Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
J Control Release ; 367: 572-586, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301926

ABSTRACT

The cytoskeleton facilitates tumor cells invasion into the bloodstream via vasculogenic mimicry (VM) for "attack", and protects cells against external threats through cytoskeletal remodeling and tunneling nanotubes (TNTs) for "defense". However, the existing strategies involving cytoskeleton are not sufficient to eliminate tumor metastasis due to mitochondrial energy supply, both within tumor cells and from outside microenvironment. Here, considering the close relationship between cytoskeleton and mitochondria both in location and function, we construct a nano-platform that combats the "attack" and "defense" of cytoskeleton in the cascading metastasis. The nano-platform is composed of KFCsk@LIP and KTMito@LIP for the cytoskeletal collapse and mitochondrial dysfunction. KFCsk@LIP prevents the initiation and circulation of cascading tumor metastasis, but arouses limited suppression in tumor cell proliferation. KTMito@LIP impairs mitochondria to trigger apoptosis and impede energy supply both from inside and outside, leading to an amplified effect for metastasis suppression. Further mechanisms studies reveal that the formation of VM and TNTs are seriously obstructed. Both in situ and circulating tumor cells are disabled. Subsequently, the broken metastasis cascade results in a remarkable anti-metastasis effect. Collectively, based on the nano-platform, the cytoskeletal collapse with synchronous mitochondrial dysfunction provides a potential therapeutic strategy for cascading tumor metastasis suppression.


Subject(s)
Mitochondrial Diseases , Neovascularization, Pathologic , Humans , Neovascularization, Pathologic/drug therapy , Cell Line, Tumor , Cytoskeleton/pathology , Cell Movement
2.
Noncoding RNA ; 10(1)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38392969

ABSTRACT

Tumors have high requirements in terms of nutrients and oxygen. Angiogenesis is the classical mechanism for vessel formation. Tumoral vascularization has the function of nourishing the cancer cells to support tumor growth. Vasculogenic mimicry, a novel intratumoral microcirculation system, alludes to the ability of cancer cells to organize in three-dimensional (3D) channel-like architectures. It also supplies the tumors with nutrients and oxygen. Both mechanisms operate in a coordinated way; however, their functions in breast cancer stem-like cells and their regulation by microRNAs remain elusive. In the present study, we investigated the functional role of microRNA-204 (miR-204) on angiogenesis and vasculogenic mimicry in breast cancer stem-like cells. Using flow cytometry assays, we found that 86.1% of MDA-MB-231 and 92% of Hs-578t breast cancer cells showed the CD44+/CD24- immunophenotype representative of cancer stem-like cells (CSCs). The MDA-MB-231 subpopulation of CSCs exhibited the ability to form mammospheres, as expected. Interestingly, we found that the restoration of miR-204 expression in CSCs significantly inhibited the number and size of the mammospheres. Moreover, we found that MDA-MB-231 and Hs-578t CSCs efficiently undergo angiogenesis and hypoxia-induced vasculogenic mimicry in vitro. The transfection of precursor miR-204 in both CSCs was able to impair the angiogenesis in the HUVEC cell model, which was observed as a diminution in the number of polygons and sprouting cells. Remarkably, miR-204 mimics also resulted in the inhibition of vasculogenic mimicry formation in MDA-MB-231 and Hs-578t CSCs, with a significant reduction in the number of channel-like structures and branch points. Mechanistically, the effects of miR-204 were associated with a diminution of pro-angiogenic VEGFA and ß-catenin protein levels. In conclusion, our findings indicated that miR-204 abrogates the angiogenesis and vasculogenic mimicry development in breast cancer stem-like cells, suggesting that it could be a potential tool for breast cancer intervention based on microRNA replacement therapies.

3.
Sex Med Rev ; 12(1): 87-93, 2023 12 23.
Article in English | MEDLINE | ID: mdl-37758225

ABSTRACT

INTRODUCTION: Erectile dysfunction (ED) is a common condition that negatively affects men's quality of life. It can have various causes, including psychological, vascular, and neurologic factors. Existing treatments for ED mainly focus on symptom relief rather than addressing the underlying cause. Stem cells (SCs) have shown potential as a therapeutic approach for ED due to their anti-inflammatory properties. OBJECTIVES: This systematic review aims to assess the current status of trials and determine the potential impact of SCs on male sexual health. METHODS: A comprehensive search strategy was employed to gather relevant articles from 6 electronic databases. The search included articles published until March 2023. The reference lists of articles were manually reviewed to identify additional studies of relevance. The eligibility criteria for inclusion in the analysis focused on clinical trials involving humans that evaluated the safety and efficacy of SC therapy for ED. Exclusion criteria encompassed case reports, case series, abstracts, reviews, and editorials, as well as studies involving animals or SC derivatives. Data extraction was performed via a standardized form with a focus on erectile outcomes. RESULTS: A total of 2847 articles were initially identified; 18 were included in the final analysis. These studies involved 373 patients with ED and various underlying medical conditions. Multiple types of SC were utilized in the treatment of ED: mesenchymal SCs, placental matrix-derived mesenchymal SCs, mesenchymal SC-derived exosomes, adipose-derived SCs, bone marrow-derived mononuclear SCs, and umbilical cord blood SCs. CONCLUSION: SC therapy shows promise as an innovative and safe treatment for organic ED. However, the lack of standardized techniques and controlled groups in many studies hampers the ability to evaluate and compare trials.


Subject(s)
Erectile Dysfunction , Female , Pregnancy , Animals , Male , Humans , Erectile Dysfunction/etiology , Quality of Life , Placenta , Stem Cell Transplantation/methods , Penile Erection
4.
Clin Transl Oncol ; 25(12): 3501-3518, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37219824

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is a form of primary bone malignancy associated with poor prognostic outcomes. Recent work has highlighted vasculogenic mimicry (VM) as a key mechanism that supports aggressive tumor growth. The patterns of VM-associated gene expression in OS and the relationship between these genes and patient outcomes, however, have yet to be defined. METHODS: Here, 48 VM-related genes were systematically assessed to examine correlations between the expression of these genes and OS patient prognosis in the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) cohort. Patients were classified into three OS subtypes. Differentially expressed genes for these three OS subtypes were then compared with hub genes detected in a weighted gene co-expression network analysis, leading to the identification of 163 overlapping genes that were subject to further biological activity analyses. A three-gene signature (CGREF1, CORT, and GALNT14) was ultimately constructed through a least absolute shrinkage and selection operator Cox regression analysis, and this signature was used to separate patients into low- and high-risk groups. The K-M survival analysis, receiver operating characteristic analysis, and decision curve analysis were adopted to evaluate the prognostic prediction performance of the signature. Furthermore, the expression patterns of three genes derived from the prognostic model were validated by quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS: VM-associated gene expression patterns were successfully established, and three VM subtypes of OS that were associated with patient prognosis and copy number variants were defined. The developed three-gene signature was constructed, which served as independent prognostic markers and prediction factors for the clinicopathological features of OS. Finally, lastly, the signature may also have a guiding effect on the sensitivity of different chemotherapeutic drugs. CONCLUSION: Overall, these analyses facilitated the development of a prognostic VM-associated gene signature capable of predicting OS patient outcomes. This signature may be of value for both studies of the mechanistic basis for VM and clinical decision-making in the context of OS patient management.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Prognosis , Osteosarcoma/genetics , Clinical Decision-Making , Gene Expression Profiling , Bone Neoplasms/genetics
5.
Cancer Biomark ; 35(1): 47-56, 2022.
Article in English | MEDLINE | ID: mdl-35662106

ABSTRACT

BACKGROUND: Vasculogenic mimicry (VM) is characterized by formation of three-dimensional (3D) channels-like structures by tumor cells, supplying the nutrients needed for tumor growth. VM is stimulated by hypoxic tumor microenvironment, and it has been associated with increased metastasis and clinical poor outcome in cancer patients. cAMP responsive element (CRE)-binding protein 5 (CREB5) is a hypoxia-activated transcription factor involved in tumorigenesis. However, CREB5 functions in VM and if its regulated by microRNAs remains unknown in breast cancer. OBJECTIVE: We aim to study the functional relationships between VM, CREB5 and microRNA-204-5p (miR-204) in breast cancer cells. METHODS: CREB5 expression was evaluated by mining the public databases, and using RT-qPCR and Western blot assays. CREB5 expression was silenced using short-hairpin RNAs in MDA-MB-231 and MCF-7 breast cancer cells. VM formation was analyzed using matrigel-based cultures in hypoxic conditions. MiR-204 expression was restored in cancer cells by transfection of RNA mimics. Luciferase reporter assays were performed to evaluate the binding of miR-204 to 3'UTR of CREB5. RESULTS: Our data showed that CREB5 mRNA expression was upregulated in a set of breast cancer cell lines and clinical tumors, and it was positively associated with poor prognosis in lymph nodes positive and grade 3 basal breast cancer patients. Silencing of CREB5 impaired the hypoxia-induced formation of 3D channels-like structures representative of the early stages of VM in MDA-MB-231 cells. In contrast, VM formation was not observed in MCF-7 cells. Interestingly, we found that CREB5 expression was negatively regulated by miR-204 mimics in breast cancer cells. Functional analysis confirmed that miR-204 binds to CREB5 3'-UTR indicating that it's an ulterior effector. CONCLUSIONS: Our findings suggested that CREB5 could be a potential biomarker of disease progression in basal subtype of breast cancer, and that perturbations of the miR-204/CREB5 axis plays an important role in VM development in breast cancer cells.


Subject(s)
Breast Neoplasms , MicroRNAs , 3' Untranslated Regions , Breast Neoplasms/pathology , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein A/genetics , Cyclic AMP Response Element-Binding Protein A/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Hypoxia/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Neovascularization, Pathologic/genetics , Transcription Factors/genetics , Tumor Microenvironment
6.
Methods Mol Biol ; 2514: 3-13, 2022.
Article in English | MEDLINE | ID: mdl-35771413

ABSTRACT

Vasculogenic mimicry (VM), a tumor microcirculation model found in melanoma in the last 20 years, is a vascular channel-like structure composed of tumor cells, but without endothelial cells, that stains positive for periodic acid-Schiff (PAS) and negative staining for CD31. VM provides, to the highly aggressive malignant tumor cells, adequate oxygen and nutrient supply for tumor growth and subsequent metastasis process and its presence are related to poor prognosis in patients. VM is independent of endothelial cells, which may partly explain why angiogenesis drug inhibitors have not achieved the expected success for cancer treatment.


Subject(s)
Melanoma , Neovascularization, Pathologic , Endothelial Cells/pathology , Humans , Melanoma/pathology , Microcirculation , Neovascularization, Pathologic/pathology
7.
Methods Mol Biol ; 2514: 39-43, 2022.
Article in English | MEDLINE | ID: mdl-35771416

ABSTRACT

Increasing studies on vasculogenic mimicry (VM) have shown that the hypoxic microenvironment and the presence of endothelial cell play an important role in regulating tumor phenotype and aggressiveness. Thus, the representation of these factors in vitro becomes necessary to mimic VM. This chapter provides a protocol for mimicking VM in vitro in a more robust 3D model that includes the presence of 3D matrix, melanoma cells, a hypoxia-inducing agent, and endothelial cells.


Subject(s)
Endothelial Cells , Neovascularization, Pathologic , Cell Line, Tumor , Endothelial Cells/pathology , Humans , Hypoxia , Neovascularization, Pathologic/pathology
8.
Methods Mol Biol ; 2514: 53-60, 2022.
Article in English | MEDLINE | ID: mdl-35771418

ABSTRACT

Vasculogenic mimicry is a cellular mechanism in which tumor cells grow and align forming complex three-dimensional (3D) channel-like structures in a hypoxic microenvironment. This phenomenon represents a novel oxygen, nutrient, and blood supply, in a similar way as occurs in classic angiogenesis. Vasculogenic mimicry has been described in numerous clinical tumors including breast, prostate, lung, and ovarian cancers where it is associated with poor prognosis; thus, it is considered as a hallmark of highly aggressive and metastatic tumors. Here, we describe a simple method to model the in vitro formation of three-dimensional cellular networks over Matrigel in SKOV3 ovarian cancer cells representing the early stages of vasculogenic mimicry.


Subject(s)
Ovarian Neoplasms , Carcinoma, Ovarian Epithelial , Cell Differentiation , Cell Line, Tumor , Female , Humans , Male , Neovascularization, Pathologic/pathology , Ovarian Neoplasms/pathology , Tumor Microenvironment
9.
Methods Mol Biol ; 2514: 75-84, 2022.
Article in English | MEDLINE | ID: mdl-35771420

ABSTRACT

The vasculogenic mimicry (VM) in vivo evaluation is challenging, and new models have been proposed to evaluate antitumor effect of different compounds using in vivo models. However, there is no gold standard in vivo models established for VM evaluation. As occurs for other in vivo tumor analysis, the use of immunodeficient mouse model and cell line with in vivo tumorigenicity and ability to induce vasculogenic mimicry is the most used model.


Subject(s)
Antineoplastic Agents , Neovascularization, Pathologic , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Mice , Mice, Inbred BALB C , Neovascularization, Pathologic/pathology , Xenograft Model Antitumor Assays
10.
Methods Mol Biol ; 2514: 153-161, 2022.
Article in English | MEDLINE | ID: mdl-35771427

ABSTRACT

Confocal laser scanning microscopy (CLSM) is one of the most prevalent fluorescence microscopy techniques for assessing the progression of cancer cells in three-dimensional structures, such as vasculogenic mimicry (VM). We show a basic approach for using DAPI and phalloidin dyes to detect the early stages of progression and VM of melanoma tumor cells grown in a 3D environment, as well as demonstrating how to acquire images and improve them by changing the software acquisition parameters.


Subject(s)
Melanoma , Neovascularization, Pathologic , Humans , Indoles , Melanoma/pathology , Microscopy, Confocal/methods , Neovascularization, Pathologic/pathology , Phalloidine , Staining and Labeling
11.
J Comp Pathol ; 192: 50-60, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35305714

ABSTRACT

Vasculogenic mimicry (VM) is the ability of highly aggressive cancer cells to form fluid-conducting channels that facilitate the nutrition and metastasis of cancer cells. Considering the importance of VM in the prognosis of canine mammary gland tumours, this study aimed to investigate global gene expression in two canine mammary carcinoma cell cultures associated with the capacity for VM in vitro. The cell lines were subjected to an in-vitro assay to form VM channels (3D culture). Each cell line was then used in 2D conditions as controls and we compared the global gene expression with that of the 3D cultures. A total of 1,217 differentially expressed genes (DEGs) (P <0.05, fold change >2.0 or <2.0) were observed in 3D conditions compared with 2D culture in the UNESP-CM9 cell line, of which 677 were upregulated genes and 540 were downregulated. In contrast, the UNESP-CM60 cell line had only one upregulated and two downregulated genes. Overall, we identified several genes and pathways involved in the development of VM and these molecular data will be useful for future studies aimed at identifying diagnostic and therapeutic targets for VM in canine mammary carcinoma.


Subject(s)
Carcinoma , Dog Diseases , Animals , Carcinoma/veterinary , Cell Culture Techniques/veterinary , Dogs , Neovascularization, Pathologic/veterinary , Prognosis
12.
Andrologia ; 53(11): e14212, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34374105

ABSTRACT

Erectile dysfunction is a condition associated with increasing age. Patient evaluation and management should follow a comprehensive, stepwise approach. The aim of this article was to report our experience with the complete study for erectile dysfunction, including intracavernous injection rigidity test, biothesiometry and colour duplex Doppler ultrasound. Data were collected and analysed prospectively. The primary end point was to determine whether treatment decision-making was eased by the CompED test. Secondary end points were to establish which clinical variables prior to the study could impact the results of the CompED test, to finally improve patient selection for the study. 187 patients were recruited, 31.2% of the patients had an axial rigidity below 50%, 28.5% had a peak systolic velocity <25 cm/s, 13.2% had an end-diastolic velocity >5cm/s and 27.5% had an abnormal biothesiometry. The factors that best predicted an abnormal result in any of the tests were age >70 years, IIEF domain A < 14 points, and previous radical prostatectomy or radiotherapy. The CompED test stands as a new alternative for the evaluation of patients with erectile dysfunction, being less time consuming, aiding in a more accurate determination of the aetiology and guiding treatment decision-making.


Subject(s)
Erectile Dysfunction , Aged , Erectile Dysfunction/diagnosis , Erectile Dysfunction/therapy , Humans , Male , Penis/diagnostic imaging , Prostatectomy , Ultrasonography, Doppler, Color
13.
Cells ; 10(7)2021 07 12.
Article in English | MEDLINE | ID: mdl-34359928

ABSTRACT

In solid tumors, vasculogenic mimicry (VM) is the formation of vascular structures by cancer cells, allowing to generate a channel-network able to transport blood and tumor cells. While angiogenesis is undertaken by endothelial cells, VM is assumed by cancer cells. Besides the participation of VM in tumor neovascularization, the clinical relevance of this process resides in its ability to favor metastasis and to drive resistance to antiangiogenic therapy. VM occurs in many tumor types, including breast cancer, where it has been associated with a more malignant phenotype, such as triple-negative and HER2-positive tumors. The latter may be explained by known drivers of VM, like hypoxia, TGFB, TWIST1, EPHA2, VEGF, matrix metalloproteinases, and other tumor microenvironment-derived factors, which altogether induce the transformation of tumor cells to a mesenchymal phenotype with a high expression rate of stemness markers. This review analyzes the current literature in the field, including the participation of some microRNAs and long noncoding RNAs in VM-regulation and tumorigenesis of breast cancer. Considering the clinical relevance of VM and its association with the tumor phenotype and clinicopathological parameters, further studies are granted to target VM in the clinic.


Subject(s)
Breast Neoplasms/blood supply , Breast Neoplasms/pathology , Molecular Mimicry , Neovascularization, Pathologic/pathology , Animals , Breast Neoplasms/genetics , Female , Humans , Molecular Mimicry/genetics , Phenotype , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Tumor Microenvironment/genetics
14.
Front Oncol ; 11: 637594, 2021.
Article in English | MEDLINE | ID: mdl-33937039

ABSTRACT

Early human placental development begins with blastocyst implantation, then the trophoblast differentiates and originates the cells required for a proper fetal nutrition and placental implantation. Among them, extravillous trophoblast corresponds to a non-proliferating trophoblast highly invasive that allows the vascular remodeling which is essential for appropriate placental perfusion and to maintain the adequate fetal growth. This process involves different placental cell types as well as molecules that allow cell growth, cellular adhesion, tissular remodeling, and immune tolerance. Remarkably, some of the cellular processes required for proper placentation are common between placental and cancer cells to finally support tumor growth. Indeed, as in placentation trophoblasts invade and migrate, cancer cells invade and migrate to promote tumor metastasis. However, while these processes respond to a controlled program in trophoblasts, in cancer cells this regulation is lost. Interestingly, it has been shown that autophagy, a process responsible for the degradation of damaged proteins and organelles to maintain cellular homeostasis, is required for invasion of trophoblast cells and for vascular remodeling during placentation. In cancer cells, autophagy has a dual role, as it has been shown both as tumor promoter and inhibitor, depending on the stage and tumor considered. In this review, we summarized the similarities and differences between trophoblast cell invasion and cancer cell metastasis specifically evaluating the role of autophagy in both processes.

15.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(10): e10653, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285657

ABSTRACT

Vasculogenic mimicry (VM) plays an important role in human glioma progression and resistance to antiangiogenic therapy as a compensatory neovascularization mechanism in malignant tumors. Caveolin-1 (Cav-1) has been found to contribute to VM formation. However, it remains largely unknown whether Cav-1 expression correlates with VM in glioma. In this study, we examined CAV-1 expression levels and VM in human glioma cell lines and in 94 human gliomas with different grades of malignancy, and present Cox proportional hazards regression. The molecular role of Cav-1 in glioma cells was investigated using quantitative polymerase chain reaction (qRT-PCR) assays, western blotting, CCK-8 assays, and tubule formation assays. Cav-1 expression and VM formation were positively correlated with each other and both were closely associated with glioma development and progression as evidenced by the presence of cystic tumor, shortened survival time, and advanced-stage glioma in glioma patients with Cav-1 overexpression/increased VM formation. Cav-1 promoted U251 glioma cell proliferation and VM formation in a Matrigel-based 3D culture model. VM-associated factors including hypoxia-inducible factor 1α (HIF-1α) and p-Akt was significantly elevated by Cav-1 overexpression but suppressed by siCav-1 in U251 cells. Collectively, our study identified Cav-1 as an important regulator of glioma cell proliferation and VM formation, contributing to glioma development and progression.


Subject(s)
Humans , Caveolin 1/genetics , Glioma , Cell Line, Tumor , Cell Proliferation , Neovascularization, Pathologic
17.
Noncoding RNA ; 6(2)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466537

ABSTRACT

HOX transcript antisense RNA (HOTAIR) is an oncogenic long non-coding RNA frequently overexpressed in cancer. HOTAIR can enhance the malignant behavior of tumors by sponging microRNAs with tumor suppressor functions. Vasculogenic mimicry is a hypoxia-activated process in which tumor cells form three-dimensional (3D) channel-like networks, resembling endothelial blood vessels, to obtain nutrients. However, the role of HOTAIR in vasculogenic mimicry and the underlying mechanisms are unknown in human cancers. In the current study, we investigated the relevance of HOTAIR in hypoxia-induced vasculogenic mimicry in metastatic MDA-MB-231 and invasive Hs-578t triple negative breast cancer cells. Analysis of The Cancer Genome Atlas (TCGA) database using cBioPortal confirmed that HOTAIR was upregulated in clinical breast tumors relative to normal mammary tissues. Our quantitative RT-PCR assays showed a significant increase in HOTAIR levels after 48 h hypoxia relative to normoxia in breast cancer cell lines. Remarkably, knockdown of HOTAIR significantly abolished the hypoxia-induced vasculogenic mimicry which was accompanied by a reduction in the number of 3D channel-like networks and branch points. Likewise, HOTAIR silencing leads to reduced cell migration abilities of cancer cells. Bioinformatic analysis predicted that HOTAIR has a potential binding site for tumor suppressor miR-204. Luciferase reporter assays confirmed that HOTAIR is a competitive endogenous sponge of miR-204. Congruently, forced inhibition of HOTAIR in cells resulted in augmented miR-204 levels in breast cancer cells. Further bioinformatic analysis suggested that miR-204 can bind to the 3' untranslated region of focal adhesion kinase 1 (FAK) transcript involved in cell migration. Western blot and luciferase reporter assays confirmed that FAK is a novel target of miR-204. Finally, silencing of HOTAIR resulted in low levels of cytoplasmic FAK protein and alterations in the organization of cellular cytoskeleton and focal adhesions. In summary, our results showed, for the first time, that HOTAIR mitigates cell migration and vasculogenic mimicry by targeting the miR-204/FAK axis in triple negative breast cancer cells.

18.
Front Oncol ; 10: 413, 2020.
Article in English | MEDLINE | ID: mdl-32296643

ABSTRACT

Cancer stem cells (CSCs) are able to promote initiation, survival and maintenance of tumor growth and have been involved in gastrointestinal cancers (GICs) such as esophageal, gastric and colorectal. It is well known that blood supply facilitates cancer progression, recurrence, and metastasis. In this regard, tumor-induced angiogenesis begins with expression of pro-angiogenic molecules such as vascular endothelial growth factor (VEGF), which in turn lead to neovascularization and thus to tumor growth. Another pattern of blood supply is called vasculogenic mimicry (VM). It is a reminiscent of the embryonic vascular network and is carried out by CSCs that have the capability of transdifferentiate and form vascular-tube structures in absence of endothelial cells. In this review, we discuss the role of CSCs in angiogenesis and VM, since these mechanisms represent a source of tumor nutrition, oxygenation, metabolic interchange and facilitate metastasis. Identification of CSCs mechanisms involved in angiogenesis and VM could help to address therapeutics for GICs.

19.
Front Oncol ; 10: 220, 2020.
Article in English | MEDLINE | ID: mdl-32175277

ABSTRACT

Vasculogenic mimicry (VM) is the formation of vascular channels lacking endothelial cells. These channels are lined by tumor cells with cancer stem cell features, positive for periodic acid-Schiff, and negative for CD31 staining. The term VM was introduced by Maniotis et al. (1), who reported this phenomenon in highly aggressive uveal melanomas; since then, VM has been associated with poor prognosis, tumor aggressiveness, metastasis, and drug resistance in several tumors, including breast cancer. It is proposed that VM and angiogenesis (the de novo formation of blood vessels from the established vasculature by endothelial cells, which is observed in several tumors) rely on some common mechanisms. Furthermore, it is also suggested that VM could constitute a means to circumvent anti-angiogenic treatment in cancer. Therefore, it is important to determinant the factors that dictate the onset of VM. In this review, we describe the current understanding of VM formation in breast cancer, including specific signaling pathways, and cancer stem cells. In addition, we discuss the clinical significance of VM in prognosis and new opportunities of VM as a target for breast cancer therapy.

20.
Front Oncol ; 9: 998, 2019.
Article in English | MEDLINE | ID: mdl-31612116

ABSTRACT

Solid tumors carry out the formation of new vessels providing blood supply for growth, tumor maintenance, and metastasis. Several processes take place during tumor vascularization. In angiogenesis, new vessels are derived from endothelial cells of pre-existing vessels; while in vasculogenesis, new vessels are formed de novo from endothelial progenitor cells, creating an abnormal, immature, and disorganized vascular network. Moreover, highly aggressive tumor cells form structures similar to vessels, providing a pathway for perfusion; this process is named vasculogenic mimicry (VM), where vessel-like channels mimic the function of vessels and transport plasma and blood cells. VM is developed by numerous types of aggressive tumors, including ovarian carcinoma which is the second most common cause of death among gynecological cancers. VM has been associated with poor patient outcome and survival in ovarian cancer, although the involved mechanisms are still under investigation. Several signaling molecules have an important role in VM in ovarian cancer, by regulating the expression of genes related to vascular, embryogenic, and hypoxic signaling pathways. In this review, we provide an overview of the current knowledge of the signaling molecules involved in the promotion and regulation of VM in ovarian cancer. The clinical implications and the potential benefit of identification and targeting of VM related molecules for ovarian cancer treatment are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL