Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Small ; : e2403490, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031997

ABSTRACT

The miniaturization, integration, and increased power of electronic devices have exacerbated serious heat dissipation issues. Thermally conductive adhesives, which effectively transfer heat and firmly bond components, are critical for addressing these challenges. This paper innovatively proposed a composite comprising inorganic phosphate/alumina as a matrix and diamond as filler. The composite achieved an isotropic thermal conductivity (TC) of up to 18.96 W m-1 K-1, significantly surpassing existing reports while maintaining electrical insulation. First-principles calculations and experimental tests confirmed that the high TC of phosphate and excellent interface contact ensured efficient heat transfer. To optimize bonding performance, a modified-diamond/Al(H2PO4)3@epoxy hybrid composite is subsequently developed using an organic modification method. The unique hybrid structure, combining inorganic thermal pathways and an organic adhesive network, enabled the hybrid composite to simultaneously possess a high TC (3.23 W m-1 K-1) and strong adhesion (14.35 MPa). Compared to previous reports, the comprehensive performance of this hybrid thermally conductive adhesive is exceptionally remarkable. The superior heat dissipation capability of the hybrid thermal adhesive is demonstrated in chip cooling scenarios. This organic/inorganic hybrid approach offered a new direction for obtaining advanced thermal interface materials, demonstrating significant application potential in chip soldering, packaging, and heat dissipation.

2.
J Phys Condens Matter ; 36(42)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39025116

ABSTRACT

Gallium-based liquid metals (LMs) have surface tension an order of magnitude higher than water and break up into micro-droplets when mixed with other liquids. In contrast, silicone oil readily mixes into LM foams to create oil-in-LM emulsions with oil inclusions. Previously, the LM was foamed through rapid mixing in air for an extended duration (over 2 h). This process first results in the internalization of oxide flakes that form at the air-liquid interface. Once a critical fraction of these randomly shaped solid flakes is reached, air bubbles internalize into the LM to create foams that can internalize secondary liquids. Here, we introduce an alternative oil-in-LM emulsion fabrication method that relies on the prior addition of SiO2micro-particles into the LM before mixing it with the silicone oil. This particle-assisted emulsion formation process provides a higher control over the composition of the LM-particle mixture before oil addition, which we employ to systematically study the impact of particle characteristics and content on the emulsions' composition and properties. We demonstrate that the solid particle size (0.8µm to 5µm) and volume fraction (1%-10%) have a negligible impact on the internalization of the oil inclusions. The inclusions are mostly spherical with diameters of 20-100µm diameter and are internalized by forming new, rather than filling old, geometrical features. We also study the impact of the particle characteristics on the two key properties related to the functional application of the LM emulsions in the thermal management of microelectronics. In particular, we measure the impact of particles and silicone oil on the emulsion's thermal conductivity and its ability to prevent deleterious gallium-induced corrosion and embrittlement of contacting metal substrates.

3.
ACS Appl Mater Interfaces ; 16(26): 34367-34376, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38896498

ABSTRACT

The rising concern over the usage of electronic devices and the operating environment requires efficient thermal interface materials (TIMs) to take away the excess heat generated from hotspots. TIMs are crucial in dissipating undesired heat by transferring energy from the source to the heat sink. Silicone oil (SO)-based composites are the most used TIMs due to their strong bonding and oxidation resistance. However, thermal grease performance is unreliable due to aging effects, toxic chemicals, and a higher percentage of fillers. In this work, TIMs are prepared using exfoliated hexagonal boron nitride nanosheets (h-BNNS) as a nanofiller, and they were functionalized by ecofriendly natural biopolymer soy protein isolate (SPI). The exfoliated h-BNNS has an average lateral size of ∼266 nm. The functionalized h-BNNS/SPI are used as fillers in the SO matrix, and composites are prepared using solution mixing. Hydrogen bonding is present between the organic chain/oxygen in silicone polymer, and the functionalized h-BNNS are evident from the FTIR measurements. The thermal conductivity of h-BNNS/SPI/SO was measured using the modified transient plane source (MTPS) method. At room temperature, the maximum thermal conductivity is 1.162 Wm-1K-1 (833% enhancement) at 50 wt % of 3:1 ratio of h-BNNS:SPI, and the thermal resistance (TR) of the composite is 5.249 × 106 K/W which is calculated using the Foygel nonlinear model. The heat management application was demonstrated by applying TIM on a 10 W LED bulb. It was found that during heating, the 50 wt % TIM decreases the surface temperature of LED by ∼6 °C compared with the pure SO-based TIM after 10 min of ON condition. During cooling, the modified TIM reduces the surface temperature by ∼8 °C under OFF conditions within 1 min. The results indicate that natural polymers can effectively stabilize and link layered materials, enhancing the efficiency of TIMs for cooling electronics and LEDs.

4.
ACS Appl Mater Interfaces ; 16(26): 33993-34000, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38910293

ABSTRACT

Graphene is widely used in excellent thermal interface materials (TIMs), thanks to its remarkably high in-plane thermal conductivity (k∥). However, the poor through-plane thermal conductivity (k⊥) limits its further application. Here, we developed a simple in situ growth method to prepare graphene-based thermal interface composites with positively temperature-dependent thermal conductivity, which loaded aluminum (Al) nanoparticles onto graphene nanoplatelets (GNPs). To evaluate the variations in thermal performance, we determined the thermal diffusivity and specific heat capacity of the composites using a laser-flash analyzer and a differential scanning calorimeter, respectively. The Al nanoparticles act as bridges between the nanoplatelets, enhancing the k⊥ of the 1.3-Al/GNPs composite to 11.70 W·m-1·K-1 at 25 °C. Even more remarkably, those nanoparticles led to a unique increase in k⊥ with temperature, reaching 20.93 W·m-1·K-1 at 100 °C. Additionally, we conducted an in-depth investigation of the thermal conductivity mechanism of the Al/GNPs composites. The exceptional heat transport property enabled the composites to exhibit a superior heat dissipation performance in simulated practical applications. This work provides valuable insights into utilizing graphene in composites with Al nanoparticles, which have special thermal conductivity properties, and offers a promising pathway to enhance the k⊥ of graphene-based TIMs.

5.
Adv Mater ; : e2311335, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847403

ABSTRACT

The challenges associated with heat dissipation in high-power electronic devices used in communication, new energy, and aerospace equipment have spurred an urgent need for high-performance thermal interface materials (TIMs) to establish efficient heat transfer pathways from the heater (chip) to heat sinks. Recently, emerging 2D materials, such as graphene and boron nitride, renowned for their ultrahigh basal-plane thermal conductivity and the capacity to facilitate cross-scale, multi-morphic structural design, have found widespread use as thermal fillers in the production of high-performance TIMs. To deepen the understanding of 2D material-based TIMs, this review focuses primarily on graphene and boron nitride-based TIMs, exploring their structures, properties, and applications. Building on this foundation, the developmental history of these TIMs is emphasized and a detailed analysis of critical challenges and potential solutions is provided. Additionally, the preparation and application of some other novel 2D materials-based TIMs are briefly introduced, aiming to offer constructive guidance for the future development of high-performance TIMs.

6.
Nanomicro Lett ; 16(1): 198, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758464

ABSTRACT

Vertically oriented carbon structures constructed from low-dimensional carbon materials are ideal frameworks for high-performance thermal interface materials (TIMs). However, improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task. Herein, an orthotropic three-dimensional (3D) hybrid carbon network (VSCG) is fabricated by depositing vertically aligned carbon nanotubes (VACNTs) on the surface of a horizontally oriented graphene film (HOGF). The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy. After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsiloxane (PDMS), VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained. The highest in-plane and through-plane thermal conductivities of the composites are 113.61 and 24.37 W m-1 K-1, respectively. The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance. In addition, the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3% compared to that of a state-of-the-art thermal pad. This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.

7.
Materials (Basel) ; 17(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38730812

ABSTRACT

The effects of the sintering duration and powder fraction (Ag-coated Cu/SnAgCu) on the microstructure and reliability of transient liquid phase sintered (TLPS) joints are investigated. The results show that two main intermetallic compounds (IMCs, Cu6Sn5 and Cu3Sn) formed in the joints. The Cu6Sn5 ratio generally decreased with increasing sintering time, Cu powder fraction, and thermal treatment. The void ratio of the high-Cu-fraction joints decreased and increased with increasing sintering and thermal stressing durations, respectively, whereas the low-Cu-fraction counterparts were stable. We also found that the shear strength increased with increasing thermal treatment time, which resulted from the transformation of Cu6Sn5 and Cu3Sn. Such findings could provide valuable information for optimizing the TLPS process and assuring the high reliability of electronic devices.

8.
Nanomaterials (Basel) ; 14(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786803

ABSTRACT

As one of the emerging nanomaterials, boron nitride nanotubes (BNNTs) provide promising opportunities for diverse applications due to their unique properties, such as high thermal conductivity, immense inertness, and high-temperature durability, while the instability of BNNTs due to their high surface induces agglomerates susceptible to the loss of their advantages. Therefore, the proper functionalization of BNNTs is crucial to highlight their fundamental characteristics. Herein, a simplistic low-cost approach of BNNT surface modification through catechol-polyamine (CAPA) interfacial polymerization is postulated to improve its dispersibility on the polymeric matrix. The modified BNNT was assimilated as a filler additive with AlN/Al2O3 filling materials in a PDMS polymeric matrix to prepare a thermal interface material (TIM). The resulting composite exhibits a heightened isotropic thermal conductivity of 8.10 W/mK, which is a ~47.27% increase compared to pristine composite 5.50 W/mK, and this can be ascribed to the improved BNNT dispersion forming interconnected phonon pathways and the thermal interface resistance reduction due to its augmented compatibility with the polymeric matrix. Moreover, the fabricated composite manifests a fire resistance improvement of ~10% in LOI relative to the neat composite sample, which can be correlated to the thermal stability shift in the TGA and DTA data. An enhancement in thermal permanence is stipulated due to a melting point (Tm) shift of ∼38.5 °C upon the integration of BNNT-CAPA. This improvement can be associated with the good distribution and adhesion of BNNT-CAPA in the polymeric matrix, integrated with its inherent thermal stability, good charring capability, and free radical scavenging effect due to the presence of CAPA on its surface. This study offers new insights into BNNT utilization and its corresponding incorporation into the polymeric matrix, which provides a prospective direction in the preparation of multifunctional materials for electric devices.

9.
Small ; : e2400115, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678491

ABSTRACT

High-power-density electronic devices under vibrations call for soft and damping thermal interface materials (TIMs) for efficient heat dissipation. However, integrating low hardness, high damping, and superior heat transfer capability into one TIM is highly challenging. Herein, soft, damping, and thermally conductive TIMs are designed and prepared by constructing a honeycomb-board-mimetic boron nitride nanosheet (BNNS) network in a dynamic polyimine via one-step horizontal centrifugal casting. The unique filler network makes the TIMs perform a high through-plane thermal conductivity (> 7.69 W m-1 K-1) and a uniform heat transfer process. Meanwhile, the hierarchical dynamic bonding of the polyimine endows the TIMs with low compressive strength (2.16 MPa at 20% strain) and excellent damping performance (tan δ > ≈0.3 at 10-2-102 Hz). The resulting TIMs also exhibit electrical insulation and remarkable recycling ability. Compared with the commercial ones, the TIMs provide better heat dissipation (4.1 °C) for a high-power 5G base station and less temperature fluctuation (1.8 °C) for an automotive insulated gate bipolar transistor (IGBT) under vibrations. This rational design offers a viable approach to prepare soft and damping TIMs for effective heat dissipation of high-power-density electronic devices under vibrations.

10.
Materials (Basel) ; 17(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38399165

ABSTRACT

In this study, Al2O3-siloxane composite thermal pads were fabricated using a tape-casting technique, and the thermal conductivity effect of the Al2O3 nanoparticle powder synthesized using a flame fusion process on siloxane composite thermal pads was investigated. Furthermore, various case studies were implemented, wherein the synthesized Al2O3 nanoparticle powder was subjected to different surface treatments, including dehydration, decarbonization, and silylation, to obtain Al2O3-siloxane composite thermal pads with high thermal conductivity. The experimental results confirmed that the thermal conductivity of the Al2O3-siloxane composite pads improved when fabricated using surface-treated Al2O3 nanoparticle powder synthesized with an optimally spheroidized crystal structure compared to that produced using non-treated Al2O3 nanoparticle powder. Therefore, this study provides guidelines for fabricating Al2O3-siloxane composite thermal pads with high thermal conductivity in the field of thermal interface materials.

11.
Heliyon ; 10(3): e25381, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352797

ABSTRACT

The internet of things and growing demand for smaller and more advanced devices has created the problem of high heat production in electronic equipment, which greatly reduces the work performance and life of the electronic instruments. Thermal interface material (TIM) is placed in between heat generating micro-chip and the heat dissipater to conduct all the produced heat to the heat sink. The development of suitable TIM with excellent thermal conductivity (TC) in both in-plane and through-plane directions is a very important need at present. For efficient thermal management, polymer composites are potential candidates. But in general, their thermal conductivity is low compared to that of metals. The filler integration into the polymer matrix is one of the two approaches used to increase the thermal conductivity of polymer composites and is also easy to scale up for industrial production. Another way to achieve this is to change the structure of polymer chains, which fall out of the scope of this work. In this review, considering the first approach, the authors have summarized recent developments in many types of fillers with different scenarios by providing multiple cases with successful strategies to improve through-plane thermal conductivity (TPTC) (k⊥). For a better understanding of TC, a comprehensive background is presented. Several methods to improve the effective (out-plane) thermal conductivity of polymer composites and different theoretical models for the calculation of TC are also discussed. In the end, it is given a detailed conclusion that provides drawbacks of some fillers, multiple significant routes recommended by other researchers to build thermally conductive polymer composites, future aspects along with direction so that the researchers can get a guideline to design an effective polymer-based thermal interface material.

12.
Small ; 20(2): e2305090, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37658523

ABSTRACT

The pursuit of enhancing the heat transfer performance of composite elastomers as the thermal interface materials (TIMs) is a compelling and timely endeavor, given the formidable challenges posed by interfacial thermal transport in the domains of energy science, electronic technology, etc. Despite the efficacy of phase change materials (PCMs) in enhancing composite elastomers' interfacial compatibility, thereby reducing contact thermal resistance for heat transfer improvement, their leakage post-transition has impeded the widespread adoption of this approach. Herein, a strategy is proposed for developing a solid-solid phase change composite elastomer by grafting alkene chains onto the crosslink network to eliminate the possibility of leakage. A series characterization suggest that the resulting material possesses a self-adjusting interfacial compatibility feature to help reduce contact thermal resistance for heat transfer facilitating. The investigations on adhesion strength and surface energy reveal that the presence of amorphous grafted alkane chains at the interface facilitates easier absorption onto the contacting solid surface, enhancing intermolecular interactions at the interface to promote across-boundary heat transfer. By integrating these findings with the thermal performance evaluation of composite elastomers using a real test vehicle, valuable insights are gained for the design of composite elastomers, establishing their suitability as TIMs in relevant fields.

13.
Small Methods ; : e2300969, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095424

ABSTRACT

The surface treatment for a polymer-ceramic composite is additionally performed in advanced material industries. To prepare the composite without a surface treatment, the simplest way to manufacture an advanced ceramic-particle is devised. The method is the formation of a nanocrystalline composite layer through the simple liquid-phase sintering. Using magnesia (MgO) which shows hydrophilicity, a nanocrystalline surface layer is realized by liquid-phase sintering. The amorphous matrix of nanocrystalline composite layer makes MgO hydrophobic and ensures miscibility with polymers, and the nanocrystalline MgO ensures high thermal conductivity. In addition, the liquid phase removes the open pores and makes the surface morphology smooth MgO with smooth surface (MgO-SM). Thermal interface materials (TIM) prepared with MgO-SM and epoxy show a high thermal conductivity of ≈7.5 W m-1 K-1 , which is significantly higher than 4.5 W m-1 K-1 of pure MgO TIM. Consequently, the formation process of a nanocrystalline surface layer utilizing simple liquid-phase sintering is proposed as a fabrication method for a next-generation ceramic-filler. In addition, it is fundamentally identified that the thermal conductivity of MgO depends on the Mg deficiency, and therefore a poly-crystal MgO-SM (produced at a low temperature) has a higher thermal conductivity than a single-crystal MgO (produced at a high temperature).

14.
Materials (Basel) ; 16(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38068163

ABSTRACT

Traditional graphene-based films normally possess high thermal conductivity (TC) only along a single direction, which is not suitable for thermal interface materials (TIMs). Here, a graphene film with excellent bidirectional TC and mechanical properties was prepared by hot-pressing super-elastic graphene aerogel (SEGA). Thermal annealing at 1800 °C improves the further restacking of graphene sheets, bringing high structure stability to SEGA for enduring the hot-pressing process. The junctions and nodes between the graphene layers in the hot-pressed SEGA (HPSEGA) film provide bidirectional heat transport paths. The in-plane TC and through-plane TC of HPSEGA film with a thickness of 101 µm reach 740 Wm-1K-1 and 42.5 Wm-1K-1, respectively. In addition, HPSEGA film with higher thickness still maintains excellent thermal transport properties due to the interconnected structure reducing the effect of the defects. The infrared thermal images visually manifest the excellent thermal-transfer capability and thermal-dissipation efficiency of the HPSEGA films, indicating the great potential as advanced bidirectional TIMs.

15.
Polymers (Basel) ; 15(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139905

ABSTRACT

Pad-type thermal interface materials (TIMs) with composite structures are required to exhibit high thermal conductivity while maintaining conformal contact with the heat sink, which is strongly influenced by the type and content of the thermally conductive filler. This study presents that biphasic metal particles can be effectively aligned using the dielectrophoretic chaining (DEP-C) mechanism, thereby enhancing the thermal conductivity of a pad-type TIM. A eutectic gallium-indium (EGaIn) alloy liquid metal and solid copper were used as the filler materials with two different phases. The biphasic metal particle mixture of EGaIn and Cu (EGaIn-Cu) were better aligned by DEP-C than when they presented individually because fusion between the two particles increased the effective size. As expected, the thermal conductivity of the TIM composites increased when DEP-C aligned the filler. Notably, TIMs with both EGaIn-Cu fillers showed the largest increase in thermal conductivity, of up to 64.6%, and the highest thermal conductivity values after DEP-C application compared to TIMs with only the EGaIn or Cu filler. Finally, the heat dissipation performance of the TIM composite on a lit light-emitting diode is shown, where the TIM with DEP-C-aligned fillers exhibits improved performance.

16.
Polymers (Basel) ; 15(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38006153

ABSTRACT

With the miniaturization of current electronic products, ceramic/polymer composites with excellent thermal conductivity have become of increasing interest. Traditionally, higher filler fractions are required to obtain a high thermal conductivity, but this leads to a decrease in the mechanical properties of the composites and increases the cost. In this study, silicon nitride nanowires (Si3N4NWs) with high aspect ratios were successfully prepared by a modified carbothermal reduction method, which was further combined with AlN particles to prepare the epoxy-based composites. The results showed that the Si3N4NWs were beneficial for constructing a continuous thermal conductive pathway as a connecting bridge. On this basis, an aligned three-dimensional skeleton was constructed by the ice template method, which further favored improving the thermal conductivity of the composites. When the mass fraction of Si3N4NWs added was 1.5 wt% and the mass fraction of AlN was 65 wt%, the composites prepared by ice templates reached a thermal conductivity of 1.64 W·m-1·K-1, which was ~ 720% of the thermal conductivity of the pure EP (0.2 W·m-1·K-1). The enhancement effect of Si3N4NWs and directional filler skeletons on the composite thermal conductivity were further demonstrated through the actual heat transfer process and finite element simulations. Furthermore, the thermal stability and mechanical properties of the composites were also improved by the introduction of Si3N4NWs, suggesting that prepared composites exhibit broad prospects in the field of thermal management.

17.
Polymers (Basel) ; 15(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37631393

ABSTRACT

In this study, α-Trimethylsilylmethyl-ω-dimethylsilyl-terminated polydimethylsiloxane, polydiethylsiloxane and poly[2,2,2-trifluoropropyl(methyl)siloxane] are synthesized using an anion catalyzed nonequilibrium polymerization reaction with trimethylsilylmethyl lithium as the initiator; hexamethylcyclotrisiloxane, hexaethylcyclotrisiloxane or 1,3,5-trimethyl-1,3,5-trifluoropropylcyclotrisiloxane as the monomer; and dimethylchlorosilane as an end-capping agent. Three kinds of α-trimethylsilylmethyl-ω-trimethoxylsilylethyl-terminated polysiloxanes are further prepared by hydrosilylation reaction of α-trimethylsilylmethyl-ω-dimethylsilyl-terminated polysiloxanes with vinyltrimethoxysilane using Karstedt's catalyst. These α-trimethylsilylmethyl-ω-trimethoxylsilylethyl-terminated polysiloxanes are functionalized as in situ surface treatment agents for AlN particles. The effects of the structure of these polysiloxanes on the dispersion of AlN in the polysiloxane matrix and on the heat transfer performance of silicone pastes and silicone rubbers are investigated. A possible mechanism of surface treatment of AlN fillers by these novel silicone fluids is also discussed.

18.
Polymers (Basel) ; 15(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37447571

ABSTRACT

Over the past few decades, the enhancement of polymer thermal conductivity has attracted considerable attention in the scientific community due to its potential for the development of new thermal interface materials (TIM) for both electronic and electrical devices. The mechanical elongation of polymers may be considered as an appropriate tool for the improvement of heat transport through polymers without the necessary addition of nanofillers. Polyimides (PIs) in particular have some of the best thermal, dielectric, and mechanical properties, as well as radiation and chemical resistance. They can therefore be used as polymer binders in TIM without compromising their dielectric properties. In the present study, the effects of uniaxial deformation on the thermal conductivity of thermoplastic PIs were examined for the first time using atomistic computer simulations. We believe that this approach will be important for the development of thermal interface materials based on thermoplastic PIs with improved thermal conductivity properties. Current research has focused on the analysis of three thermoplastic PIs: two semicrystalline, namely BPDA-P3 and R-BAPB; and one amorphous, ULTEMTM. To evaluate the impact of uniaxial deformation on the thermal conductivity, samples of these PIs were deformed up to 200% at a temperature of 600 K, slightly above the melting temperatures of BPDA-P3 and R-BAPB. The thermal conductivity coefficients of these PIs increased in the glassy state and above the glass transition point. Notably, some improvement in the thermal conductivity of the amorphous polyimide ULTEMTM was achieved. Our study demonstrates that the thermal conductivity coefficient is anisotropic in different directions with respect to the deformation axis and shows a significant increase in both semicrystalline and amorphous PIs in the direction parallel to the deformation. Both types of structural ordering (self-ordering of semicrystalline PI and mechanical elongation) led to the same significant increase in thermal conductivity coefficient.

19.
ACS Appl Mater Interfaces ; 15(23): 28626-28635, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37276584

ABSTRACT

The application of high-performance thermal interface materials (TIMs) for thermal management is commonly used to tackle the problem of heat accumulation, which influences the performance and reliability of microelectronic devices. Herein, a novel three-dimensional (3D) carbon nitride nanosheet (CNNS)/epoxy composite with high thermal conductivity was developed by introducing 3D CNNS skeleton fillers prepared by a facile and scalable strategy assisted by a salt template. Benefiting from the continuous heat transfer pathways formed in the CNNS skeleton, 17.0 wt % 3D CNNS/epoxy composites achieve a superior thermal conductivity of 1.27 W/m·K, which is 6.35 and 1.57 times higher than those of epoxy resin and convention CNNS/epoxy, respectively. With the aid of theoretical model analysis and finite element simulation, the pronounced enhancement effect of the 3D CNNS skeleton on the thermal conductivity of epoxy composites is found to be attributed to the continuous 3D CNNS thermally conductive network, the diminished CNNS-CNNS interfacial thermal resistance, and the effective interfacial interactions between epoxy and CNNS. In addition, the 3D CNNS/epoxy composites possess high electrical insulation and desirable mechanical strength. Therefore, 3D CNNS/epoxy composites are promising TIMs for advanced electronic thermal management.

20.
ACS Appl Mater Interfaces ; 15(23): 28536-28545, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37264810

ABSTRACT

Thermally conductive and electrically insulating thermal interface materials (TIMs) are highly desired for electronic cooling. To improve heat transfer efficiency, thermally conductive fillers with a high loading content have been incorporated into the polymer-based TIMs. However, this is usually at the expense of the interfacial thermal resistance reduction and reliability. In this study, vertically aligned boron nitride nanosheet films (VBNFs) have been prepared by a scalable microfluidic spinning process and template-assisted chemical vapor deposition conversion method. A further high-temperature annealing was applied to achieve high crystallinity. VBNFs have been applied as fillers to fabricate TIMs and achieve a superior through-plane thermal conductivity of 6.4 W m-1 K-1 and low modulus of 2.2 MPa at low BN loading of 9.85 vol %, benefitting from the well-aligned vertical sheet structure and high crystallinity. In addition, the fabricated TIMs present high-volume resistivity and breakdown strength, satisfying the electrical insulation demands. The high thermal conductivity and low modulus contribute an outstanding cooling performance to the TIMs in the heat dissipation application for high-power LEDs. This template-assisted conversion technology for the fabrication of orientated BN nanosheets structure and the prepared high-performance TIMs pave the way for efficient thermal management of high-power electronics.

SELECTION OF CITATIONS
SEARCH DETAIL