Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.045
Filter
1.
Lasers Med Sci ; 39(1): 171, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965082

ABSTRACT

To evaluate the effects of red and infrared wavelengths, separately and combined, on the inflammatory process and collagen deposition in muscle damage caused by B. leucurus venom. 112 mice were inoculated with diluted venom (0.6mg/kg) in the gastrocnemius muscle. The animals were divided into four groups: one control (CG) and three treatments, namely: 1) red laser (λ=660 nm) (RG), 2) infrared laser (λ=808 nm) (IG) and 3) red laser (λ=660 nm) + infrared (λ=808 nm) (RIG). Each group was subdivided into four subgroups, according to the duration of treatment application (applications every 24 hours over evaluation times of up to 144 hours). A diode laser was used (0.1 W, CW, 1J/point, ED: 10 J/cm2). Both wavelengths reduced the intensity of inflammation and the combination between them significantly intensified the anti-inflammatory response. Photobiomodulation also changed the type of inflammatory infiltrate observed and RIG had the highest percentage of mononuclear cells in relation to the other groups. Hemorrhage intensity was significantly lower in treated animals and RIG had the highest number of individuals in which this variable was classified as mild. As for collagen deposition, there was a significant increase in RG in relation to CG, in RIG in relation to CG and in RIG in relation to IG. Photobiomodulation proved to be effective in the treatment of inflammation and hemorrhage caused by B. leucurus venom and stimulated collagen deposition. Better results were obtained with the combined wavelengths.


Subject(s)
Bothrops , Collagen , Crotalid Venoms , Hemorrhage , Inflammation , Low-Level Light Therapy , Muscle, Skeletal , Animals , Mice , Low-Level Light Therapy/methods , Muscle, Skeletal/radiation effects , Muscle, Skeletal/drug effects , Hemorrhage/pathology , Collagen/metabolism , Collagen/analysis , Crotalid Venoms/toxicity , Infrared Rays , Male , Lasers, Semiconductor/therapeutic use , Snake Bites/radiotherapy
2.
Stem Cell Res Ther ; 15(1): 199, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971781

ABSTRACT

BACKGROUND: Bone marrow-derived mesenchymal stem cell (BMMSC)-based therapy has become a major focus for treating liver fibrosis/cirrhosis. However, although these cell therapies promote the treatment of this disease, the heterogeneity of BMMSCs, which causes insufficient efficacy during clinical trials, has not been addressed. In this study, we describe a novel Percoll-Plate-Wait procedure (PPWP) for the isolation of an active cell subset from BMMSC cultures that was characterized by the expression of neuroglial antigen 2 (NG2/BMMSCs). METHODS: By using the key method of PPWP and other classical biological techniques we compared NG2/BMMSCs with parental BMMSCs in biological and functional characteristics within a well-defined diethylnitrosamine (DEN)-induced liver fibrosis/cirrhosis injury male C57BL/6 mouse model also in a culture system. Of note, the pathological alterations in the model is quite similar to humans'. RESULTS: The NG2/BMMSCs revealed more advantages compared to parentalBMMSCs. They exhibited greater proliferation potential than parental BMMSCs, as indicated by Ki-67 immunofluorescence (IF) staining. Moreover, higher expression of SSEA-3 (a marker specific for embryonic stem cells) was detected in NG2/BMMSCs than in parental BMMSCs, which suggested that the "stemness" of NG2/BMMSCs was greater than that of parental BMMSCs. In vivo studies revealed that an injection of NG2/BMMSCs into mice with ongoing DEN-induced liver fibrotic/cirrhotic injury enhanced repair and functional recovery to a greater extent than in mice treated with parental BMMSCs. These effects were associated with the ability of NG2/BMMSCs to differentiate into bile duct cells (BDCs). In particular, we discovered for the first time that NG2/BMMSCs exhibit unique characteristics that differ from those of parental BMMSCs in terms of producing liver sinusoidal endothelial cells (LSECs) to reconstruct injured blood vessels and sinusoidal structures in the diseased livers, which are important for initiating hepatocyte regeneration. This unique potential may also suggest that NG2/BMMSCs could be an novel off-liver progenitor of LSECs. Ex vivo studies revealed that the NG2/BMMSCs exhibited a similar trend to that of their in vivo in terms of functional differentiation responding to the DEN-diseased injured liver cues. Additionally, the obvious core role of NG2/BMMSCs in supporting the functions of BMMSCs in bile duct repair and BDC-mediated hepatocyte regeneration might also be a novel finding. CONCLUSIONS: Overall, the PPWP-isolated NG2/BMMSCs could be a novel effective cell subset with increased purity to serve as a new therapeutic tool for enhancing treatment efficacy of BMMSCs and special seed cell source (BDCs, LSECs) also for bioliver engineering.


Subject(s)
Antigens , Liver Cirrhosis , Mesenchymal Stem Cells , Mice, Inbred C57BL , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Liver Cirrhosis/therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/chemically induced , Mice , Male , Antigens/metabolism , Mesenchymal Stem Cell Transplantation/methods , Proteoglycans/metabolism , Cell Differentiation , Cell Proliferation , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cells, Cultured
3.
ACS Biomater Sci Eng ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979636

ABSTRACT

Intervertebral disc (IVD) herniation is a leading cause of disability and lower back pain, causing enormous socioeconomic burdens. The standard of care for disc herniation is nucleotomy, which alleviates pain but does not repair the annulus fibrosus (AF) defect nor recover the biomechanical function of the disc. Existing bioadhesives for AF repair are limited by insufficient adhesion and significant mechanical and geometrical mismatch with the AF tissue, resulting in the recurrence of protrusion or detachment of bioadhesives. Here, we report a composite hydrogel sealant constructed from a composite of a three-dimensional (3D)-printed thermoplastic polyurethane (TPU) mesh and tough hydrogel. We tailored the fiber angle and volume fraction of the TPU mesh design to match the angle-ply structure and mechanical properties of native AF. Also, we proposed and tested three types of geometrical design of the composite hydrogel sealant to match the defect shape and size. Our results show that the sealant could mimic native AF in terms of the elastic modulus, flexural modulus, and fracture toughness and form strong adhesion with the human AF tissue. The bovine IVD tests show the effectiveness of the composite hydrogel sealant for AF repair and biomechanics recovery and for preventing herniation with its heightened stiffness and superior adhesion. By harnessing the combined capabilities of 3D printing and bioadhesives, these composite hydrogel sealants demonstrate promising potential for diverse applications in tissue repair and regeneration.

4.
Heliyon ; 10(12): e32836, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38948035

ABSTRACT

Introduction: This study examined the anti-inflammatory and antioxidant properties of Capparis spinosa L. (caper) in order to determine its medicinal potential in the treatment of acute colitis. Method: Sixty male rats were divided into six groups. After the experimental period, distal colonic extension was collected for determination of colonic damage, oxidative stress markers, along with antioxidant markers. The impact of altered levels of inflammatory cytokines in colon tissues on the underlying mechanisms examined. Results: The results showed that administering different doses of caper led to significant decreases in TNF-α and IL-6 levels when compared to the control colitis group (p < 0.001). Caper treatment effectively lowered elevated oxidative stress factors (MDA, NO, and MPO) compared to the control colitis group (p < 0.001). Caper treatment resulted in a significant increase in antioxidant factors (CAT, SOD, and GSH) compared with the control colitis group (p < 0.001).Significant improvements in tissue repair were observed in caper-treated groups compared to positives and control colitis (p < 0.001). Conclusion: The study highlights caper may be useful in the treatment of acute colitis due to its ameliorative effects on inflammation, oxidative stress, and tissue repair.

5.
Macromol Rapid Commun ; : e2400293, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885644

ABSTRACT

Tissue repair and regeneration, such as bone and nerve restoration, face significant challenges due to strict regulations within the immune microenvironment, stem cell differentiation, and key cell behaviors. The development of 3D scaffolds is identified as a promising approach to address these issues via the efficiently structural regulations on cell fates and behaviors. In particular, 3D-printed polymer scaffolds with diverse micro-/nanostructures offer a great potential for mimicking the structures of tissue. Consequently, they are foreseen as promissing pathways for regulating cell fates, including cell phenotype, differentiation of stem cells, as well as the migration and the proliferation of key cells, thereby facilitating tissue repairs and regenerations. Herein, the roles of structural functions of 3D-printed polymer scaffolds in regulating the fates and behaviors of numerous cells related to tissue repair and regeneration, along with their specific influences are highlighted. Additionally, the challenges and outlooks associated with 3D-printed polymer scaffolds with various structures for modulating cell fates are also discussed.

6.
Animals (Basel) ; 14(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38929434

ABSTRACT

The skin of bony fish is the first physical barrier and is responsible for maintaining the integrity of the fish. Lesions make the skin vulnerable to potential infection by pathogens present in the aquatic environment. In this way, wound repair has barely been studied in gilthead sea bream. Thus, this study investigated the modulation of peripheral neuro-endocrine and tissue repair markers at the transcriptional level in the skin of teleost fish subjected to mechanical damage above or below the lateral line (dorsal and ventral lesions, respectively). Samples were evaluated using RT-qPCR at 2-, 4-, and 20-days post-injury. Fish with a ventral lesion presented a trend of progressive increase in the expressions of corticotropin-releasing hormone (crh), pro-opiomelanocortin-A (pomca), proenkephalin-B (penkb), cholecystokinin (cck), oxytocin (oxt), angiotensinogen (agt), and (less pronounced) somatostatin-1B (sst1b). By contrast, fish with a dorsal lesion registered no significant increase or biological trend for the genes evaluated at the different sampling times. Collectively, the results show a rapid and more robust response of neuro-endocrine and tissue repair markers in the injuries below than above the lateral line, which could be attributable to their proximity to vital organs.

7.
J Nanobiotechnology ; 22(1): 376, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926780

ABSTRACT

Tissue regeneration technology has been rapidly developed and widely applied in tissue engineering and repair. Compared with traditional approaches like surgical treatment, the rising gene therapy is able to have a durable effect on tissue regeneration, such as impaired bone regeneration, articular cartilage repair and cancer-resected tissue repair. Gene therapy can also facilitate the production of in situ therapeutic factors, thus minimizing the diffusion or loss of gene complexes and enabling spatiotemporally controlled release of gene products for tissue regeneration. Among different gene delivery vectors and supportive gene-activated matrices, advanced gene/drug nanocarriers attract exceptional attraction due to their tunable physiochemical properties, as well as excellent adaptive performance in gene therapy for tissue regeneration, such as bone, cartilage, blood vessel, nerve and cancer-resected tissue repair. This paper reviews the recent advances on nonviral-mediated gene delivery systems with an emphasis on the important role of advanced nanocarriers in gene therapy and tissue regeneration.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Regeneration , Tissue Engineering , Tissue Scaffolds , Humans , Animals , Genetic Therapy/methods , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Nanoparticles/chemistry , Drug Carriers/chemistry , Genetic Vectors
8.
Int J Biol Macromol ; 274(Pt 2): 133172, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38880458

ABSTRACT

In the field of bone tissue repair, the treatment of bone defects has always posed a significant challenge. In recent years, the advancement of bone tissue engineering and regenerative medicine has sparked great interest in the development of innovative bone grafting materials. In this study, a novel hydroxyapatite (HA) material was successfully prepared and comprehensively characterized. Antimicrobial experiments and biological evaluations were conducted to determine its efficacy. Based on the aforementioned research findings, 3D printing technology was employed to fabricate HA/chitosan (CS)/ polycaprolactone (PCL) scaffolds. The composition of the scaffold materials was confirmed through X-ray diffractometer (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) tests, while the influence of different HA ratios on the scaffold surface morphology was observed. Additionally, antimicrobial experiments demonstrated the favorable antimicrobial activity of the scaffolds containing 30%HA + 5%CS + PCL. Furthermore, the water contact angle measurements confirmed the superhydrophilicity of the scaffolds. Finally, the excellent bioactivity and ability to promote tissue regeneration of the scaffolds were further confirmed by in vitro and in vivo experiments. This study provides new options for future repair and regeneration of bone tissue and clinical applications.

9.
Adv Sci (Weinh) ; : e2309820, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896799

ABSTRACT

Infection is the most common complication after orthopedic surgery and can result in prolonged ailments such as chronic wounds, enlarged bone defects, and osteomyelitis. Iron, which is essential for bacterial metabolism and immune cell functions, is extremely important. Bacteria harness iron from nearby cells to promote biofilm formation, ensuring their survival. Iron deficiency within the infection microenvironment (IME) consequently hampers macrophage function, enabling further dissemination of the infection and hindering macrophage polarization to the M2 phenotype. Therefore, a novel approach is proposed to regulate macrophage polarization, aiming to restore the inflammatory immune environment. A composite hydrogel derived from natural polymers is developed to address infections and manage iron metabolism in macrophages. This IME-responsive hydrogel, named FCL-ECMH, is synthesized by encapsulating vermiculite functional core layers within a decellularized extracellular matrix hydrogel. It is noteworthy that FCL-ECMH can produce reactive oxygen species within the IME. Supplementary photothermal treatment enhances bacterial iron uptake, leading to ferroptosis-like death. This process also rejuvenates the iron-enriched macrophages around the IME, thereby enhancing their antibacterial and tissue repair functions. In vivo experiments confirmed the antibacterial and repair-promoting capabilities of FCL-ECMH, indicating its potential for clinical applications.

10.
J Colloid Interface Sci ; 673: 647-656, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38901355

ABSTRACT

Monodisperse nanoparticles of biodegradable polyhydroxyalkanoates (PHAs) polymers, copolymers of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB), are synthesized using a membrane-assisted emulsion encapsulation and evaporation process for biomedical resorbable adhesives. The precise control over the diameter of these PHA particles, ranging from 100 nm to 8 µm, is achieved by adjusting the diameter of emulsion or the PHA concentration. Mechanical properties of the particles can be tailored based on the 3HB to 4HB ratio and molecular weight, primarily influenced by the level of crystallinity. These monodisperse PHA particles in solution serve as adhesives for hydrogel systems, specifically those based on poly(N, N-dimethylacrylamide) (PDMA). Semi-crystalline PHA nanoparticles exhibit stronger adhesion energy than their amorphous counterparts. Due to their self-adhesiveness, adhesion energy increases even when those PHA nanoparticles form multilayers between hydrogels. Furthermore, as they degrade and are resorbed into the body, the PHA nanoparticles demonstrate efficacy in in vivo wound closure, underscoring their considerable impact on biomedical applications.

11.
Bioact Mater ; 40: 19-33, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38882001

ABSTRACT

Infection and poor tissue repair are the key causes of percutaneous implantation failure. However, there is a lack of effective strategies to cope with due to its high requirements of sterilization, soft tissue healing, and osseointegration. In this work, l-arginine (L-Arg) was loaded onto a sulfonated polyetheretherketone (PEEK) surface to solve this issue. Under the infection condition, nitric oxide (NO) and reactive oxygen species (ROS) are produced through catalyzing L-Arg by inducible nitric oxide synthase (iNOS) and thus play a role in bacteria sterilization. Under the tissue repair condition, L-Arg is catalyzed to ornithine by Arginase-1 (Arg-1), which promotes the proliferation and collagen secretion of L929 and rBMSCs. Notably, L-Arg loading samples could polarize macrophages to M1 and M2 in infection and tissue repair conditions, respectively. The results in vivo show that the L-Arg loading samples could enhance infected soft tissue sealing and bone regeneration. In summary, L-Arg loading sulfonated PEEK could polarize macrophage through metabolic reprogramming, providing multi-functions of antibacterial abilities, soft tissue repair, and bone regeneration, which gives a new idea to design percutaneous implantation materials.

12.
J Bone Miner Res ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836494

ABSTRACT

Beyond the sensation of pain, peripheral nerves have been shown to play crucial roles in tissue regeneration and repair. As a highly innervated organ, bone can recover from injury without scar formation, making it an interesting model in which to study the role of nerves in tissue regeneration. As a comparison, tendon is a musculoskeletal tissue that is hypo-innervated, with repair often resulting in scar formation. Here, we reviewed the significance of innervation in three stages of injury repair (inflammatory, reparative, and remodeling) in two commonly injured musculoskeletal tissues: bone and tendon. Based on this focused review, we conclude that peripheral innervation is essential for phases of proper bone and tendon repair, and that nerves may dynamically regulate the repair process through interactions with the injury microenvironment via a variety of neuropeptides or neurotransmitters. A deeper understanding of neuronal regulation of musculoskeletal repair, and the crosstalk between nerves and the musculoskeletal system, will enable the development of future therapies for tissue healing.


Accumulating evidence has shown that, across organs systems, peripheral nerves regulate the process of tissue repair and regeneration. This is particularly relevant in the context of musculoskeletal injuries such as those affecting the bone and tendon. The question then arises: what is the function of peripheral innervation in the repair of bone and tendon injuries? This review offers an in-depth look at the ways in which nerves regulate the healing of bone and tendon injuries at various stages of recovery. A deeper comprehension of the influence of nerves on the repair of these tissues could pave the way for the development of future therapeutic strategies for tissue healing.

13.
J Colloid Interface Sci ; 673: 411-425, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878375

ABSTRACT

Multifunctional bioactive biomaterials with integrated bone and soft tissue regenerability hold great promise for the regeneration of trauma-affected skin and bone defects. The aim of this research was to fabricate aerogel scaffolds (GD-BF) by blending the appropriate proportions of short bioactive glass fiber (BGF), gelatin (Gel), and dopamine (DA). Electrospun polyvinyl pyrrolidone (PVP)-BGF fibers were converted into short BGF through calcination and homogenization. Microporous GD-BF scaffolds displayed good elastic deformation recovery and promoted neo-tissue formation. The DA could enable thermal crosslinking and enhance the mechanical properties and structural stability of the GD-BF scaffolds. The BGF-mediated release of therapeutic ions shorten hemostatic time (<30 s) in a rat tail amputation model and a rabbit artery injury model alongside inducing the regeneration of skin appendages (e.g., blood vessels, glands, etc.) in a full-thickness excisional defect model in rats (percentage wound closure: GD-BF2, 98 % vs. control group, 83 %) at day 14 in vitro. Taken together, these aerogel scaffolds may have significant promise for soft and hard tissue repair, which may also be worthy for the other related disciplines.

14.
Adv Mater ; : e2404811, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875445

ABSTRACT

Uncontrolled bleeding and wound infections following severe trauma pose significant challenges for existing tissue adhesives, primarily due to their weak wet adhesion, slow adhesion formation, cytotoxicity concerns, and lack of antibacterial properties. Herein, an injectable hydrogel (denoted as ES gel) with rapid, robust adhesive sealing and inherent antibacterial activity based on ε-polylysine and a poly(ethylene glycol) derivative is developed. The engineered hydrogel exhibits rapid gelation behavior, high mechanical strength, strong adhesion to various tissues, and can sustain an ultrahigh burst pressure of 450 mmHg. It also presents excellent biocompatibility, biodegradability, antibacterial properties, and on-demand removability. Significantly improved hemostatic efficacy of ES gel compared to fibrin glue is demonstrated using various injury models in rats and rabbits. Remarkably, the adhesive hydrogel can effectively halt lethal non-compressible hemorrhages in visceral organs (liver, spleen, and heart) and femoral artery injury models in fully anticoagulated pigs. Furthermore, the hydrogel outperforms commercial products in sutureless wound closure and repair in the rat liver defect, skin incision, and infected full-thickness skin wound models. Overall, this study highlights the promising clinical applications of ES gel for managing uncontrolled hemorrhage, sutureless wound closure, and infected wound repair. This article is protected by copyright. All rights reserved.

15.
Front Cell Infect Microbiol ; 14: 1346087, 2024.
Article in English | MEDLINE | ID: mdl-38736751

ABSTRACT

Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.


Subject(s)
Homeostasis , Immunity, Innate , Intestinal Mucosa , Humans , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Animals , Respiratory Mucosa/microbiology , Respiratory Mucosa/immunology , Epithelial Cells/microbiology , Signal Transduction , Adaptive Immunity , Macrophages/immunology , Macrophages/microbiology , Host-Pathogen Interactions
16.
Med ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38776915

ABSTRACT

BACKGROUND: Xenotransplantation of genetically engineered porcine organs has the potential to address the challenge of organ donor shortage. Two cases of porcine-to-human kidney xenotransplantation were performed, yet the physiological effects on the xenografts and the recipients' immune responses remain largely uncharacterized. METHODS: We performed single-cell RNA sequencing (scRNA-seq) and longitudinal RNA-seq analyses of the porcine kidneys to dissect xenotransplantation-associated cellular dynamics and xenograft-recipient interactions. We additionally performed longitudinal scRNA-seq of the peripheral blood mononuclear cells (PBMCs) to detect recipient immune responses across time. FINDINGS: Although no hyperacute rejection signals were detected, scRNA-seq analyses of the xenografts found evidence of endothelial cell and immune response activation, indicating early signs of antibody-mediated rejection. Tracing the cells' species origin, we found human immune cell infiltration in both xenografts. Human transcripts in the longitudinal bulk RNA-seq revealed that human immune cell infiltration and the activation of interferon-gamma-induced chemokine expression occurred by 12 and 48 h post-xenotransplantation, respectively. Concordantly, longitudinal scRNA-seq of PBMCs also revealed two phases of the recipients' immune responses at 12 and 48-53 h. Lastly, we observed global expression signatures of xenotransplantation-associated kidney tissue damage in the xenografts. Surprisingly, we detected a rapid increase of proliferative cells in both xenografts, indicating the activation of the porcine tissue repair program. CONCLUSIONS: Longitudinal and single-cell transcriptomic analyses of porcine kidneys and the recipient's PBMCs revealed time-resolved cellular dynamics of xenograft-recipient interactions during xenotransplantation. These cues can be leveraged for designing gene edits and immunosuppression regimens to optimize xenotransplantation outcomes. FUNDING: This work was supported by NIH RM1HG009491 and DP5OD033430.

18.
Article in English | MEDLINE | ID: mdl-38705377

ABSTRACT

STUDY OBJECTIVE: To determine the long-term costs of hysterectomy with minimally invasive sacrocolpopexy (MISCP) versus uterosacral ligament suspension (USLS) for primary uterovaginal prolapse repair. DESIGN: A hospital-based decision analysis model was built using TreeAge Pro (TreeAge Software Inc, Williamstown, MA). Those with prolapse were modeled to undergo either vaginal hysterectomy with USLS or minimally invasive total hysterectomy with sacrocolpopexy (MISCP). We modeled the chance of complications of the index procedure, prolapse recurrence with the option for surgical retreatment, complications of the salvage procedure, and possible second prolapse recurrence. The primary outcome was cost of the surgical strategy. The proportion of patients living with prolapse after treatment was the secondary outcome. SETTING: Tertiary center for urogynecology. PATIENTS: Female patients undergoing surgical repair by the same team for primary uterovaginal prolapse. INTERVENTIONS: Comparison analysis of estimated long-term costs was performed. MEASUREMENTS AND MAIN RESULTS: Our primary outcome showed that a strategy of undergoing MISCP as the primary index procedure cost $19 935 and that undergoing USLS as the primary index procedure cost $15 457, a difference of $4478. Furthermore, 21.1% of women in the USLS group will be living with recurrent prolapse compared to 6.2% of MISCP patients. Switching from USLS to MISCP to minimize recurrence risk would cost $30 054 per case of prolapse prevented. Additionally, a surgeon would have to perform 6.7 cases by MISCP instead of USLS in order to prevent 1 patient from having recurrent prolapse. CONCLUSION: The higher initial costs of MISCP compared to USLS persist in the long term after factoring in recurrence and complication rates, though more patients who undergo USLS live with prolapse recurrence.

19.
Cell Rep ; 43(5): 114180, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38733581

ABSTRACT

Macrophage activation is a hallmark of atherosclerosis, accompanied by a switch in core metabolism from oxidative phosphorylation to glycolysis. The crosstalk between metabolic rewiring and histone modifications in macrophages is worthy of further investigation. Here, we find that lactate efflux-associated monocarboxylate transporter 4 (MCT4)-mediated histone lactylation is closely related to atherosclerosis. Histone H3 lysine 18 lactylation dependent on MCT4 deficiency activated the transcription of anti-inflammatory genes and tricarboxylic acid cycle genes, resulting in the initiation of local repair and homeostasis. Strikingly, histone lactylation is characteristically involved in the stage-specific local repair process during M1 to M2 transformation, whereas histone methylation and acetylation are not. Gene manipulation and protein hydrolysis-targeted chimerism technology are used to confirm that MCT4 deficiency favors ameliorating atherosclerosis. Therefore, our study shows that macrophage MCT4 deficiency, which links metabolic rewiring and histone modifications, plays a key role in training macrophages to become repair and homeostasis phenotypes.


Subject(s)
Atherosclerosis , Histones , Lysine , Macrophages , Monocarboxylic Acid Transporters , Histones/metabolism , Macrophages/metabolism , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Animals , Mice , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Lysine/metabolism , Humans , Muscle Proteins/metabolism , Muscle Proteins/genetics , Macrophage Activation , Mice, Inbred C57BL
20.
BMC Biotechnol ; 24(1): 36, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796454

ABSTRACT

BACKGROUND: To establish a strategy for stem cell-related tissue regeneration therapy, human gingival mesenchymal stem cells (hGMSCs) were loaded with three-dimensional (3D) bioengineered Matrigel matrix scaffolds in high-cell density microtissues to promote local tissue restoration. METHODS: The biological performance and stemness of hGMSCs under 3D culture conditions were investigated by viability and multidirectional differentiation analyses. A Sprague‒Dawley (SD) rat full-thickness buccal mucosa wound model was established, and hGMSCs/Matrigel were injected into the submucosa of the wound. Autologous stem cell proliferation and wound repair in local tissue were assessed by histomorphometry and immunohistochemical staining. RESULTS: Three-dimensional suspension culture can provide a more natural environment for extensions and contacts between hGMSCs, and the viability and adipogenic differentiation capacity of hGMSCs were significantly enhanced. An animal study showed that hGMSCs/Matrigel significantly accelerated soft tissue repair by promoting autologous stem cell proliferation and enhancing the generation of collagen fibers in local tissue. CONCLUSION: Three-dimensional cell culture with hydrogel scaffolds, such as Matrigel, can effectively improve the biological function and maintain the stemness of stem cells. The therapeutic efficacy of hGMSCs/Matrigel was confirmed, as these cells could effectively stimulate soft tissue repair to promote the healing process by activating the host microenvironment and autologous stem cells.


Subject(s)
Collagen , Drug Combinations , Laminin , Mesenchymal Stem Cells , Proteoglycans , Rats, Sprague-Dawley , Tissue Scaffolds , Wound Healing , Animals , Laminin/chemistry , Proteoglycans/chemistry , Collagen/chemistry , Humans , Rats , Mesenchymal Stem Cells/cytology , Tissue Scaffolds/chemistry , Cell Differentiation , Cell Proliferation , Gingiva/cytology , Cell Culture Techniques, Three Dimensional/methods , Cells, Cultured , Tissue Engineering/methods , Male , Mouth Mucosa/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...