Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Vet Microbiol ; 298: 110219, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39182469

ABSTRACT

Coronaviruses are causing epizootic diseases and thus are a substantial threat for both domestic and wild animals. These viruses depend on the host translation machinery to complete their life cycle. The current paper identified cellular RNA-binding proteins (RBPs), La-related protein 4 (LARP4) and polyadenylate-binding protein cytoplasmic 1 (PABPC1), as critical regulators of efficient translation of the coronavirus porcine epidemic diarrhea virus (PEDV) mRNA. In Vero cells, PEDV infection caused LARP4 to migrate from the nucleus to the cytoplasm in a chromosome region maintenance1 (CRM1)-independent pathway. In the absence of the nuclear export signal of LARP4, viral translation was not promoted by LARP4. A further study unveiled that the cytoplasmic LARP4 binds to the 3'-terminal untranslated region (3'UTR) of PEDV mRNA with the assistance of PABPC1 to facilitate viral translation. LARP4 knockdown reduced the promotion of the PABPC1-induced 3'UTR translation activity. Moreover, the rabbit reticulocyte lysate (RRL) system revealed that the prokaryotic expressed protein LARP4 and PABPC1 enhance PEDV mRNA translation. To our knowledge, this is the first study demonstrating that PEDV induces nucleo-cytoplasmic shuttling of LARP4 to enhance its own replication, which broadens our insights into how viruses use host's RBPs for the efficient translation of viral mRNA.

2.
Annu Rev Virol ; 11(1): 147-170, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38848589

ABSTRACT

The negative effects of potyvirus diseases on the agricultural industry are extensive and global. Understanding how protein-protein interactions contribute to potyviral infections is imperative to developing resistant varieties that help counter the threat potyviruses pose. While many protein-protein interactions have been reported, only a fraction are essential for potyviral infection. Accumulating evidence demonstrates that potyviral infection processes are interconnected. For instance, the interaction between the eukaryotic initiation factor 4E (eIF4E) and viral protein genome-linked (VPg) is crucial for both viral translation and protecting viral RNA (vRNA). Additionally, recent evidence for open reading frames on the reverse-sense vRNA and for nonequimolar expression of viral proteins has challenged the previous polyprotein expression model. These discoveries will surely reveal more about the potyviral protein interactome. In this review, we present a synthesis of the potyviral infection cycle and discuss influential past discoveries and recent work on protein-protein interactions in various infection processes.


Subject(s)
Host-Pathogen Interactions , Plant Diseases , Potyvirus , Viral Proteins , Potyvirus/genetics , Potyvirus/metabolism , Plant Diseases/virology , Viral Proteins/metabolism , Viral Proteins/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4E/genetics
3.
J Virol ; 98(3): e0015324, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38421168

ABSTRACT

Orthopneumoviruses characteristically form membrane-less cytoplasmic inclusion bodies (IBs) wherein RNA replication and transcription occur. Here, we report a strategy whereby the orthopneumoviruses sequester various components of the translational preinitiation complex machinery into viral inclusion bodies to facilitate translation of their own mRNAs-PIC-pocketing. Electron microscopy of respiratory syncytial virus (RSV)-infected cells revealed bi-phasic organization of IBs, specifically, spherical "droplets" nested within the larger inclusion. Using correlative light and electron microscopy, combined with fluorescence in situ hybridization, we showed that the observed bi-phasic morphology represents functional compartmentalization of the inclusion body and that these domains are synonymous with the previously reported inclusion body-associated granules (IBAGs). Detailed analysis demonstrated that IBAGs concentrate nascent viral mRNA, the viral M2-1 protein as well as components of eukaryotic translation initiation factors (eIF), eIF4F and eIF3, and 40S complexes involved in translation initiation. Interestingly, although ribopuromycylation-based imaging indicates that the majority of viral mRNA translation occurs in the cytoplasm, there was some evidence for intra-IBAG translation, consistent with the likely presence of ribosomes in a subset of IBAGs imaged by electron microscopy. Mass spectrometry analysis of sub-cellular fractions from RSV-infected cells identified significant modification of the cellular translation machinery; however, interestingly, ribopuromycylation assays showed no changes to global levels of translation. The mechanistic basis for this pathway was subsequently determined to involve the viral M2-1 protein interacting with eIF4G, likely to facilitate its transport between the cytoplasm and the separate phases of the viral inclusion body. In summary, our data show that these viral organelles function to spatially regulate early steps in viral translation within a highly selective bi-phasic biomolecular condensate. IMPORTANCE: Respiratory syncytial viruses (RSVs) of cows and humans are a significant cause of morbidity and mortality in their respective populations. These RNA viruses replicate in the infected cells by compartmentalizing the cell's cytoplasm into distinct viral microdomains called inclusion bodies (IBs). In this paper, we show that these IBs are further compartmentalized into smaller structures that have significantly different density, as observed by electron microscopy. Within smaller intra-IB structures, we observed ribosomal components and evidence for active translation. These findings highlight that RSV may additionally compartmentalize translation to favor its own replication in the cell. These data contribute to our understanding of how RNA viruses hijack the cell to favor replication of their own genomes and may provide new targets for antiviral therapeutics in vivo.


Subject(s)
Biomolecular Condensates , Respiratory Syncytial Virus, Human , Humans , Animals , Cattle , Cell Line , In Situ Hybridization, Fluorescence , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Ribosomes/metabolism , Virus Replication
4.
Cell Host Microbe ; 31(9): 1507-1522.e5, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37708853

ABSTRACT

Spontaneous transcription and translation of HIV can persist during suppressive antiretroviral therapy (ART). The quantity, phenotype, and biological relevance of this spontaneously "active" reservoir remain unclear. Using multiplexed single-cell RNAflow-fluorescence in situ hybridization (FISH), we detect active HIV transcription in 14/18 people with HIV on suppressive ART, with a median of 28/million CD4+ T cells. While these cells predominantly exhibit abortive transcription, p24-expressing cells are evident in 39% of participants. Phenotypically diverse, active reservoirs are enriched in central memory T cells and CCR6- and activation-marker-expressing cells. The magnitude of the active reservoir positively correlates with total HIV-specific CD4+ and CD8+ T cell responses and with multiple HIV-specific T cell clusters identified by unsupervised analysis. These associations are particularly strong with p24-expressing active reservoir cells. Single-cell vDNA sequencing shows that active reservoirs are largely dominated by defective proviruses. Our data suggest that these reservoirs maintain HIV-specific CD4+ and CD8+ T responses during suppressive ART.


Subject(s)
CD8-Positive T-Lymphocytes , Proviruses , Humans , In Situ Hybridization, Fluorescence , Phenotype , CD4-Positive T-Lymphocytes
5.
J Virol ; 97(7): e0085821, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37338370

ABSTRACT

The 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome forms RNA structures that regulate virus replication and translation. The region contains an internal ribosomal entry site (IRES) and a 5'-terminal region. Binding of the liver-specific microRNA (miRNA) miR-122 to two binding sites in the 5'-terminal region regulates viral replication, translation, and genome stability and is essential for efficient virus replication, but its precise mechanism of action is still unresolved. A current hypothesis is that miR-122 binding stimulates viral translation by facilitating the viral 5' UTR to form the translationally active HCV IRES RNA structure. While miR-122 is essential for detectable replication of wild-type HCV genomes in cell culture, several viral variants with 5' UTR mutations exhibit low-level replication in the absence of miR-122. We show that HCV mutants capable of replicating independently of miR-122 display an enhanced translation phenotype that correlates with their ability to replicate independently of miR-122. Further, we provide evidence that translation regulation is the major role for miR-122 and show that miR-122-independent HCV replication can be rescued to miR-122-dependent levels by the combined impacts of 5' UTR mutations that stimulate translation and by stabilizing the viral genome by knockdown of host exonucleases and phosphatases that degrade the genome. Finally, we show that HCV mutants capable of replicating independently of miR-122 also replicate independently of other microRNAs generated by the canonical miRNA synthesis pathway. Thus, we provide a model suggesting that translation stimulation and genome stabilization are the primary roles for miR-122 in promoting HCV. IMPORTANCE The unusual and essential role of miR-122 in promoting HCV propagation is incompletely understood. To better understand its role, we have analyzed HCV mutants capable of replicating independently of miR-122. Our data show that the ability of viruses to replicate independently of miR-122 correlates with enhanced virus translation but that genome stabilization is required to restore efficient HCV replication. This suggests that viruses must gain both abilities to escape the need for miR-122 and impacts the possibility that HCV can evolve to replicate outside the liver.


Subject(s)
Hepatitis C , MicroRNAs , Humans , Hepacivirus/physiology , 5' Untranslated Regions , MicroRNAs/genetics , MicroRNAs/metabolism , Internal Ribosome Entry Sites , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Replication/physiology , Protein Biosynthesis
6.
Avian Pathol ; 51(2): 129-140, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34859725

ABSTRACT

Numerous studies have shown that viruses can utilize or manipulate ribosomal proteins to achieve viral protein biosynthesis and replication. In our recent studies using proteomics analysis of virus-infected cells, we found that ribosomal protein L18 (RPL18) was the highest up-regulated differentially expressed protein, along with the increasingly expressed viral proteins later in Newcastle disease virus (NDV) infection. However, the association of RPL18 with viral protein biosynthesis and NDV replication remains unclear. In this study, we found that the expression and transcription levels of RPL18 was reduced early in NDV infection but increased later in NDV infection. In addition, the presence of cytoplasmic NDV matrix (M) protein was responsible for the increased expression of RPL18 in both virus-infected cells and plasmid-transfected cells. Moreover, cytoplasmic M protein increased RPL18 expression in a dose-dependent manner, even though they did not interact with each other. Furthermore, siRNA-mediated knockdown of RPL18 or overexpression of RPL18 dramatically reduced or enhanced NDV replication by decreasing or increasing viral protein translation rather than viral RNA synthesis and transcription. Taken together, these results suggested that the increased expression of RPL18 might be associated with the physical clumping together of the M protein, which in turn promoted viral protein biosynthesis and NDV replication. RESEARCH HIGHLIGHTSThe increased expression of RPL18 is associated with the presence of cytoplasmic M protein.Cytoplasmic M protein increases RPL18 expression in a dose-dependent manner.Knockdown of RPL18 reduces NDV replication by decreasing viral protein translation.Overexpression of RPL18 enhances NDV replication by increasing viral protein translation.


Subject(s)
Newcastle Disease , Poultry Diseases , Animals , Chickens , Newcastle disease virus/genetics , Ribosomal Proteins/genetics , Virus Replication
7.
Cell Rep ; 36(9): 109643, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34469719

ABSTRACT

Although understanding the diversity of HIV-1 reservoirs is key to achieving a cure, their study at the single-cell level in primary samples remains challenging. We combine flow cytometric multiplexed fluorescent in situ RNA hybridization for different viral genes with HIV-1 p24 protein detection, cell phenotyping, and downstream near-full-length single-cell vDNA sequencing. Stimulation-induced viral RNA-positive (vRNA+) cells from viremic and antiretroviral-therapy (ART)-suppressed individuals differ in their ability to produce p24. In participants on ART, latency-reversing agents (LRAs) induce a wide variety of viral gene transcription and translation patterns with LRA class-specific differences in reactivation potency. Reactivated proviruses, including in p24+ cells, are mostly defective. Although LRAs efficiently induce transcription in all memory cell subsets, we observe induction of translation mostly in effector memory cells, rather than in the long-lived central memory pool. We identify HIV-1 clones with diverse transcriptional and translational patterns between individual cells, and this finding suggests that cell-intrinsic factors influence reservoir persistence and heterogeneity.


Subject(s)
Gene Expression Profiling , HIV Infections/virology , HIV-1/genetics , Human Immunodeficiency Virus Proteins/genetics , Leukocytes, Mononuclear/virology , Protein Biosynthesis , RNA, Viral/genetics , Single-Cell Analysis , Transcription, Genetic , Transcriptome , Adult , Aged , Anti-HIV Agents/therapeutic use , Case-Control Studies , Cell Line , Female , Flow Cytometry , Gene Expression Regulation, Viral , HIV Core Protein p24/biosynthesis , HIV Core Protein p24/genetics , HIV Infections/blood , HIV Infections/drug therapy , HIV Long-Term Survivors , HIV-1/drug effects , HIV-1/metabolism , Human Immunodeficiency Virus Proteins/biosynthesis , Humans , In Situ Hybridization, Fluorescence , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Protein Biosynthesis/drug effects , RNA, Viral/biosynthesis , Transcription, Genetic/drug effects , Virus Activation , Young Adult
8.
Microbiol Spectr ; 9(2): e0131221, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34585949

ABSTRACT

The large (L) polymerase proteins of most nonsegmented, negative-stranded (NNS) RNA viruses have conserved methyltransferase motifs, (G)-G-G-D and K-D-K-E, which are important for the stabilization and translation of mRNA. However, the function of the (G)-G-G-D and K-D-K-E motifs in the NNS RNA virus Newcastle disease virus (NDV) remains unclear. We observed G-G-D and K-D-K-E motifs in all NDV genotypes. By using the infection cloning system of NDV rSG10 strain, recombinant NDVs with a single amino acid mutated to alanine in one motif (G-G-D or K-D-K-E) were rescued. The intracerebral pathogenicity index and mean death time assay results revealed that the G-G-D motif and K-D-K-E motif attenuate the virulence of NDV to various degrees. The replication, transcription, and translation levels of the K-D-K-E motif-mutant strains were significantly higher than those of wild-type virus owing to their altered regulation of the affinity between nucleocapsid protein and eukaryotic translation initiation factor 4E. When the infection dose was changed from a multiplicity of infection (MOI) of 10 to an MOI of 0.01, the cell-to-cell spread abilities of G-G-D- and K-D-K-E-mutant strains were reduced, according to plaque assay and dynamic indirect immunofluorescence assay results. Finally, we found that NDV strains with G-G-D or K-D-K-E motif mutations had less pathogenicity in 3-week-old specific-pathogen-free chickens than wild-type NDV. Therefore, these methyltransferase motifs can affect virulence by regulating the translation and cell-to-cell spread abilities of NDV. This work provides a feasible approach for generating vaccine candidates for viruses with methyltransferase motifs. IMPORTANCE Newcastle disease virus (NDV) is an important pathogen that is widespread globally. Research on its pathogenic mechanism is an important means of improving prevention and control efforts. Our study found that a deficiency in its methyltransferase motifs (G-G-D and K-D-K-E motifs) can attenuate NDV and revealed the molecular mechanism by which these motifs affect pathogenicity, which provides a new direction for the development of NDV vaccines. In addition to the (G)-G-G-D and K-D-K-E motifs of many nonsegmented, negative-stranded RNA viruses, similar motifs have been found in dengue virus, Zika virus, Japanese encephalitis virus (JEV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This suggests that such motifs may be present in more viruses. Our finding also provides a molecular basis for the discovery and functional study of (G)-G-G-D and K-D-K-E motifs of other viruses.


Subject(s)
Amino Acid Motifs/genetics , Methyltransferases/genetics , Newcastle Disease/transmission , Newcastle disease virus/growth & development , Newcastle disease virus/genetics , Viral Proteins/genetics , Animals , Cell Line , Chickens , Chlorocebus aethiops , Cricetinae , Genome, Viral/genetics , Newcastle disease virus/pathogenicity , Poultry Diseases/transmission , Poultry Diseases/virology , RNA, Viral/biosynthesis , RNA, Viral/genetics , Vero Cells , Virulence/genetics , Virus Replication/genetics
9.
Bio Protoc ; 11(14): e4096, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34395732

ABSTRACT

Here, we describe how to image and quantitate the translation dynamics of a bicistronic biosensor that we recently created to fairly compare cap-dependent and IRES-mediated translation at single-molecule resolution in live human cells. This technique employs a pair of complementary intrabodies loaded into living cells that co-translationally bind complementary epitopes in the two separate ORFs of the bicistronic biosensor. This causes the biosensor to fluoresce in different colors depending on which ORF/epitopes are translated. Using the biosensor together with high-resolution fluorescence microscopy and single-molecule tracking analysis allows for the quantitative comparison of translation dynamics between the two ORFs at a resolution of tens-of-nanometers in space and sub-seconds in time, which is not possible with more traditional GFP or luciferase reporters. Since both ORFs are on the same biosensor, they experience the same microenvironment, allowing a fair comparison of their relative translational activities. In this protocol, we describe how to get this assay up and running in cultured human cells so that translation dynamics can be studied under both normal and stressful cellular conditions. We also provide a number of useful tips and notes to help express components at appropriate levels inside cells for optimal live cell imaging. Graphical abstract: Steps required for 3-color single-molecule translation imaging and analysis.

10.
J Virol ; 95(13): e0023821, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33853964

ABSTRACT

Nucleolin (NCL), a stress-responsive RNA-binding protein, has been implicated in the translation of internal ribosome entry site (IRES)-containing mRNAs, which encode proteins involved in cell proliferation, carcinogenesis, and viral infection (type I IRESs). However, the details of the mechanisms by which NCL participates in IRES-driven translation have not hitherto been described. Here, we identified NCL as a protein that interacts with the IRES of foot-and-mouth disease virus (FMDV), which is a type II IRES. We also mapped the interactive regions within FMDV IRES and NCL in vitro. We found that NCL serves as a substantial regulator of FMDV IRES-driven translation but not of bulk cellular or vesicular stomatitis virus cap-dependent translation. NCL also modulates the translation of and infection by Seneca Valley virus (type III-like IRES) and classical swine fever virus (type III IRES), which suggests that its function is conserved in unrelated IRES-containing viruses. We also show that NCL affects viral replication by directly regulating the production of viral proteins and indirectly regulating FMDV RNA synthesis. Importantly, we observed that the cytoplasmic relocalization of NCL during FMDV infection is a substantial step for viral IRES-driven translation and that NCL specifically promotes the initiation phase of the translation process by recruiting translation initiation complexes to viral IRES. Finally, the functional importance of NCL in FMDV pathogenicity was confirmed in vivo. Taken together, our findings demonstrate a specific function for NCL in selective mRNA translation and identify a target for the development of a broad-spectrum class of antiviral interventions. IMPORTANCE FMDV usurps the cellular translation machinery to initiate viral protein synthesis via a mechanism driven by IRES elements. It allows the virus to shut down bulk cellular translation, while providing an advantage for its own gene expression. With limited coding capacity in its own genome, FMDV has evolved a mechanism to hijack host proteins to promote the recruitment of the host translation machinery, a process that is still not well understood. Here, we identified nucleolin (NCL) as a positive regulator of the IRES-driven translation of FMDV. Our study supports a model in which NCL relocalizes from the nucleus to the cytoplasm during the course of FMDV infection, where the cytoplasmic NCL promotes FMDV IRES-driven translation by bridging the translation initiation complexes with viral IRES. Our study demonstrates a previously uncharacterized role of NCL in the translation initiation of IRES-containing viruses, with important implications for the development of broad antiviral interventions.


Subject(s)
Foot-and-Mouth Disease Virus/genetics , Gene Expression Regulation, Viral/genetics , Internal Ribosome Entry Sites/genetics , Peptide Chain Initiation, Translational/genetics , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Cell Line , Cell Proliferation/genetics , Chlorocebus aethiops , Classical Swine Fever Virus/genetics , Cricetinae , Foot-and-Mouth Disease Virus/growth & development , Mice , Mice, Inbred BALB C , Picornaviridae/genetics , RNA Interference , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Swine , Vero Cells , Virus Replication/genetics , Nucleolin
11.
Semin Cell Dev Biol ; 111: 86-100, 2021 03.
Article in English | MEDLINE | ID: mdl-32847707

ABSTRACT

As obligate intracellular parasites with limited coding capacity, RNA viruses rely on host cells to complete their multiplication cycle. Viral RNAs (vRNAs) are central to infection. They carry all the necessary information for a virus to synthesize its proteins, replicate and spread and could also play essential non-coding roles. Regardless of its origin or tropism, vRNA has by definition evolved in the presence of host RNA Binding Proteins (RBPs), which resulted in intricate and complicated interactions with these factors. While on one hand some host RBPs recognize vRNA as non-self and mobilize host antiviral defenses, vRNA must also co-opt other host RBPs to promote viral infection. Focusing on pathogenic RNA viruses, we will review important scenarios of RBP-vRNA interactions during which host RBPs recognize, modify or degrade vRNAs. We will then focus on how vRNA hijacks the largest ribonucleoprotein complex (RNP) in the cell, the ribosome, to selectively promote the synthesis of its proteins. We will finally reflect on how novel technologies are helping in deepening our understanding of vRNA-host RBPs interactions, which can be ultimately leveraged to combat everlasting viral threats.


Subject(s)
RNA Viruses/genetics , RNA, Messenger/genetics , RNA, Viral/genetics , RNA-Binding Proteins/genetics , Viral Proteins/genetics , Virus Diseases/genetics , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/immunology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/genetics , Protein Binding , Protein Biosynthesis , RNA Viruses/growth & development , RNA Viruses/pathogenicity , RNA, Messenger/immunology , RNA, Viral/immunology , RNA-Binding Proteins/immunology , Ribosomes/genetics , Ribosomes/metabolism , Signal Transduction , Viral Proteins/metabolism , Virus Assembly/genetics , Virus Diseases/immunology , Virus Diseases/pathology , Virus Diseases/virology
12.
Cell ; 183(7): 1930-1945.e23, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33188777

ABSTRACT

RNA viruses are among the most prevalent pathogens and are a major burden on society. Although RNA viruses have been studied extensively, little is known about the processes that occur during the first several hours of infection because of a lack of sensitive assays. Here we develop a single-molecule imaging assay, virus infection real-time imaging (VIRIM), to study translation and replication of individual RNA viruses in live cells. VIRIM uncovered a striking heterogeneity in replication dynamics between cells and revealed extensive coordination between translation and replication of single viral RNAs. Furthermore, using VIRIM, we identify the replication step of the incoming viral RNA as a major bottleneck of successful infection and identify host genes that are responsible for inhibition of early virus replication. Single-molecule imaging of virus infection is a powerful tool to study virus replication and virus-host interactions that may be broadly applicable to RNA viruses.


Subject(s)
Protein Biosynthesis , RNA Viruses/physiology , Virus Replication/physiology , Cell Line, Tumor , Cell Survival , HEK293 Cells , Host-Pathogen Interactions , Humans , Interferons/metabolism , RNA Transport , RNA, Viral/genetics , Reproducibility of Results , Single Molecule Imaging , Time Factors
13.
Med Hypotheses ; 143: 109904, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32502901

ABSTRACT

Coronavirus disease (COVID-19) is caused by SARS-COV2 and has resulted in more than four million cases globally and the death cases exceeded 300,000. Normally, a range of surviving and propagating host factors must be employed for the completion of the infectious process including RPs. Viral protein biosynthesis involves the interaction of numerous RPs with viral mRNA, proteins which are necessary for viruses replication regulation and infection inside the host cells. Most of these interactions are crucial for virus activation and accumulation. However, only small percentage of these proteins is specifically responsible for host cells protection by triggering the immune pathway against virus. This research proposes RPs extracted from bacillus sp. and yeast as new forum for the advancement of antiviral therapy. Hitherto, antiviral therapy with RPs-involving viral infection has not been widely investigated as critical targets. Also, exploring antiviral strategy based on RPs could be a promising guide for more potential therapeutics.


Subject(s)
Betacoronavirus/drug effects , Betacoronavirus/physiology , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Models, Biological , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Ribosomal Proteins/therapeutic use , Virus Replication/drug effects , Antiviral Agents/therapeutic use , Bacterial Proteins/therapeutic use , COVID-19 , Fungal Proteins/therapeutic use , Host Microbial Interactions/drug effects , Host Microbial Interactions/physiology , Humans , Pandemics , SARS-CoV-2 , Virus Replication/physiology , COVID-19 Drug Treatment
14.
Viruses ; 12(2)2020 01 31.
Article in English | MEDLINE | ID: mdl-32023921

ABSTRACT

In this study, we characterized the role of host cell protein tyrosyl-DNA phosphodiesterase 2 (TDP2) activity, also known as VPg unlinkase, in picornavirus infections in a human cell model of infection. TDP2/VPg unlinkase is used by picornaviruses to remove the small polypeptide, VPg (Virus Protein genome-linked, the primer for viral RNA synthesis), from virus genomic RNA. We utilized a CRISPR/Cas-9-generated TDP2 knock out (KO) human retinal pigment epithelial-1 (hRPE-1) cell line, in addition to the wild type (WT) counterpart for our studies. We determined that in the absence of TDP2, virus growth kinetics for two enteroviruses (poliovirus and coxsackievirus B3) were delayed by about 2 h. Virus titers were reduced by ~2 log10 units for poliovirus and 0.5 log10 units for coxsackievirus at 4 hours post-infection (hpi), and by ~1 log10 unit at 6 hpi for poliovirus. However, virus titers were nearly indistinguishable from those of control cells by the end of the infectious cycle. We determined that this was not the result of an alternative source of VPg unlinkase activity being activated in the absence of TPD2 at late times of infection. Viral protein production in TDP2 KO cells was also substantially reduced at 4 hpi for poliovirus infection, consistent with the observed growth kinetics delay, but reached normal levels by 6 hpi. Interestingly, this result differs somewhat from what has been reported previously for the TDP2 KO mouse cell model, suggesting that either cell type or species-specific differences might be playing a role in the observed phenotype. We also determined that catalytically inactive TDP2 does not rescue the growth defect, confirming that TDP2 5' phosphodiesterase activity is required for efficient virus replication. Importantly, we show for the first time that polysomes can assemble efficiently on VPg-linked RNA after the initial round of translation in a cell culture model, but both positive and negative strand RNA production is impaired in the absence of TDP2 at mid-times of infection, indicating that the presence of VPg on the viral RNA affects a step in the replication cycle downstream of translation (e.g., RNA synthesis). In agreement with this conclusion, we found that double-stranded RNA production (a marker of viral RNA synthesis) is delayed in TDP2 KO RPE-1 cells. Moreover, we show that premature encapsidation of nascent, VPg-linked RNA is not responsible for the observed virus growth defect. Our studies provide the first lines of evidence to suggest that either negative- or positive-strand RNA synthesis (or both) is a likely candidate for the step that requires the removal of VPg from the RNA for an enterovirus infection to proceed efficiently.


Subject(s)
DNA-Binding Proteins/genetics , Phosphoric Diester Hydrolases/genetics , Picornaviridae Infections/virology , Picornaviridae/genetics , CRISPR-Cas Systems , Cell Line , DNA-Binding Proteins/metabolism , Epithelial Cells/virology , Gene Knockout Techniques , Humans , Phosphoric Diester Hydrolases/metabolism , Picornaviridae/growth & development , Polyribosomes/immunology , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Retina/cytology
15.
J Biomed Sci ; 27(1): 17, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31906961

ABSTRACT

BACKGROUND: Influenza A viruses cause epidemics/severe pandemics that pose a great global health threat. Among eight viral RNA segments, the multiple functions of nucleoprotein (NP) play important roles in viral replication and transcription. METHODS: To understand how NP contributes to the virus evolution, we analyzed the NP gene of H3N2 viruses in Taiwan and 14,220 NP sequences collected from Influenza Research Database. The identified genetic variations were further analyzed by mini-genome assay, virus growth assay, viral RNA and protein expression as well as ferret model to analyze their impacts on viral replication properties. RESULTS: The NP genetic analysis by Taiwan and global sequences showed similar evolution pattern that the NP backbones changed through time accompanied with specific residue substitutions from 1999 to 2018. Other than the conserved residues, fifteen sporadic substitutions were observed in which the 31R, 377G and 450S showed higher frequency. We found 31R and 450S decreased polymerase activity while the dominant residues (31 K and 450G) had higher activity. The 31 K and 450G showed better viral translation and replication in vitro and in vivo. CONCLUSIONS: These findings indicated variations identified in evolution have roles in modulating viral replication in vitro and in vivo. This study demonstrates that the interaction between variations of NP during virus evolution deserves future attention.


Subject(s)
Evolution, Molecular , Genetic Variation , Influenza A Virus, H3N2 Subtype/physiology , Protein Biosynthesis/genetics , RNA-Binding Proteins , Viral Core Proteins , Virus Replication/genetics , A549 Cells , Animals , Dogs , Humans , Influenza, Human/epidemiology , Influenza, Human/genetics , Influenza, Human/metabolism , Madin Darby Canine Kidney Cells , Nucleocapsid Proteins , RNA-Binding Proteins/biosynthesis , RNA-Binding Proteins/genetics , Taiwan , Viral Core Proteins/biosynthesis , Viral Core Proteins/genetics
16.
Viruses ; 11(2)2019 02 08.
Article in English | MEDLINE | ID: mdl-30744035

ABSTRACT

The double-stranded RNA-binding protein Staufen1 (Stau1) has multiple functions during RNA virus infection. In this study, we investigated the role of Stau1 in viral translation by using a combination of enterovirus 71 (EV-A71) infection, RNA reporter transfection, and in vitro functional and biochemical assays. We demonstrated that Stau1 specifically binds to the 5'-untranslated region of EV-A71 viral RNA. The RNA-binding domain 2-3 of Stau1 is responsible for this binding ability. Subsequently, we created a Stau1 knockout cell line using the CRISPR/Cas9 approach to further characterize the functional role of Stau1's interaction with viral RNA in the EV-A71-infected cells. Both the viral RNA accumulation and viral protein expression were downregulated in the Stau1 knockout cells compared with the wild-type naïve cells. Moreover, dysregulation of viral RNA translation was observed in the Stau1 knockout cells using ribosome fractionation assay, and a reduced RNA stability of 5'-UTR of the EV-A71 was also identified using an RNA stability assay, which indicated that Stau1 has a role in facilitating viral translation during EV-A71 infection. In conclusion, we determined the functional relevance of Stau1 in the EV-A71 infection cycle and herein describe the mechanism of Stau1 participation in viral RNA translation through its interaction with viral RNA. Our results suggest that Stau1 is an important host factor involved in viral translation and influential early in the EV-A71 replication cycle.


Subject(s)
Cytoskeletal Proteins/metabolism , Enterovirus A, Human/physiology , Host Microbial Interactions , RNA, Viral/genetics , RNA-Binding Proteins/metabolism , Virus Replication , 5' Untranslated Regions , CRISPR-Cas Systems , Cell Line, Tumor , Cytoskeletal Proteins/genetics , Gene Knockout Techniques , Humans , Protein Biosynthesis , RNA-Binding Proteins/genetics
17.
Front Microbiol ; 9: 207, 2018.
Article in English | MEDLINE | ID: mdl-29487587

ABSTRACT

Animal viruses have evolved a variety of strategies to ensure the efficient translation of their mRNAs. One such strategy is the use of internal ribosome entry site (IRES) elements, which circumvent the requirement for some eukaryotic initiation factors (eIFs). Much effort has been directed to unravel the precise mechanism of translation initiation by hepatitis C virus (HCV) mRNA. In the present study, we examined the involvement of several eIFs in HCV IRES-driven translation in human cells in a comparative analysis with mRNAs bearing the encephalomyocarditis virus or the Cricket paralysis virus IRES element. Consistent with previous findings, several inhibitors of eIF2 activity, including sodium arsenite, thapsigargin, tunicamycin, and salubrinal, had no inhibitory effect on the translation of an mRNA bearing the HCV IRES, and all induced the phosphorylation of eIF2α. In addition, hippuristanol and pateamine A, two known inhibitors of eIF4A, failed to block HCV IRES-directed translation. To test the release of nuclear proteins to the cytoplasm and to analyze the formation of stress granules, the location of the nuclear protein TIA1 was tested by immunocytochemistry. Both arsenite and pateamine A could efficiently induce the formation of stress granules containing TIA1 and eIF4G, whereas eIF3 and eIF2 failed to localize to these cytoplasmic bodies. The finding of eIF4A and eIF4G in stress granules suggests that they do not participate in mRNA translation. Human HAP1 cells depleted for eIF2A, eIF2D, or both factors, were able to synthesize luciferase from an mRNA bearing the HCV IRES even when eIF2α was phosphorylated. Overall, these results demonstrate that neither eIF2A nor eIF2D does not participate in the translation directed by HCV IRES. We conclude that eIF2, eIF4A, eIF2A, and eIF2D do not participate in the initiation of translation of HCV mRNA.

18.
Retrovirology ; 15(1): 10, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29357872

ABSTRACT

BACKGROUND: The retrovirus murine leukemia virus (MuLV) has an 8.3 kb RNA genome with a simple 5'-gag-pol-env-3' architecture. Translation of the pol gene is dependent upon readthrough of the gag UAG stop codon; whereas the env gene is translated from spliced mRNA transcripts. Here, we report the first high resolution analysis of retrovirus gene expression through tandem ribosome profiling (RiboSeq) and RNA sequencing (RNASeq) of MuLV-infected cells. RESULTS: Ribosome profiling of MuLV-infected cells was performed, using the translational inhibitors harringtonine and cycloheximide to distinguish initiating and elongating ribosomes, respectively. Meta-analyses of host cell gene expression demonstrated that the RiboSeq datasets specifically captured the footprints of translating ribosomes at high resolution. Direct measurement of ribosomal occupancy of the MuLV genomic RNA indicated that ~ 7% of ribosomes undergo gag stop codon readthrough to access the pol gene. Initiation of translation was found to occur at several additional sites within the 5' leaders of the gag and env transcripts, upstream of their respective annotated start codons. CONCLUSIONS: These experiments reveal the existence of a number of previously uncharacterised, ribosomally occupied open reading frames within the MuLV genome, with possible regulatory consequences. In addition, we provide the first direct measurements of stop codon readthrough efficiency during cellular infection.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Viral , Leukemia Virus, Murine/genetics , Ribosomes/metabolism , Animals , Cell Line , HEK293 Cells , Humans , Mice , Protein Biosynthesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Sequence Analysis, RNA , Time Factors , Transcription, Genetic
19.
J Virol ; 91(16)2017 08 15.
Article in English | MEDLINE | ID: mdl-28539455

ABSTRACT

Group B coxsackieviruses are responsible for chronic cardiac infections. However, the molecular mechanisms by which the virus can persist in the human heart long after the signs of acute myocarditis have abated are still not completely understood. Recently, coxsackievirus B3 strains with 5'-terminal deletions in genomic RNAs were isolated from a patient suffering from idiopathic dilated cardiomyopathy, suggesting that such mutant viruses may be the forms responsible for persistent infection. These deletions lacked portions of 5' stem-loop I, which is an RNA secondary structure required for viral RNA replication. In this study, we assessed the consequences of the genomic deletions observed in vivo for coxsackievirus B3 biology. Using cell extracts from HeLa cells, as well as transfection of luciferase replicons in two types of cardiomyocytes, we demonstrated that coxsackievirus RNAs harboring 5' deletions ranging from 7 to 49 nucleotides in length can be translated nearly as efficiently as those of wild-type virus. However, these 5' deletions greatly reduced the synthesis of viral RNA in vitro, which was detected only for the 7- and 21-nucleotide deletions. Since 5' stem-loop I RNA forms a ribonucleoprotein complex with cellular and viral proteins involved in viral RNA replication, we investigated the binding of the host cell protein PCBP2, as well as viral protein 3CDpro, to deleted positive-strand RNAs corresponding to the 5' end. We found that binding of these proteins was conserved but that ribonucleoprotein complex formation required higher PCBP2 and 3CDpro concentrations, depending on the size of the deletion. Overall, this study confirmed the characteristics of persistent CVB3 infection observed in heart tissues and provided a possible explanation for the low level of RNA replication observed for the 5'-deleted viral genomes-a less stable ribonucleoprotein complex formed with proteins involved in viral RNA replication.IMPORTANCE Dilated cardiomyopathy is the most common indication for heart transplantation worldwide, and coxsackie B viruses are detected in about one-third of idiopathic dilated cardiomyopathies. Terminal deletions at the 5' end of the viral genome involving an RNA secondary structure required for RNA replication have been recently reported as a possible mechanism of virus persistence in the human heart. These mutations are likely to disrupt the correct folding of an RNA secondary structure required for viral RNA replication. In this report, we demonstrate that transfected RNAs harboring 5'-terminal sequence deletions are able to direct the synthesis of viral proteins, but not genomic RNAs, in human and murine cardiomyocytes. Moreover, we show that the binding of cellular and viral replication factors to viral RNA is conserved despite genomic deletions but that the impaired RNA synthesis associated with terminally deleted viruses could be due to destabilization of the ribonucleoprotein complexes formed.


Subject(s)
Enterovirus B, Human/physiology , RNA, Viral/genetics , RNA, Viral/metabolism , Ribonucleoproteins/metabolism , Sequence Deletion , Virus Replication , Animals , Cells, Cultured , DNA Mutational Analysis , Enterovirus B, Human/genetics , Humans , Mice, Inbred C57BL , Myocytes, Cardiac/virology , Protein Binding
20.
Am J Chin Med ; 45(2): 299-317, 2017.
Article in English | MEDLINE | ID: mdl-28231741

ABSTRACT

Enterovirus 71 (EV71) infection can cause airway symptoms, brainstem encephalitis, neurogenic shock, and neurogenic pulmonary edema with high morbidity and mortality. There is no proven therapeutic modality. Flos Farfarae is the dried flower bud of Tussilago farfara L. that has been used to manage airway illnesses for thousands of years. It has neuro-protective activity and has been used to manage neuro-inflammatory diseases. However, it is unknown whether Flos Farfarae has activity against EV71-induced neuropathy. The current study used both human foreskin fibroblast (CCFS-1/KMC) and human rhabdomyosarcoma (RD) cell lines to test the hypothesis that a hot water extract of Flos Farfarae could effectively inhibit EV71 infection. The authenticity of Flos Farfarae was confirmed by HPLC-UV fingerprint. Through plaque reduction assays and flow cytometry, Flos Farfarae was found to inhibit EV71 infection ([Formula: see text]). Inhibition of viral replication and protein expression were further confirmed by reverse transcription polymerase chain reaction (RT-PCR) and quantitative RT-PCR (qRT-PCR), and western blot, respectively. The estimated IC[Formula: see text]s were 106.3[Formula: see text][Formula: see text]g/mL in CCFS-1/KMC, and 15.0[Formula: see text][Formula: see text]g/mL in RD cells. Therefore, Flos Farfarae could be beneficial to inhibit EV71 infection by preventing viral replication and structural protein expression.


Subject(s)
Enterovirus A, Human/genetics , Enterovirus A, Human/physiology , Fibroblasts/virology , Gene Expression/drug effects , Neuroprotective Agents , Plant Extracts/pharmacology , Tussilago , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism , Virus Replication/drug effects , Cell Line, Tumor , Depression, Chemical , Dose-Response Relationship, Drug , Enterovirus A, Human/pathogenicity , Enterovirus Infections/drug therapy , Foreskin/cytology , Hep G2 Cells , Humans , Male , Plant Extracts/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL