POP) and 3,4-dihydroxy-5-methoxybenzoic acid (DH-5-MBA) with different ortho-substituents demonstrated that three of these compounds can generate HCPDs, except catechol, which further indicates that ortho-substituents, such as the methoxy, ethoxy and propoxy groups, contribute to HCPDs generation. Guaiacol was the simplest compound for generating HCPDs, and possible formation pathways during chlorination were proposed. Seven hydroxy-chlorocyclopentadienes were tentatively identified and are likely important intermediates of HCPDs formation. Additionally, TCC and HCC were confirmed in tap water and chlorinated SRNOM samples with total concentrations up to 11.07 ng/L and 65.66 ng/L, respectively, further demonstrating the wide existence of HCPDs and their precursors. This study reports the clear precursors of HCPDs and provides a theoretical foundation for controlling HCPDs formation in disinfected drinking water.

17.
ACS Appl Bio Mater ; 7(8): 5258-5267, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39103296

ABSTRACT

Sensitive detection of cardiac troponin I (cTnI) is of great significance in the diagnosis of a fatal acute myocardial infarction. A redox-active nanocomposite of copper(II)-tannic acid@Cu (CuTA@Cu) was herein prepared on the surface of a glassy carbon electrode by electrochemical deposition of metallic copper combined with a metal stripping strategy. Then, HAuCl4 was in situ reduced to gold nanoparticles (AuNPs) by strong reductive catechol groups in the TA ligand. The AuNPs/CuTA@Cu composite was further utilized as a bifunctional matrix for the immobilization of the cTnI antibody (anti-cTnI), producing an electrochemical immunosensor. Electrochemical tests show that the immunoreaction between anti-cTnI and target cTnI can cause a significant reduction of the electrochemical signal of CuTA@Cu. It can be attributed to the insulating characteristic of the immunocomplex and its barrier effect to the electrolyte ion diffusion. From the signal changes of CuTA@Cu, cTnI can be analyzed in a wide range from 10 fg mL-1 to 10 ng mL-1, with an ultralow detection limit of 0.65 fg mL-1. The spiked recovery assays show that the immunosensor is reliable for cTnI determination in human serum samples, demonstrating its promising application in the early clinical diagnosis of myocardial infarction.


Subject(s)
Copper , Electrochemical Techniques , Gold , Materials Testing , Metal Nanoparticles , Troponin I , Gold/chemistry , Copper/chemistry , Troponin I/blood , Troponin I/analysis , Troponin I/immunology , Metal Nanoparticles/chemistry , Humans , Immunoassay/methods , Biosensing Techniques , Biocompatible Materials/chemistry , Particle Size , Polyphenols
18.
Article in English | MEDLINE | ID: mdl-39099314

ABSTRACT

Cardiotoxicity is the leading side effect of anthracycline-based chemotherapy. Therefore, it has gained importance to reveal chemotherapy-supporting strategies and reliable agents with their mechanisms of action. Tannic acid (TA), a naturally occurring plant polyphenol, has diverse physiological effects, including anti-inflammatory, anticarcinogenic, antioxidant, and radical scavenging properties. Therefore, this study was designed to investigate whether TA exerts a protective effect on mechanisms contributing to anthracycline-induced cardiotoxicity in rat heart tissues exposed to doxorubicin (DOX). Rats were randomly divided into control and experimental groups and treated with (18 mg/kg) DOX, TA (50 mg/kg), and DOX + TA during the 2 weeks. Cardiac gene markers and mitochondrial DNA (mtDNA) content were evaluated in the heart tissues of all animals. In addition to major metabolites, mRNA expression changes and biological activity responses of components of antioxidant metabolism were examined in the heart tissues of all animals. The expression of cardiac gene markers increased by DOX exposure was significantly reduced by TA treatment, whereas mtDNA content, which was decreased by DOX exposure, was significantly increased. TA also improved antioxidant metabolism members' gene expression and enzymatic activity, including glutathione peroxidase, glutathione s-transferase, superoxide dismutase, catalase, and thioredoxin reductase. This study provides a detailed overview of the current understanding of DOX-induced cardiotoxicity and preventive or curative measures involving TA.

19.
ACS Appl Mater Interfaces ; 16(35): 46102-46112, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39163280

ABSTRACT

Wound healing is a dynamic process that requires an optimal extracellular environment, as well as an accurate synchronization between various cell types. Over the past few years, great efforts have been devoted to developing novel approaches for treating and managing burn injuries, sepsis, and chronic or accidental skin injuries. Multifunctional smart-polymer-based dressings represent a promising approach to support natural healing and address several problems plaguing partially healed injuries, including severe inflammation, scarring, and wound infection. Naturally derived compounds offer unique advantages such as minimal toxicity, cost-effectiveness, and outstanding biocompatibility along with potential anti-inflammatory and antimicrobial activity. Herein, the main driving idea of the work was the design and development of konjac glucomannan d-glucono-1,5-lactone (KG) films bioactivated by tannic acid and d-glucono-1,5-lactone (GL) addition. Our analysis, using attenuated total reflectance-Fourier transform infrared, atomic force microscopy, and surface energy measurements demonstrated that tannic acid (TA) clearly interacted with the KG matrix, acting as its cross-linker, whereas GL was embedded within the polymer structure. All developed films maintained a moist environment, which represents a pivotal property for wound dressing. Hemocompatibility experiments showed that all tested films exhibited no hemolytic impact on human erythrocytes. Moreover, the presence of TA and GL enhanced the metabolic and energetic activity in human dermal fibroblasts, as indicated by the MTT assay, showing results exceeding 150%. Finally, all films demonstrated high antibacterial properties as they significantly reduced the multiplication rate of both Staphylococcus aureus and Escherichia coli in bacterial broth and created the inhibition zones for S. aureus in agar plates. These remarkable outcomes make the KG/TA/GL film promising candidates for wound healing applications.


Subject(s)
Gluconates , Lactones , Mannans , Staphylococcus aureus , Tannins , Tannins/chemistry , Tannins/pharmacology , Mannans/chemistry , Mannans/pharmacology , Humans , Staphylococcus aureus/drug effects , Gluconates/chemistry , Gluconates/pharmacology , Lactones/chemistry , Lactones/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing/drug effects , Escherichia coli/drug effects , Bandages , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Polyphenols
20.
Poult Sci ; 103(10): 104121, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39121643

ABSTRACT

The overuse of antibiotics has resulted in a surge of drug-resistant bacteria, making the pursuit of natural antimicrobials an urgent and significant trend. Encapsulation and nanoparticulation are effective ways to enhance the antibacterial properties of natural drugs. In this study, we encapsulated tannic acid (TA) with chitosan (CS) and poly (lactide-co-glycolide) (PLGA) using the emulsion-solvent evaporation method to enhance the antimicrobial effect of TA. We prepared a bilayer membrane spherical nanoemulsion of TA-PLGA-CS (TPC) with uniform size of 559.87 ± 1.16 nm, and zeta potential of 59.53 ± 1.07 mV. TPC could be stably stored for 90 days at 4°C without affecting the properties of the emulsion, and the minimum bactericidal concentration against four strains of Escherichia coli (E. coli) remained unchanged for 60 d. The results indicated that TPC enhanced the inhibitory effect of TA against E. coli. Scanning electron microscope images revealed that TPC treatment caused damage to the bacterial cell membrane. In addition, in vivo experiments indicated that TPC exhibited a superior therapeutic effect on artificial colibacillosis in chickens infested with Avian pathogenic Escherichia coli, as evidenced by the changes in body weight and a reduction bacterial load in heart. Furthermore, TPC reversed the down-regulation of catalase, glutathione peroxidase1 (GPX1), and GPX7 gene expression levels in intestinal tissues. Compared to the model group, TPC treatment elevated serum glutathione peroxidase activities and lowered myeloperoxidase and lactate dehydrogenase levels, offering antioxidant protection that was slightly better than that of doxycycline hydrochlorid group. In summary, we prepared a novel TA antimicrobial preparation with significant antioxidant potential and inhibitory effect against E. coli both in vitro and in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL