Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.278
Filter
1.
ACS Nano ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088760

ABSTRACT

The exponential growth of data in the big data era has made it imperative to improve the data storage density and calculation speed. Therefore, the development of a multibit memory with an ultrafast operational speed is of great significance. In this work, a floating-gate (FG) memory based on the ReS2/h-BN/graphene van der Waals heterostructure is reported. The device exhibits ultrafast and multilevel nonvolatile memory characteristics, notably featuring an exceptionally large memory window of 113.36 V, a substantial erasing/programming current ratio of 107, an ultrafast operational speed of 30 ns, outstanding endurance exceeding 1000 cycles, and retention performance exceeding 1100 s. Furthermore, the device exhibits both electrically and optically tunable multilevel nonvolatile memory behavior. By controlling the voltage and light pulse parameters, the device achieves an electrical memory state of 130 levels (>7 bits) and an optical memory state of 45 levels (>5 bits).

2.
Angew Chem Int Ed Engl ; : e202407242, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092492

ABSTRACT

Perylene diimide (PDI) dimers and higher aggregates are key components in organic molecular photonics and photovoltaic devices, supporting singlet fission and symmetry breaking charge separation. Detailed understanding of their excited states is thus important. This has proven challenging because interchromophoric coupling is a strong function of dimer architecture. Recently, a macrocyclic PDI dimer was reported in which excitonic coupling could be turned on and off simply by changing the solvent. This presents a useful case where coupling is modified without synthetic changes to tune supramolecular structure. Here we present a detailed study of solvent dependent excited state dynamics in this dimer by means of coherent multidimensional spectroscopy. Spectral analysis resolves the different coupling strengths, which are consistent with solvent dependent changes in dimer conformation. The strongly coupled conformer forms an excimer within 300 fs. The low-frequency Raman active modes recovered from two-dimensional electronic spectra reveal frequencies characteristic of exciton coupling. These are assigned to modes modulating the coupling from the corresponding DFT calculations. Further analysis reveals a time dependent frequency during excimer formation. Analysis of two-dimensional "beatmaps" reveals features in the coupled dimer which are not predicted by the displaced harmonic oscillator model and are assigned to vibronic coupling.

3.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001007

ABSTRACT

Pulsed lasers alter the optical properties of semiconductors and affect the photoelectric function of the photodetectors significantly, resulting in transient changes known as bleaching. Bleaching has a profound impact on the control and interference of photodetector applications. Experiments using pump-probe techniques have made significant contributions to understanding ultrafast carrier dynamics. However, there are few theoretical studies to the best of our knowledge. Here, carrier dynamic models for semiconductors and photodetectors are established, respectively, employing the rectified carrier drift-diffusion model. The pulsed laser bleaching effect on seven types of semiconductors and photodetectors from visible to long-wave infrared is demonstrated. Additionally, a continuous bleaching method is provided, and the finite-difference time-domain (FDTD) method is used to solve carrier dynamic theory models. Laser parameters for continuous bleaching of semiconductors and photodetectors are calculated. The proposed bleaching model and achieved laser parameters for continuous bleaching are essential for several applications using semiconductor devices, such as infrared detection, biological imaging, and sensing.

4.
ACS Nano ; 18(28): 18344-18354, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38954797

ABSTRACT

Graphite exhibits crystal anisotropy, which impedes the mass transfer of ion intercalation and extraction processes in Li-ion batteries. Herein, a dual-shock chemical strategy has been developed to synthesize the carbon anode. This approach comprised two key phases: (1) a thermal shock utilizing ultrahigh temperature (3228 K) can thermodynamically facilitate graphitization; (2) a mechanical shock (21.64 MPa) disrupting the π-π interactions in the aromatic chains of carbon can result in hybrid-structured carbon composed of crystalline and amorphous carbon. The optimized carbon (DSC-200-0.3) demonstrates a capacity of 208.61 mAh/g at a 10C rate, with a significant enhancement comparing with 15 mAh/g of the original graphite. Impressively, it maintains 81.06% capacity even after 3000 charge-discharge cycles. Dynamic process analysis reveals that this superior rate performance is attributed to a larger interlayer spacing facilitating ion transport comparing with the original graphite, disordered amorphous carbon for additional lithium storage sites, and crystallized carbon for enhanced charge transfer. The dual-shock chemical approach offers a cost-effective and efficient method to rapidly produce hybrid-structured carbon anodes, enabling 10C fast charging capabilities in lithium-ion batteries.

5.
Tissue Eng Regen Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955906

ABSTRACT

BACKGROUND: Tissue clearing enables deep imaging in various tissues by increasing the transparency of tissues, but there were limitations of immunostaining of the large-volume tissues such as the whole brain. METHODS: Here, we cleared and immune-stained whole mouse brain tissues using a novel clearing technique termed high-speed clearing and high-resolution staining (HCHS). We observed neural structures within the cleared brains using both a confocal microscope and a light-sheet fluorescence microscope (LSFM). The reconstructed 3D images were analyzed using a computational reconstruction algorithm. RESULTS: Various neural structures were well observed in three-dimensional (3D) images of the cleared brains from Gad-green fluorescent protein (GFP) mice and Thy 1-yellow fluorescent protein (YFP) mice. The intrinsic fluorescence signals of both transgenic mice were preserved after HCHS. In addition, large-scale 3D imaging of brains, immune-stained by the HCHS method using a mild detergent-based solution, allowed for the global topological analysis of several neuronal markers such as c-Fos, neuronal nuclear protein (NeuN), Microtubule-associated protein 2 (Map2), Tuj1, glial fibrillary acidic protein (GFAP), and tyrosine hydroxylase (TH) in various anatomical regions in the whole mouse brain tissues. Finally, through comparisons with various existing tissue clearing methodologies such as CUBIC, Visikol, and 3DISCO, it was confirmed that the HCHS methodology results in relatively less tissue deformation and higher fluorescence retention. CONCLUSION: In conclusion, the development of 3D imaging based on novel tissue-clearing techniques (HCHS) will enable detailed spatial analysis of neural and vascular networks present within the brain.

6.
Article in English | MEDLINE | ID: mdl-38958680

ABSTRACT

PURPOSE: While sedation is routinely used in pediatric PET examinations to preserve diagnostic quality, it may result in side effects and may affect the radiotracer's biodistribution. This study aims to investigate the feasibility of sedation-free pediatric PET imaging using ultra-fast total-body (TB) PET scanners and deep learning (DL)-based attenuation and scatter correction (ASC). METHODS: This retrospective study included TB PET (uExplorer) imaging of 35 sedated pediatric patients under four years old to determine the minimum effective scanning time. A DL-based ASC method was applied to enhance PET quantification. Both quantitative and qualitative assessments were conducted to evaluate the image quality of ultra-fast DL-ASC PET. Five non-sedated pediatric patients were subsequently used to validate the proposed approach. RESULTS: Comparisons between standard 300-second and ultra-fast 15-second imaging, CT-ASC and DL-ASC ultra-fast 15-second images, as well as DL-ASC ultra-fast 15-second images in non-sedated and sedated patients, showed no significant differences in qualitative scoring, lesion detectability, and quantitative Standard Uptake Value (SUV) (P = ns). CONCLUSIONS: This study demonstrates that pediatric PET imaging can be effectively performed without sedation by combining ultra-fast imaging techniques with a DL-based ASC. This advancement in sedation-free ultra-fast PET imaging holds potential for broader clinical adoption.

7.
Article in English | MEDLINE | ID: mdl-38987100

ABSTRACT

OBJECTIVE: To compare the analgesic and sleep quality effects of dexmedetomidine infusion versus placebo in patients undergoing cardiac surgery with ultra-fast track extubation. DESIGN: The randomized, double-blind clinical trial study. SETTING: At a single academic center hospital. PARTICIPANTS: We included patients aged 25 to 65 scheduled for elective cardiac surgery under general anesthesia with cardiopulmonary bypass from October 2021 to December 2022. INTERVENTION: After immediate extubation in the operating room, the patients who were allocated at first after providing their consent to either the dexmedetomidine group (Dex) or the placebo group (Placebo) received continuous infusion of dexmedetomidine (0.2 µg/kg/h) or saline for 12 hours postoperatively. MEASUREMENTS AND MAIN RESULTS: The groups' demographic and perioperative variables were not statistically significant. Total morphine consumption in milligrams at 12 and 24 hours after administered study drug, total sleep time in hours by BIS value ≤85, and sleep quality with the Richard-Campbell Sleep Questionnaire were compared. The analysis included 22 Dex and 23 Placebo patients. The consumption of morphine was not statistically different between the Dex and Placebo groups at 12 and 24 hours (p = 0.707 and p = 0.502, respectively). The Dex group had significantly longer sleep time (8.7 h [7.8, 9.5]) than the Placebo group (5.8 h [2.9, 8.5]; p = 0.007). The Dex group also exhibited better sleep quality (7.9 [6.7, 8.7] vs 6.6 [5.2, 8.0]; p = 0.038). CONCLUSIONS: Sedation with low-dose dexmedetomidine infusion for ultra-fast track extubation following cardiac surgery enhances sleep duration and quality.

8.
Nanomicro Lett ; 16(1): 242, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985378

ABSTRACT

Fire warning is vital to human life, economy and ecology. However, the development of effective warning systems faces great challenges of fast response, adjustable threshold and remote detecting. Here, we propose an intelligent self-powered remote IoT fire warning system, by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films. The flexible films, prepared by a convenient solution mixing, display p-type characteristic with excellent high-temperature stability, flame retardancy and TE (power factor of 239.7 ± 15.8 µW m-1 K-2) performances. The comprehensive morphology and structural analyses shed light on the underlying mechanisms. And the assembled TE devices (TEDs) exhibit fast fire warning with adjustable warning threshold voltages (1-10 mV). Excitingly, an ultrafast fire warning response time of ~ 0.1 s at 1 mV threshold voltage is achieved, rivaling many state-of-the-art systems. Furthermore, TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure. Finally, a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier, analog-to-digital converter and Bluetooth module. By combining TE characteristics, high-temperature stability and flame retardancy with wireless IoT signal transmission, TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.

9.
ACS Appl Mater Interfaces ; 16(26): 34001-34009, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961569

ABSTRACT

Ultrafast electron pulses, generated through femtosecond photoexcitation in nanocathode materials, introduce high-frequency characteristics and ultrahigh temporal-spatial resolution to vacuum micro-nano electronic devices. To advance the development of ultrafast electron sources sensitive to polarized light, we propose an ultrafast pulsed electron source based on a vertical few-layer graphene cold cathode. This source exhibits selective electron emission properties for varying polarization angles, with high switching ratios of 277 (at 0°) and 235 (at 90°). The electron emission of the graphene evolves from cosine to sine as the polarization angle increases from 0° to 90°. The variation of electron emission current with polarization angle is intrinsically related to light absorption, local field enhancement, and photothermal conversion efficiency. A physical mechanism model and semiempirical expression were presented to reveal the MPP and PTE mechanisms at different polarization angles. This tunable conversion between mechanisms indicates potential applications in tunable ultrafast optoelectronic devices.

10.
ACS Nano ; 18(29): 18933-18947, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38990155

ABSTRACT

Photocatalysis with plasmonic nanostructures has lately emerged as a transformative paradigm to drive and alter chemical reactions using light. At the surface of metallic nanoparticles, photoexcitation results in strong near fields, short-lived high-energy "hot" carriers, and light-induced heating, thus creating a local environment where reactions can occur with enhanced efficiencies. In this context, it is critical to understand how to manipulate the nonequilibrium processes triggered by light, as their ultrafast (femto- to picoseconds) relaxation dynamics compete with the process of energy transfer toward the reactants. Accurate predictions of the plasmon photocatalytic activity can lead to optimized nanophotonic architectures with enhanced selectivity and rates, operating beyond the intrinsic limitations of the steady state. Here, we report on an original modeling approach to quantify, with space, time, and energy resolution, the ultrafast energy exchange from plasmonic hot carriers (HCs) to molecular systems adsorbed on the metal nanoparticle surface while consistently accounting for photothermal bond activation. Our analysis, illustrated for a few typical cases, reveals that the most energetic nonequilibrium carriers (i.e., with energies well far from the Fermi level) may introduce a wavelength-dependence of the reaction rates, and it elucidates on the role of the carriers closer to the Fermi energy and the photothermally heated lattice, suggesting ways to enhance and optimize each contribution. We show that the overall reaction rates can benefit strongly from using pulsed illumination with the optimal pulse width determined by the properties of the system. Taken together, these results contribute to the rational design of nanoreactors for pulsed catalysis, which calls for predictive modeling of the ultrafast HC-hot adsorbate energy transfer.

11.
Article in English | MEDLINE | ID: mdl-39052931

ABSTRACT

Cu2O, CuO, and mixed phase Cu2O/CuO represent promising candidates for photoelectrochemical H2 evolution due to their strong visible light absorption, earth-abundance, and chemical stability. However, the photoelectrochemical efficiency in these materials remains far below the theoretical limit, largely due to poorly understood surface electron dynamics. These dynamics depend on defect states, such as Cu atom vacancies and phase boundaries, which control electron trapping, charge carrier separation, and recombination. In this work, we study the photoinduced electron and hole dynamics at the surface of various Cu oxides using ultrafast extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. In Cu2O we find that photoexcitation occurs as electron promotion from primarily Cu 3d valence band to Cu 4s conduction band states compared to O 2p valence band to Cu 4s conduction band states in CuO. In catalysts with a significant concentration of Cu vacancies, we observe fast electron trapping to the Cu 3d defect band occurring in less than 100 fs. In contrast, photoexcited electrons in phase pure CuO do not trap to midgap states; rather these electrons form small polarons within approximately 500 fs. Photoelectrochemical measurements of these catalysts show that Cu vacancy-mediated electron trapping correlates with a significant loss of photocurrent. Together, these results provide a detailed picture of the defect states and associated ultrafast carrier dynamics that govern the photocatalytic efficiency in widely studied Cu2O and CuO photocatalysts.

12.
Nano Lett ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39047072

ABSTRACT

Fiber-integrated micro/nanostructures play a crucial role in modern industry, mainly owing to their compact size, high sensitivity, and resistance to electromagnetic interference. However, the three-dimensional manufacturing of fiber-tip functional structures beyond organic polymers remains challenging. It is essential to construct fiber-integrated inorganic silica with designed functional nanostructures for microsystem applications. Here, we develop a strategy for the 3D nanolithography of fiber-integrated silica from hybrid organic-inorganic materials by ultrafast laser-induced multiphoton absorption. Without silica nanoparticles and polymer additives, the acrylate-functionalized precursors can be locally cross-linked through a nonlinear effect. Followed by annealing at low temperature, the as-printed micro/nanostructures are transformed to high-quality silica with sub-100 nm resolution. Silica microcantilever probes and microtoroid resonators are directly integrated onto the optical fiber, showing strong thermal stability and quality factors. This work provides a promising strategy for fabricating desired fiber-tip silica micro/nanostructures, which is helpful for the development of integrated functional device applications.

13.
Nano Lett ; 24(28): 8642-8649, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38976834

ABSTRACT

Two-dimensional (2D) hybrid organic-inorganic metal halide perovskites offer enhanced stability for perovskite-based applications. Their crystal structure's soft and ionic nature gives rise to strong interaction between charge carriers and ionic rearrangements. Here, we investigate the interaction of photogenerated electrons and ionic polarizations in single-crystal 2D perovskite butylammonium lead iodide (BAPI), varying the inorganic lamellae thickness in the 2D single crystals. We determine the directionality of the transition dipole moments (TDMs) of the relevant phonon modes (in the 0.3-3 THz range) by the angle- and polarization-dependent THz transmission measurements. We find a clear anisotropy of the in-plane photoconductivity, with a ∼10% reduction along the axis parallel with the transition dipole moment of the most strongly coupled phonon. Detailed calculations, based on Feynman polaron theory, indicate that the anisotropy originates from directional electron-phonon interactions.

14.
Nano Lett ; 24(29): 9096-9103, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38985893

ABSTRACT

The field of molecular electronics has emerged from efforts to understand electron propagation through single molecules and to use them in electronic circuits. Serving as a testbed for advanced theoretical methods, it reveals a significant discrepancy between the operational time scales of experiments (static to GHz frequencies) and theoretical models (femtoseconds). Utilizing a recently developed time-linear nonequilibrium Green function formalism, we model molecular junctions on experimentally accessible time scales. Our study focuses on the quantum pump effect in a benzenedithiol molecule connected to two copper electrodes and coupled with cavity photons. By calculating both electric and photonic current responses to an ac bias voltage, we observe pronounced electroluminescence and high harmonic generation in this setup. The mechanism of the latter effect is more analogous to that from solids than from isolated molecules, with even harmonics being suppressed or enhanced depending on the symmetry of the driving field.

15.
Nano Lett ; 24(29): 8940-8947, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38989866

ABSTRACT

Two-dimensional magnet CrI3 is a promising candidate for spintronic devices. Using nonadiabatic molecular dynamics and noncollinear spin time-dependent density functional theory, we investigated hole spin relaxation in two-dimensional CrI3 and its dependence on magnetic configurations, impacted by spin-orbit and electron-phonon interactions. Driven by in-plane and out-of-plane iodine motions, the relaxation rates vary, extending from over half a picosecond in ferromagnetic systems to tens of femtoseconds in certain antiferromagnetic states due to significant spin fluctuations, associated with the nonadiabatic spin-flip in tuning to the adiabatic flip. Antiferromagnetic CrI3 with staggered layer magnetic order notably accelerates adiabatic spin-flip due to enhanced state degeneracy and additional phonon modes. Ferrimagnetic CrI3 shows a transitional behavior between ferromagnetic and antiferromagnetic types as the magnetic moment changes. These insights into the spin dynamics of CrI3 underscore its potential for rapid-response spintronic applications and advance our understanding of two-dimensional materials for spintronics.

16.
Small Methods ; : e2301612, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031877

ABSTRACT

Strong metal-support interaction (SMSI) has drawn much attention in heterogeneous catalysts due to its stable and excellent catalytic efficiency. However, construction of high-performance oxide-capsulated metal nanostructures meets great challenge in materials thermodynamic compatibility. In this work, dynamically controlled formation of oxide-capsulated metal nanoparticles (NPs) structures is demonstrated by ultrafast laser plasmonic nanowelding. Under the strong localized electromagnetic field interaction, metal (Au) NPs are dragged by an optical force toward oxide NPs (TiO2). Intense energy is simultaneously injected into this heterojunction area, where TiO2 is precisely ablated. With the embedding of metal into oxide, optical force on Au gradually turned from attractive to repulsive due to the varied metal-dielectric environment. Meanwhile, local ablated oxides are redeposited on Au NP. Upon the whole coverage of metal NP, the implantation behavior of metal NP is stopped, resulting in a controlled metal-oxide eccentric structure with capsulated oxide layer thickness ≈0.72-1.30 nm. These oxide-capsulated metal NPs structures can preserve their configurations even after thermal annealing in air at 600 °C for 10 min. This ultrafast laser plasmonic nanowelding can also extend to oxide-capsulated metal nanostructure fabrication with broad materials combinations (e.g., Au/ZnO, Au/MgO, etc.), which shows great potential in designing/constructing nanoscale high-performance catalysts.

17.
Micromachines (Basel) ; 15(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39064365

ABSTRACT

The cutting of thick glass is extensively employed in aerospace, optical, and other fields. Although ultrafast laser Bessel beams are heavily used for glass cutting, the cutting thickness and cutting quality need to be further improved. In this research, the high-quality cutting of thick glass was realized for the first time using ultrafast laser perforation assisted by CO2 laser separation. Initially, an infrared picosecond laser Bessel beam was employed to ablate the soda-lime glass and generate a perforated structure. Subsequently, a CO2 laser was employed to induce crack propagation along the path of the perforated structure, resulting in the separation of the glass. This study investigates the influence of hole spacing, pulse energy, and the defocusing distance of the picosecond laser Bessel beam on the average surface roughness of the glass sample cutting surface. The optimal combination of cutting parameters for 6 mm thick glass results in a minimum surface roughness of 343 nm in the cross-section.

18.
ACS Nano ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39079002

ABSTRACT

In photonics, achieving high-quality (Q) resonance is crucial for high-sensitivity devices used in applications, such as switching, sensing, and lasing. However, high-Q resonances are highly susceptible to internal losses of plasmonic devices, impeding their integration into broader systems across terahertz and visible light bands. Here, we overcome this challenge by proposing a low-Q plasmonic metasurface for ultrasensitive terahertz (THz) switching and sensing. Theoretically, we reveal an approach to constructing a low-Q resonator possessing high sensitivity to nonradiative losses. Leveraging this mechanism, we design a highly sensitive plasmonic metasurface induced by strong coupling between a quasi-bound state in the continuum and a dipole mode. By hybridizing with the germanium layer, the metadevice exhibits an ultralow pump threshold of 192 µJ/cm2 and an ultrafast switching cycle time of 7 ps. Furthermore, it also shows a high sensitivity of 224 GHz/RIU in refractive index sensing. The proposed paradigm of constructing low-Q and high-sensitivity photonic devices can be applied to biosensing, wide-band filters, and sensitive modulators.

19.
Article in English | MEDLINE | ID: mdl-39074512

ABSTRACT

The remagnetization process after ultrafast demagnetization can be described by relaxation mechanisms between the spin, electron, and lattice reservoirs. Thereby, collective spin excitations in form of spin waves and their angular momentum transfer play an important role on the longer timescales. In this work, we address the question whether the magnitude of demagnetization - the so-called quenching - affects the coherency and the phase of the excited spin waves. We present a study of coherent magnetization dynamics in thin nickel films after ultrafast demagnetization using the all-optical, time-resolved magneto-optical Kerr-effect (tr-MOKE) technique. The largest coherent precession amplitude was observed for strongly quenched systems, indicating a well-defined precession phase for all pump pulses at a demagnetization of up to 90% in this system. Moreover, the phase of the excited spin-waves in Ni increases with the pump fluence, indicating a delayed start of the precession during the remagnetization. We compare these findings to recent studies in Ni80Fe20 (permalloy), to evaluate the influence of the magneto-elastic coupling and non-linear spin wave dynamics on the magnetization dynamics.

20.
Materials (Basel) ; 17(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063841

ABSTRACT

In order to adapt to the rapid development of high-speed imaging technology in recent years, it is very important to develop scintillators with an ultrafast time response. Because of its radiation-induced ultrafast decay time, ZnO has become an important material for radiation detection and dosimetry. According to different detection sources and application scenarios, ZnO is used in various radiation detectors in different structures, including nanoarrays and nanocomposites. In this paper, the synthesis methods and research status of various nanostructured ZnO-based materials and their applications in the detection of high-energy rays (X-rays, γ-rays) and high-energy particles (α, ß and neutron) are reviewed. The performance discussion mainly includes spatial resolution, decay time and detection efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL