Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Curr Med Imaging ; 20(1): e15734056287859, 2024.
Article in English | MEDLINE | ID: mdl-38544393

ABSTRACT

BACKGROUND: Glutamine Synthetase (GS) could induce vascular sprouting through the improvement of endothelial cell migration in inflammatory diseases. MR vessel-size imaging has been proposed as a valuable approach for visualizing the underlying angiogenic processes in the brain. OBJECTIVE: This study aims to investigate the role of GS in the neovascularization of gliomas through the utilization of MR vessel-size imaging and histopathological techniques. METHODS: In this exploratory animal study, we randomly divided the C6 glioma rat models into a control group and an L-methionine sulfoximine (MSO) treatment group. Daily intraperitoneal injections were administered for three consecutive days, starting from day 10 following the implantation of C6 glioma cells in rats. Subsequently, MR vessel size imaging was conducted using a BRUKER 7 T/200 mm MRI scanner, and the MRI results were validated through histopathological examination. RESULTS: A significant decrease in microvessel density was observed in both the tumor periphery and center areas in the MSO treatment group compared to that in the control group. The mean vessel diameter (mVD) and vessel size index (VSI) did not exhibit significant changes compared to the control group. Moreover, the staining intensity of platelet endothelial cell adhesion molecule-1 (CD31) and GS in the tumor periphery was significantly decreased in the MSO treatment group. Additionally, the MSO treatment demonstrated a substantial inhibition of tumor growth. CONCLUSION: GS inhibitors significantly reduced angiogenesis in the periphery area of C6 glioma, exerting an inhibitory effect on tumor progression. Thus, GS inhibitors could be potential therapeutic agents for treating glioma. Additionally, in vivo MR vessel size imaging detects changes in vascularrelated parameters after tumor treatment, making it a promising method for detecting neovascularization in glioma.

.


Subject(s)
Glioma , Glutamate-Ammonia Ligase , Magnetic Resonance Imaging , Neovascularization, Pathologic , Animals , Glioma/diagnostic imaging , Glioma/blood supply , Glioma/drug therapy , Neovascularization, Pathologic/diagnostic imaging , Rats , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Male , Cell Line, Tumor
2.
J Cereb Blood Flow Metab ; : 271678X231216144, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38000018

ABSTRACT

Cerebrovascular dysfunction is a significant contributor to Alzheimer's disease (AD) progression. AD mouse models show altered capillary morphology, density, and diminished blood flow in areas of tau and beta-amyloid accumulation. The purpose of this study was to examine alterations in vascular structure and their contributions to perfusion deficits in the hippocampus in AD and mild cognitive impairment (MCI). Seven individuals with AD and MCI (1 AD/6 MCI), nine cognitively intact older healthy adults, and seven younger healthy adults underwent pseudo-continuous arterial spin labeling (PCASL) and gradient-echo/spin-echo (GESE) dynamic susceptibility contrast (DSC) MRI. Cerebral blood flow (CBF), cerebral blood volume, relative vessel size index (rVSI), and mean vessel density were calculated from model fitting. Lower CBF from PCASL and SE DSC MRI was observed in the hippocampus of AD/MCI group. rVSI in the hippocampus of the AD/MCI group was larger than that of the two healthy groups (FDR-P = 0.02). No difference in vessel density was detected between the groups. We also explored relationship of tau burden from 18F-flortaucipir positron emission tomography and vascular measures from MRI. Tau burden was associated with larger vessel size and lower CBF in the hippocampus. We postulate that larger vessel size may be associated with vascular alterations in AD/MCI.

3.
Cancers (Basel) ; 15(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37046796

ABSTRACT

In this study, we used the vessel size imaging (VSI) MRI technique to characterize the microvasculature features of three subtypes of adult-type diffuse glioma lacking enhancement. Thirty-eight patients with confirmed non-enhancing glioma were categorized into three subtypes: Oligo (IDH-mut&1p/19q-codeleted), Astro (IDH-mut), and GBM (IDH-wt). The VSI technique provided quantitative maps of cerebral blood volume (CBV), microvasculature (µCBV), and vessel size for each patient. Additionally, tissue samples of 21 patients were histopathologically analyzed, and microvasculature features were quantified. Both MRI- and histology-derived features were compared across the three glioma subtypes with ANOVA or Kruskal-Wallis tests. Group averages of CBV, µCBV, and vessel size were significantly different between the three glioma subtypes (p < 0.01). Astro (IDH-mut) had a significantly lower CBV and µCBV compared to Oligo (IDH-mut&1p/19q-codeleted) (p = 0.004 and p = 0.001, respectively), and a higher average vessel size compared to GBM (IDH-wt) (p = 0.01). The histopathological analysis showed that GBM (IDH-wt) possessed vessels with more irregular shapes than the two other subtypes (p < 0.05). VSI provides a good insight into the microvasculature characteristics of the three adult-type glioma subtypes even when lacking enhancement. Further investigations into the specificity of VSI to differentiate glioma subtypes are thus warranted.

4.
Cancers (Basel) ; 15(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37046841

ABSTRACT

Characterization of tumor microvasculature is important in tumor assessment and studying treatment response. This is possible by acquiring vascular biomarkers with magnetic resonance imaging (MRI) based on dynamic susceptibility contrast (DSC). We propose magnetic resonance vascular fingerprinting (MRVF) for hybrid echo planar imaging (HEPI) acquired during the first passage of the contrast agent (CA). The proposed approach was evaluated in patients with gliomas, and we simultaneously estimated vessel radius and relative cerebral blood volume. These parameters were also compared to the respective values estimated using the previously introduced vessel size imaging (VSI) technique. The results of both methods were found to be consistent. MRVF was also found to be robust to noise in the estimation of the parameters. DSC-HEPI-based MRVF provides characterization of microvasculature in gliomas with a short acquisition time and can be further improved in several ways to increase our understanding of tumor physiology.

5.
J Cereb Blood Flow Metab ; 41(10): 2617-2627, 2021 10.
Article in English | MEDLINE | ID: mdl-33866849

ABSTRACT

MRI-based vessel size imaging (VSI) allows for in-vivo assessment of cerebral microvasculature and perfusion. This exploratory analysis of vessel size (VS) and density (Q; both assessed via VSI) in the subacute phase of ischemic stroke involved sixty-two patients from the BAPTISe cohort ('Biomarkers And Perfusion--Training-Induced changes after Stroke') nested within a randomized controlled trial (intervention: 4-week training vs. relaxation). Relative VS, Q, cerebral blood volume (rCBV) and -flow (rCBF) were calculated for: ischemic lesion, perilesional tissue, and region corresponding to ischemic lesion on the contralateral side (mirrored lesion). Linear mixed-models detected significantly increased rVS and decreased rQ within the ischemic lesion compared to the mirrored lesion (coefficient[standard error]: 0.2[0.08] p = 0.03 and -1.0[0.3] p = 0.02, respectively); lesion rCBF and rCBV were also significantly reduced. Mixed-models did not identify time-to-MRI, nor training as modifying factors in terms of rVS or rQ up to two months post-stroke. Larger lesion VS was associated with larger lesion volumes (ß 34, 95%CI 6.2-62; p = 0.02) and higher baseline NIHSS (ß 3.0, 95%CI 0.49-5.3;p = 0.02), but was not predictive of six-month outcome. In summary, VSI can assess the cerebral microvasculature and tissue perfusion in the subacute phases of ischemic stroke, and may carry relevant prognostic value in terms of lesion volume and stroke severity.


Subject(s)
Cerebrovascular Circulation/physiology , Ischemic Stroke/diagnostic imaging , Magnetic Resonance Imaging/methods , Aged , Humans
6.
Front Neurol ; 11: 545450, 2020.
Article in English | MEDLINE | ID: mdl-33192974

ABSTRACT

Background: Cerebral small vessel disease is the most common cause of subcortical vascular dementia (SVaD). Unfortunately, conventional imaging techniques do not always demonstrate the microvascular pathology that is associated with small vessel disease. The purpose of this study was to evaluate the changes in the microvascular structure of SVaD and to identify how the microvascular changes in vessel size, detected with imaging, affect the gray matter. Methods: Ten SVaD patients and 12 healthy controls underwent vessel size imaging with gradient-echo and spin-echo sequences before and after contrast agent injection. Four microvessel index maps, including total blood volume fraction (BVf), mean vessel density (Q), mean vessel diameter (mVD), and vessel size index (VSI) were calculated. ROI value of each microvessel parameter was compared between SVaD patients and controls. Voxel-wise comparison of microvessel parameters was also performed to assess the regional difference. The relationship between the microvessel parameters in white matter and total gray matter volume (TGV) were assessed. Results: Both mVD and VSI were significantly different between the SVaD and controls in the ROI-based comparisons (unpaired t-test, p < 0.05). mVD and VSI were significantly increased in the SVaD group at the subcortical, periventricular white matter, basal ganglia, and thalami compared with the controls (FDR corrected, p < 0.05). VSI in the white matter areas were significantly negatively correlated with TGV (r = -0.446, p < 0.05). Conclusions: The increase of mVD and VSI in SVaD patients reflects the damage of the microvessels in the white matter, and these changes may lead to the damage of the gray matter.

7.
Cancer Manag Res ; 12: 9801-9811, 2020.
Article in English | MEDLINE | ID: mdl-33116839

ABSTRACT

BACKGROUND: Patients with isocitrate dehydrogenase (IDH) mutant gliomas have better survival and appear to be more sensitive to chemotherapy than their IDH wild-type counterparts. We attempted to assess the correlations of vessel size imaging (VSI) values with IDH mutation status and patient survival in diffuse lower-grade glioma (LGG). METHODS: We enrolled 60 patients with diffuse LGGs, among which 43 had IDH-mutant tumors. All patients underwent VSI examination and VSI values for active tumors were calculated. Receiver operating characteristic (ROC) curves were established to evaluate the detection efficiency. Logistic regression was employed to determine the ability of variables to discriminate IDH mutational status. Kaplan-Meier survival analysis and Cox proportional hazards models were utilized to estimate the correlations of VSI values and other risk factors with patient survival. RESULTS: We observed that VSI values were lower in IDH-mutant LGGs than IDH wild-type LGGs. The VSImax and VSImean values had AUC values of 0.7305 and 0.7401, respectively, in distinguishing IDH-mutant LGGs from IDH wild-type LGGs. Logistic regression showed that VSImean values, age and tumor location were associated with IDH-mutant status, and the formula integrating the three factors had an AUC value of 0.7798 when distinguishing IDH-mutant LGGs from IDH wild-type LGGs. Moreover, LGG patients with high VSI values exhibited worse survival rates than those with low VSI values for both progression-free survival (PFS) and overall survival (OS). Multivariate Cox proportional hazards regression analysis suggested that IDH mutation status, VSImean values and multiple lesions or lobes were risk factors for PFS of LGG patients. CONCLUSION: VSI value is associated with IDH genotype and maybe an independent predictor of the survival of patients with LGGs.

8.
Aging (Albany NY) ; 12(17): 17224-17234, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32908022

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Here, we used vessel size imaging to investigate the specific microvascular changes and most susceptible brain regions during AD progression in an amyloid precursor protein 23 (APP23) transgenic AD mouse model. Using 9.4 Tesla magnetic resonance imaging (MRI), the values of microvascular density (Density), mean vessel diameter (mVD), and vessel size index (VSI) were compared between APP23 and wild-type (WT) mice at 3, 6, 9, 14, and 20 months of age. Our results demonstrate that in 20-month old APP23 and WT mice, the Density values were significantly decreased, while the vascular dilatation and diameter had increased. However, a transient increase in the cortex Density at 14-months was observed in APP23 mice. Additionally, our results suggest that the hippocampus is the susceptible brain region affected by the abnormal microvascular angiogenesis during the early stages of AD. Together, our findings indicate that vessel size imaging using MRI can provide novel biomarkers for the early detection of AD, and for monitoring the effects of vascular-targeted therapeutics in AD.

9.
Neuroimage ; 215: 116784, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32276059

ABSTRACT

In this study, a stimulated-echo (STE) method was employed to robustify the cerebral vessel size estimation near air-tissue, bone-tissue interfaces, and large vessels. The proposed solution is to replace the relaxation rate change from gradient-echo (GRE) with that from STE with long diffusion time after the injection of an intravascular contrast agent, superparamagnetic iron oxide nanoparticles. The corresponding diffusion length of STE is shorter than the length over which the unwanted macroscopic field inhomogeneities but is still longer than the correlation length of the fields induced by small vessels. Therefore, the unwanted field inhomogeneities are refocused, while preserving microscopic susceptibility contrast from cerebral vessels. The mean vessel diameter (dimensionless) derived from the diffusion-time-varying STE method was compared to the mean vessel diameter obtained by a conventional spin-echo (SE) and GRE combination based on Monte-Carlo proton diffusion simulations and in vivo rat experiments at 7 â€‹T. The in vivo mean vessel diameter from the MRI experiments was directly compared to available reference mouse brain vasculature obtained by a knife-edge scanning microscope (KESM), which is considered to be the gold standard. Monte-Carlo simulation revealed that SE and GRE-based MR relaxation rate changes (ΔR2 and ΔR2∗, respectively) can be enhanced using single STE-based MR relaxation rate change (ΔRSTE) by regulating diffusion time, especially for small vessels. The in vivo mean vessel diameter from the STE method demonstrated a closer agreement with that from the KESM compared to the combined SE and GRE method, especially in the olfactory bulb and cortex. This study demonstrates that STE relaxation rate changes can be used as consistent measures for assessing small cerebral microvasculature, where macroscopic field inhomogeneity is severe and signal contamination from adjacent large vessels is significant.


Subject(s)
Cerebral Cortex/blood supply , Cerebral Cortex/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Microvessels/diagnostic imaging , Animals , Computer Simulation , Feasibility Studies , Humans , Mice , Rats, Wistar
10.
Eur Radiol ; 29(4): 1893-1902, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30276676

ABSTRACT

OBJECTIVES: Vessel size imaging (VSI) could reveal average microvessel diameter. The aim was to investigate microvascular characteristics and the efficacy of VSI in lower-grade glioma (LGG) grading and subtype differentiation based on 2016 classification of central nervous system tumours. METHODS: Fifty-seven LGG (grade II/III, 36/21) patients who received VSI examination before surgery were retrospectively analysed. The average (Rmean) and maximum (Rmax) vessel size indexes were obtained. The long (VDmax) and short (VDmin) vascular diameter, microvascular area (MVA) and density (MVD) were obtained using paraffin specimens. The patients were divided into grades II and III, and histological and molecular subtypes. The differences among microvascular parameters of different subtypes and grades were compared. Two-sample t-test, analysis of variance test, Mann-Whitney test, the Kruskal-Wallis test and Pearson correlation analysis were used for statistics. RESULTS: Rmean, Rmax, VDmin, VDmax, and MVA were higher in grade-III than in grade-II LGGs (p < 0.05) in each type except the isocitrate dehydrogenase (IDH) mutant with 1p/19q-intact type. For grade II, the IDH mutant with 1p/19q co-deleted and IDH wildtype possessed more dominant angiogenesis than IDH mutant with 1p/19q-intact type, revealed by lower Rmean, Rmax and VDmin while higher MVD for the former (p < 0.05), the same as oligodendroglioma versus astrocytoma. Rmean and Rmax correlated with VDmin (r = 0.804, 0.815, p < 0.05), VDmax (r = 0.766, 0.774, p < 0.05) and MVA (r = 0.755, 0.759, p < 0.05), respectively, while they had no correlation with MVD (r = -0.085, -0.080, p > 0.05). CONCLUSIONS: VSI holds great potential for non-invasively revealing microvascular characteristics of LGGs pre-surgery and differentiating their grades and molecular subtypes. KEY POINTS: • VSI can assist in differentiating grade-II and -III gliomas. • The IDH gene and 1p/19q chromosome may influence the angiogenesis in grade-II gliomas. • VSI is valuable for differentiating the molecular subtypes of grade-II gliomas.


Subject(s)
Brain Neoplasms/blood supply , Brain Neoplasms/pathology , Glioma/blood supply , Glioma/pathology , Microcirculation , Adult , Astrocytoma/blood supply , Astrocytoma/diagnostic imaging , Astrocytoma/genetics , Astrocytoma/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Chromosome Deletion , Female , Glioma/diagnostic imaging , Glioma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Magnetic Resonance Imaging , Male , Middle Aged , Mutation , Oligodendroglioma/blood supply , Oligodendroglioma/diagnostic imaging , Oligodendroglioma/genetics , Oligodendroglioma/pathology , Retrospective Studies
11.
J Magn Reson Imaging ; 47(6): 1589-1600, 2018 06.
Article in English | MEDLINE | ID: mdl-29205621

ABSTRACT

BACKGROUND: Steady state susceptibility contrast (SSC)-MRI provides information on vascular morphology but is a rarely used method. PURPOSE: To investigate the utility of the ultrasmall superparamagnetic iron oxide particles (USPIOs) GEH121333 for measuring tumor response to bevacizumab and compare this with gadolinium-based DCE-MRI. STUDY TYPE: Prospective preclinical animal model study. ANIMAL MODEL: Mice bearing subcutaneous TOV-21G human ovarian cancer xenografts treated with bevacizumab (n = 9) or saline (n = 9). FIELD STRENGTH/SEQUENCE: Imaging was performed on a 7T Bruker Biospec. For SSC-MRI with GEH121333 we acquired R1 -maps (RARE-sequence with variable TR), R2 -maps (multi-spin echo), and R2*-maps (multi-gradient echo). Additionally, R1 and R2 maps were measured on the days after USPIO injection. For DCE-MRI with gadodiamide we acquired 200 T1 -weighted images (RARE-sequence). ASSESSMENT: ΔR1 , ΔR2 , and ΔR2* maps were computed from SSC-MRI. DCE-MRI was analysed using the extended Tofts model. STATISTICAL TESTS: Results from pre- and 3 days posttreatment SSC-MRI were compared using paired-sample t-tests. Treatment and control groups were compared using independent sample t-tests. Performance of SSC- and DCE-MRI was compared using multivariate partial least squares discriminant analysis. RESULTS: Already one day after treatment and USPIO injection, R1 and R2 values were lower in treated (R1 = 0.49 ± 0.03s-1 , R2 = 23.07 ± 1.49s-1 ) compared with control tumors (R1 = 0.52 ± 0.02s-1 , R2 = 24.98 ± 1.01s-1 ), indicating lower USPIO accumulation. Posttreatment SSC-MRI displayed significantly decreased tumor blood volume (change in ΔR2 = -0.43 ± 0.26s-1 , P = 0.001) and vessel density (change in Q = -0.032 ± 0.020s-1/3 , P = 0.002). DCE-MRI showed among others lower Ktrans in treated tumors (control = 0.064 ± 0.011min-1 , tx = 0.046 ± 0.008min-1 , P = 0.002). Multivariate analysis suggests that SSC-MRI was slightly inferior to DCE-MRI in distinguishing treated from control tumors (accuracy = 75%, P = 0.058 versus 80%, P = 0.028), but a combination of both was best (accuracy = 85%; P = 0.003). DATA CONCLUSION: SSC-MRI with GEH121333 is sensitive to early (<24 h) and late changes in tumor vasculature. SSC-MRI and DCE-MRI provide complementary information and can be used to assess different aspects of vascular responses to anti-angiogenic therapies. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1589-1600.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Contrast Media/chemistry , Dextrans/chemistry , Magnetic Resonance Imaging , Magnetite Nanoparticles/chemistry , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/drug therapy , Animals , Bevacizumab/therapeutic use , Brain/diagnostic imaging , Cell Line, Tumor , Female , Humans , Imaging, Three-Dimensional , Metal Nanoparticles/chemistry , Mice , Neoplasm Transplantation , Neovascularization, Pathologic/drug therapy , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity
12.
Oncotarget ; 8(7): 11083-11093, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-27613830

ABSTRACT

The purpose of this study was to investigate the molecular background of cerebral blood volume (CBV) and vessel size (VS) of capillaries in glioblastoma multiforme (GBM). Both parameters are derived from extended perfusion MR imaging.A prospective case study including 21 patients (median age 66 years, 10 females) was performed. Before operation, CBV and VS of contrast enhancing tumor were assessed. Tissue was sampled from the assessed areas under neuronavigation control. After RNA extraction, transcriptional data was analyzed by Weighted Gene Co-Expression Network Analysis (WGCNA) and split into modules based on its network affiliations. Gene Set Enrichment Analysis (GSEA) identified biological functions or pathways of the genetic modules. These were applied on 484 GBM samples of the TCGA database.Ten modules were highly correlated to CBV and VS. One module was exclusively associated to VS and highly correlated to hypoxia, another one exclusively to CBV showing strong enrichments in the Epithelial Growth Factor (EGF) pathway and Epithelial-to-Mesenchymal-Transition (EMT). Moreover, patients with increased CBV and VS predominantly showed a mesenchymal gene-expression, a finding that could be corroborated by TCGA data.In conclusion, CBV and VS mirror different genetic pathways and reflect certain molecular subclasses of GBM.


Subject(s)
Blood Vessels/metabolism , Brain Neoplasms/genetics , Cerebral Blood Volume/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Adult , Aged , Aged, 80 and over , Blood Vessels/pathology , Brain Neoplasms/blood supply , Brain Neoplasms/diagnostic imaging , Cluster Analysis , Contrast Media/administration & dosage , Female , Gene Expression Profiling/methods , Gene Regulatory Networks , Glioblastoma/blood supply , Glioblastoma/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Oligonucleotide Array Sequence Analysis/methods , Perfusion , Prospective Studies
13.
J Magn Reson Imaging ; 42(4): 1117-25, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25683112

ABSTRACT

PURPOSE: To compare the vessel size and the cerebral blood volume in human gliomas with histopathology. Vessel size imaging (VSI) is a dynamic susceptibility contrast method for the assessment of the vessel size in normal and pathological tissue. Previous publications in rodents showed a satisfactory conformity with the vessel size derived from histopathology. To assess the clinical value, further, the progression-free interval was determined and correlated. MATERIALS AND METHODS: Twenty-five gliomas (WHO grade °II [n = 10], °III [n = 3], °IV [n = 12]) were prospectively included and received a stereotaxic biopsy after VSI. The vessel size and the cerebral blood volume (CBV) were calculated in regions of interest at the tumor edge and correlated with the vessel size measured by histopathology. RESULTS: Both VSI and CBV showed a good correlation with the vessel size in histopathology (up to r = 0.84, P < 0.001, and r = 0.62, P < 0.001, respectively). Slope and offset of the linear regression (y = 0.77x + 0.36 µm) suggest that the size of normal capillaries is overestimated with VSI, while for grossly enlarged vessels an underestimation occurs. Both VSI and CBV were negatively correlated with the progression-free interval (r = -0.57, P = 0.008, and r = -0.50, P = 0.025, respectively). CONCLUSION: The correlation between VSI and vessel size from histopathology is in good accordance with the animal studies. The overestimation of small capillary sizes is also known from the animal trials. Vessel size and CBV showed similar results, both for the correlation with the histopathological vessel size and the progression-free interval.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Glioma/physiopathology , Magnetic Resonance Angiography/methods , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/physiopathology , Adult , Aged , Blood Flow Velocity , Blood Volume , Blood Volume Determination/methods , Brain Neoplasms/blood supply , Glioma/blood supply , Humans , Image Interpretation, Computer-Assisted/methods , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
14.
J Magn Reson Imaging ; 40(6): 1310-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24390982

ABSTRACT

PURPOSE: Combining multiple imaging biomarkers in one magnetic resonance imaging (MRI) session would be beneficial to gain more data pertaining to tumor vasculature under therapy. Therefore, simultaneous measurement of perfusion, permeability, and vessel size imaging (VSI) using a gradient echo spin echo (GE-SE) sequence with injection of a clinically approved gadolinium (Gd)-based contrast agent was assessed in an orthotopic glioma model. MATERIALS AND METHODS: A combined spin echo gradient echo echo-planar imaging sequence was implemented using a single contrast agent Gd diethylenetriaminepentaacetic acid (Gd-DTPA). This sequence was tested in a mouse brain tumor model (U87_MG), also under treatment with an antiangiogenic agent (bevacizumab). T2 maps and the apparent diffusion coefficient (ADC) were used to differentiate regions of cell death and viable tumor tissue. RESULTS: In viable tumor tissue regional blood volume was 5.7 ± 0.6% in controls and 5.2 ± 0.3% in treated mice. Vessel size was 18.1 ± 2.4 µm in controls and 12.8 ± 2.0 µm in treated mice, which correlated with results from immunohistochemistry. Permeability (K(trans) ) was close to zero in treated viable tumor tissue and 0.062 ± 0.024 min(-1) in controls. CONCLUSION: Our MRI method allows simultaneous assessment of several physiological and morphological parameters and extraction of MRI biomarkers for vasculature. These could be used for treatment monitoring of novel therapeutic agents such as antiangiogenic drugs.


Subject(s)
Blood Volume , Brain Neoplasms/physiopathology , Capillary Permeability , Image Interpretation, Computer-Assisted/methods , Multimodal Imaging/methods , Neovascularization, Pathologic/physiopathology , Animals , Blood Volume Determination/methods , Brain Neoplasms/complications , Brain Neoplasms/pathology , Cell Line, Tumor , Echo-Planar Imaging , Female , Magnetic Resonance Angiography , Mice , Mice, Nude , Neovascularization, Pathologic/etiology , Neovascularization, Pathologic/pathology , Reproducibility of Results , Sensitivity and Specificity
15.
Neuroimage ; 89: 262-70, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24321559

ABSTRACT

In the present study, we describe a fingerprinting approach to analyze the time evolution of the MR signal and retrieve quantitative information about the microvascular network. We used a Gradient Echo Sampling of the Free Induction Decay and Spin Echo (GESFIDE) sequence and defined a fingerprint as the ratio of signals acquired pre- and post-injection of an iron-based contrast agent. We then simulated the same experiment with an advanced numerical tool that takes a virtual voxel containing blood vessels as input, then computes microscopic magnetic fields and water diffusion effects, and eventually derives the expected MR signal evolution. The parameter inputs of the simulations (cerebral blood volume [CBV], mean vessel radius [R], and blood oxygen saturation [SO2]) were varied to obtain a dictionary of all possible signal evolutions. The best fit between the observed fingerprint and the dictionary was then determined by using least square minimization. This approach was evaluated in 5 normal subjects and the results were compared to those obtained by using more conventional MR methods, steady-state contrast imaging for CBV and R and a global measure of oxygenation obtained from the superior sagittal sinus for SO2. The fingerprinting method enabled the creation of high-resolution parametric maps of the microvascular network showing expected contrast and fine details. Numerical values in gray matter (CBV=3.1±0.7%, R=12.6±2.4µm, SO2=59.5±4.7%) are consistent with literature reports and correlated with conventional MR approaches. SO2 values in white matter (53.0±4.0%) were slightly lower than expected. Numerous improvements can easily be made and the method should be useful to study brain pathologies.


Subject(s)
Brain/blood supply , Magnetic Resonance Imaging , Adult , Blood Volume Determination , Female , Humans , Male , Middle Aged , Models, Theoretical , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL