Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.040
Filter
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125883

ABSTRACT

Bardet-Biedl syndrome (BBS) is a rare recessive multisystem disorder characterized by retinitis pigmentosa, obesity, postaxial polydactyly, cognitive deficits, and genitourinary defects. BBS is clinically variable and genetically heterogeneous, with 26 genes identified to contribute to the disorder when mutated, the majority encoding proteins playing role in primary cilium biogenesis, intraflagellar transport, and ciliary trafficking. Here, we report on an 18-year-old boy with features including severe photophobia and central vision loss since childhood, hexadactyly of the right foot and a supernumerary nipple, which were suggestive of BBS. Genetic analyses using targeted resequencing and exome sequencing failed to provide a conclusive genetic diagnosis. Whole-genome sequencing (WGS) allowed us to identify compound heterozygosity for a missense variant and a large intragenic deletion encompassing exon 12 in BBS9 as underlying the condition. We assessed the functional impact of the identified variants and demonstrated that they impair BBS9 function, with significant consequences for primary cilium formation and morphology. Overall, this study further highlights the usefulness of WGS in the diagnostic workflow of rare diseases to reach a definitive diagnosis. This report also remarks on a requirement for functional validation analyses to more effectively classify variants that are identified in the frame of the diagnostic workflow.


Subject(s)
Bardet-Biedl Syndrome , Whole Genome Sequencing , Bardet-Biedl Syndrome/genetics , Bardet-Biedl Syndrome/diagnosis , Humans , Male , Adolescent , Cilia/pathology , Cilia/genetics , Cytoskeletal Proteins
2.
Am J Epidemiol ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117572

ABSTRACT

The mechanisms facilitating the relationship between low income and COVID-19 severity have not been partitioned in the presence of SARS-CoV-2 variants of concern (VOC). To address this, we used causal mediation analysis to quantify the possible mediating role infection with VOC has on the relationship between neighbourhood income (exposure) and hospitalisation due to COVID-19 among cases (outcome). A population-based cohort of 65,629 individuals residing in British Columbia, Canada, was divided into three periods of VOC co-circulation in the 2021 calendar year whereby each period included co-circulation of an emerging and an established VOC. Each cohort was subjected to g-formula mediation techniques to decompose the relationship between exposure and outcome into total, direct and indirect effects. In the mediation analysis, the total effects indicated that low income was associated with increased odds of hospitalisation across all periods. Further decomposition of the effects revealed that income is directly and indirectly associated with hospitalisation. The resulting indirect effect through VOC accounted for approximately between 6 and 13% of the total effect of income on hospitalisation. This study underscores, conditional on the analysis, the importance of addressing underlying inequities to mitigate the disproportionate impact on historically marginalised communities by adopting an equity lens as central to pandemic preparedness and response from the onset.

3.
Gene ; : 148827, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39122231

ABSTRACT

BACKGROUND: Alström syndrome (ALMS), a rare recessively inherited ciliopathy caused by mutations in ALMS1, is characterized by retinal dystrophy, childhood obesity, sensorineural hearing loss, and type 2 diabetes mellitus. The majority of pathogenic variants in ALMS1 are nonsense and frameshift mutations, which would lead to premature protein truncation, whereas copy number variants are seldom reported. METHODS: Herein, we present a 10-year-old Chinese girl with ALMS. The potential causative genetic variant was confirmed through whole genome sequencing, quantitative real-time PCR analysis, and Sanger sequencing. Additionally, breakpoint analysis was performed to determine the exact breakpoint site of the large deletion and elucidate its probable formation mechanism. RESULTS: The patient had a cor triatriatum sinister (CTS) structure. Genetic analysis identified novel compound heterozygous variants in the patient, consisting of a frameshift variant c.4414_4415delGT (p.V1472Nfs*26) in ALMS1 and a novel large deletion at chr2:73,612,355-73,626,339, which encompasses exon 1 of the ALMS1 gene. Moreover, breakpoint analysis revealed that the large deletion probably formed through the microhomology-mediated end joining (MMEJ) mechanism due to the 6-bp microhomologies (TCCTTC) observed at both ends of the breakpoints. CONCLUSIONS: In this study, novel compound heterozygous variants in the ALMS1 gene were identified in an ALMS patient with a CTS structure. The molecular confirmation of these variants expands the mutational spectrum of ALMS1, while the manifestation of ALMS in the patient provides additional clinical insights into this syndrome.

4.
Sci Rep ; 14(1): 18550, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122761

ABSTRACT

Conversion of sputum from positive to negative is one of the indicators to evaluate the efficacy of anti-tuberculosis treatment (ATT). We investigate the factors associated with delayed sputum conversion after 2 or 5 months of ATT from the perspectives of bacteriology and genomics. A retrospective study of sputum conversion in sputum positive 1782 pulmonary tuberculosis (PTB) was conducted from 2021 to 2022 in Beijing, China. We also designed a case-matched study including 24 pairs of delayed-sputum-conversion patients (DSCPs) and timely-sputum-conversion patients (TSCPs), and collect clinical isolates from DSCPs before and after ATT and initial isolates of TSCPs who successfully achieved sputum conversion to negative after 2 months of ATT. A total of 75 strains were conducted drug sensitivity testing (DST) of 13 anti-TB drugs and whole-genome sequencing (WGS) to analyze the risk factors of delayed conversion and the dynamics changes of drug resistance and genomics of Mycobacterium tuberculosis (MTB) during ATT. We found TSCPs have better treatment outcomes and whose initial isolates show lower levels of drug resistance. Clinical isolates of DSCPs showed dynamically changing of resistance phenotypes and intra-host heterogeneity. Single nucleotide polymorphism (SNP) profiles showed large differences between groups. The study provided insight into the bacteriological and genomic variation of delayed sputum conversion. It would be helpful for early indication of sputum conversion and guidance on ATT.


Subject(s)
Antitubercular Agents , Genomics , Mycobacterium tuberculosis , Sputum , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/diagnosis , Sputum/microbiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Male , Adult , Female , Retrospective Studies , Middle Aged , Genomics/methods , Polymorphism, Single Nucleotide , Microbial Sensitivity Tests , Whole Genome Sequencing , Treatment Outcome , Drug Resistance, Bacterial/genetics
5.
Sci China Life Sci ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39126614

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with high genetic heritability but heterogeneity. Fully understanding its genetics requires whole-genome sequencing (WGS), but the ASD studies utilizing WGS data in Chinese population are limited. In this study, we present a WGS study for 334 individuals, including 112 ASD patients and their non-ASD parents. We identified 146 de novo variants in coding regions in 85 cases and 60 inherited variants in coding regions. By integrating these variants with an association model, we identified 33 potential risk genes (P<0.001) enriched in neuron and regulation related biological process. Besides the well-known ASD genes (SCN2A, NF1, SHANK3, CHD8 etc.), several high confidence genes were highlighted by a series of functional analyses, including CTNND1, DGKZ, LRP1, DDN, ZNF483, NR4A2, SMAD6, INTS1, and MRPL12, with more supported evidence from GO enrichment, expression and network analysis. We also integrated RNA-seq data to analyze the effect of the variants on the gene expression and found 12 genes in the individuals with the related variants had relatively biased expression. We further presented the clinical phenotypes of the proband carrying the risk genes in both our samples and Caucasian samples to show the effect of the risk genes on phenotype. Regarding variants in non-coding regions, a total of 74 de novo variants and 30 inherited variants were predicted as pathogenic with high confidence, which were mapped to specific genes or regulatory features. The number of de novo variants found in patient was significantly associated with the parents' ages at the birth of the child, and gender with trend. We also identified small de novo structural variants in ASD trios. The results in this study provided important evidence for understanding the genetic mechanism of ASD.

6.
Methods Mol Biol ; 2838: 211-219, 2024.
Article in English | MEDLINE | ID: mdl-39126635

ABSTRACT

Next-generation sequencing (NGS) technologies are continuously being developed and are becoming a more cost-effective tool for the characterization of viral genomes. Whole genome sequencing of segmented viruses, such as epizootic hemorrhagic disease virus (EHDV), provides insights into the molecular epidemiology as well as such viral evolutionary mechanisms as genetic reassortment. Here, we present a detailed method for obtaining full genome sequence data for EHDV using Illumina technology. The protocol includes details from RNA extraction and purification, the synthesis of cDNA, sequencing library preparation, to genome assembly.


Subject(s)
Genome, Viral , Hemorrhagic Disease Virus, Epizootic , High-Throughput Nucleotide Sequencing , Whole Genome Sequencing , Hemorrhagic Disease Virus, Epizootic/genetics , Hemorrhagic Disease Virus, Epizootic/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Whole Genome Sequencing/methods , Animals , RNA, Viral/genetics , Gene Library , Reoviridae Infections/virology , Reoviridae Infections/veterinary
7.
Animal ; 18(9): 101258, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39126800

ABSTRACT

The uncertainty resulting from missing genotypes in low-coverage whole-genome sequencing (LCWGS) data complicates genotype imputation. The aim of this study is to find out an optimal strategy for accurately imputing LCWGS data and assess its effectiveness for genomic prediction (GP) and genome-wide association study (GWAS) on economically important traits of Large White pigs. The LCWGS data of 1 423 Large White pigs were imputed using three different strategies: (1) using the high-coverage whole-genome sequencing (HCWGS) of 30 key progenitors as the reference panel (Ref_LG); (2) mixing HCWGS of key progenitors with LCWGS (Mix_HLG) and (3) self-imputation in LCWGS (Within_LG). Additionally, to compare the imputation effects of LCWGS, we also imputed SNP chip data of 1 423 Large White pigs to the whole-genome sequencing level using the reference panel consisting of key progenitors (Ref_SNP). To evaluate effects of the imputed sequencing data, we compared the accuracies of GP and statistical power of GWAS for four reproductive traits based on the chip data, sequencing data imputed from chip data and LCWGS data using an optimal strategy. The average imputation accuracies of the Within_LG, Ref_LG and Mix_HLG were 0.9893, 0.9899 and 0.9875, respectively, which were higher than that of the Ref_SNP (0.8522). Using the imputed sequencing data from LCWGS with the Ref_LG imputation strategy, the accuracies of GP for four traits improved by approximately 0.31-1.04% compared to the chip data, and by 0.7-1.05% compared to the imputed sequencing data from chip data. Furthermore, by using the sequence data imputed from LCWGS with the Ref_LG, 18 candidate genes were identified to be associated with the four reproductive traits of interest in Large White pigs: total number of piglets born - EPC2, MBD5, ORC4 and ACVR2A; number of piglets born healthy - IKBKE; total litter weight of piglets born alive - HSPA13 and CPA1; gestation length - GTF2H5, ITGAV, NFE2L2, CALCRL, ITGA4, STAT1, HOXD10, MSTN, COL5A2 and STAT4. With the exception of EPC2, ORC4, ACVR2A and MSTN, others represent novel candidates. Our findings can provide a reference for the application of LCWGS data in livestock and poultry.

8.
DNA Res ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39127874

ABSTRACT

In Mycobacterium tuberculosis (MTB) control, whole genome sequencing-based molecular drug susceptibility testing (molDST-WGS) has emerged as a pivotal tool. However, the current reliance on a single-strain reference limits molDST-WGS's true potential. To address this, we introduce a new pan-lineage reference genome, "MtbRf". We assembled "unmapped" reads from 3,614 MTB genomes (751 L1; 881 L2; 1,700 L3; and 282 L4) into 35 shared, annotated contigs (54 CDSs). We constructed MtbRf through: 1) searching for contig homologs among genome database that precipitating results uniquely within Mycobacteria genus; 2) comparing genomes with H37Rv ("lift-over") to define 18 insertions; and 3) filling gaps in H37Rv with insertions. MtbRf adds 1.18% sequences to H37rv, salvaging >60% of previously unmapped reads. Transcriptomics confirmed gene-expression of new CDSs. The new variants provided a moderate DST predictive value (AUROC 0.60-0.75). MtbRf thus unveils previously hidden genomic information, and lays the foundation for lineage-specific molDST-WGS.

9.
Foodborne Pathog Dis ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110442

ABSTRACT

Between 2017 and 2019, pulsed-field gel electrophoresis was replaced by whole genome sequencing (WGS) for identifying enteric disease clusters in Canada. The number and characteristics of all clusters of Listeria monocytogenes, Salmonella, Shiga toxin-producing Escherichia coli (STEC), and Shigella spp. between 2015 and 2021 were analyzed. Following the transition to WGS, an increase in the number of Salmonella, STEC, and Shigella clusters was noted, whereas the number of clusters of L. monocytogenes decreased. Unlike previous subtyping methods, WGS provided increased resolution to identify discrete clusters of Salmonella Enteritidis. This led to the identification of a number of outbreaks linked to frozen raw breaded chicken products and ultimately a change in food safety policy to reduce the number of illnesses associated with these products. Other pathogens did not experience a similar increase in the number of outbreaks detected. Although WGS did provide increased confidence in the genetic relatedness of cases and isolates, challenges remained in collecting epidemiological data to link these illnesses to a common source.

10.
mSystems ; : e0016024, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105591

ABSTRACT

As antimicrobial resistance (AMR) surveillance shifts to genomics, ensuring the quality of whole-genome sequencing (WGS) data produced across laboratories is critical. Participation in genomic proficiency tests (GPTs) not only increases individual laboratories' WGS capacity but also provides a unique opportunity to improve species-specific thresholds for WGS quality control (QC) by repeated resequencing of distinct isolates. Here, we present the results of the EU Reference Laboratory for Antimicrobial Resistance (EURL-AR) network GPTs of 2021 and 2022, which included 25 EU national reference laboratories (NLRs). A total of 392 genomes from 12 AMR-bacteria were evaluated based on WGS QC metrics. Two percent (n = 9) of the data were excluded, due to contamination, and 11% (n = 41) of the remaining genomes were identified as outliers in at least one QC metric and excluded from computation of the adjusted QC thresholds (AQT). Two QC metric correlation groups were identified through linear regression. Eight percent (n = 28) of the submitted genomes, from 11 laboratories, failed one or more of the AQTs. However, only three laboratories (12%) were identified as underperformers, failing across AQTs for uncorrelated QC metrics in at least two genomes. Finally, new species-specific thresholds for "N50" and "number of contigs > 200 bp" are presented for guidance in routine laboratory QC. The continued participation of NRLs in GPTs will reveal WGS workflow flaws and improve AMR surveillance data. GPT data will continue to contribute to the development of reliable species-specific thresholds for routine WGS QC, standardizing sequencing data QC and ensure inter- and intranational laboratory comparability.IMPORTANCEIllumina next-generation sequencing is an integral part of antimicrobial resistance (AMR) surveillance and the most widely used whole-genome sequencing (WGS) platform. The high-throughput, relative low-cost, high discriminatory power, and rapid turnaround time of WGS compared to classical biochemical methods means the technology will likely remain a fundamental tool in AMR surveillance and public health. In this study, we present the current level of WGS capacity among national reference laboratories in the EU Reference Laboratory for AMR network, summarizing applied methodology and statistically evaluating the quality of the obtained sequence data. These findings provide the basis for setting new and revised thresholds for quality metrics used in routine WGS, which have previously been arbitrarily defined. In addition, underperforming participants are identified and encouraged to evaluate their workflows to produce reliable results.

11.
Mycopathologia ; 189(5): 72, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096450

ABSTRACT

Fungal infections pose an increasing threat to public health. New pathogens and changing epidemiology are a pronounced risk for nosocomial outbreaks. To investigate clonal transmission between patients and trace the source, genotyping is required. In the last decades, various typing assays have been developed and applied to different medically important fungal species. While these different typing methods will be briefly discussed, this review will focus on the development and application of short tandem repeat (STR) genotyping. This method relies on the amplification and comparison of highly variable STR markers between isolates. For most common fungal pathogens, STR schemes were developed and compared to other methods, like multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) and whole genome sequencing (WGS) single nucleotide polymorphism (SNP) analysis. The pros and cons of STR typing as compared to the other methods are discussed, as well as the requirements for the development of a solid STR typing assay. The resolution of STR typing, in general, is higher than MLST and AFLP, with WGS SNP analysis being the gold standard when it comes to resolution. Although most modern laboratories are capable to perform STR typing, little progress has been made to standardize typing schemes. Allelic ladders, as developed for Aspergillus fumigatus, facilitate the comparison of STR results between laboratories and develop global typing databases. Overall, STR genotyping is an extremely powerful tool, often complimentary to whole genome sequencing. Crucial details for STR assay development, its applications and merit are discussed in this review.


Subject(s)
Fungi , Genotyping Techniques , Microsatellite Repeats , Microsatellite Repeats/genetics , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Genotyping Techniques/methods , Humans , Mycological Typing Techniques/methods , Genotype , Mycoses/microbiology , Polymorphism, Single Nucleotide
12.
Environ Sci Technol ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101763

ABSTRACT

Escherichia coli, both commensal and pathogenic, can colonize plants and persist in various environments. It indicates fecal contamination in water and food and serves as a marker of antimicrobial resistance. In this context, 61 extended-spectrum ß-lactamase (ESBL)-producing E. coli from irrigation water and fresh produce from previous studies were characterized using whole genome sequencing (Illumina MiSeq). The Center for Genomic Epidemiology and Galaxy platforms were used to determine antimicrobial resistance genes, virulence genes, plasmid typing, mobile genetic elements, multilocus sequence typing (MLST), and pathogenicity prediction. In total, 19 known MLST groups were detected among the 61 isolates. Phylogroup B1 (ST58) and Phylogroup E (ST9583) were the most common sequence types. The six ST10 (serotype O101:H9) isolates carried the most resistance genes, spanning eight antibiotic classes. Overall, 95.1% of the isolates carried resistance genes from three or more classes. The blaCTX-M-1, blaCTX-M-14, and blaCTX-M-15 ESBL genes were associated with mobile genetic elements, and all of the E. coli isolates showed a >90% predicted probability of being a human pathogen. This study provided novel genomic information on environmental multidrug-resistant ESBL-producing E. coli from fresh produce and irrigation water, highlighting the environment as a reservoir for multidrug-resistant strains and emphasizing the need for ongoing pathogen surveillance within a One Health context.

13.
Microb Drug Resist ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093870

ABSTRACT

Carbapenem-resistant Escherichia coli pose a significant threat to global public health due to the dearth of available treatment options, resulting in infections with high mortality and morbidity. The study aimed to investigate the mechanism of carbapenem resistance in a carbapenem non-susceptible E. coli isolate recovered from an urinary tract infection patient admitted to a tertiary referral hospital, through whole-genome sequencing using Illumina NovaSeq 6000 platform. Carbapenemase production followed by antibiotic susceptibility testing were performed following Clinical Laboratory Standard Institute guidelines. Polymerase chain reaction targeting carbapenemase genes was performed followed by an investigation of horizontal transferability. The Center for Genomic Epidemiology database was used to analyze the sequenced data. ST2519 E. coli BJD_EC1808 with a genome size of 5.8 Mb harbored Col440I plasmid and a chromosomally located blaOXA-116 gene with an IS18 element upstream, along with multiple antibiotic resistance genes conferring clinical resistance toward beta-lactams, aminoglycosides, amphenicols, sulfonamides, tetracyclines, trimethoprim, rifampin, macrolide, and streptogramin antibiotics and antiseptics. E. coli ST2519 harboring blaOXA-116 associated with a mobile genetic element exhibiting carbapenem resistance is a public health threat due to its limiting effect on the therapeutic usage of carbapenem and their dissemination into carbapenem non-susceptible phenotypes will contribute to carbapenem resistance burden and, therefore, warrants urgent monitoring and clinical intervention.

14.
Cell Rep Med ; : 101664, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39089259

ABSTRACT

In this study, we develop a stacked ensemble model that utilizes cell-free DNA (cfDNA) fragmentomics for the early detection of esophageal squamous cell carcinoma (ESCC). This model incorporates four distinct fragmentomics features derived from whole-genome sequencing (WGS) and advanced machine learning algorithms for robust analysis. It is validated across both an independent validation cohort and an external cohort to ensure its generalizability and effectiveness. Notably, the model maintains its robustness in low-coverage sequencing environments, demonstrating its potentials in clinical settings with limited sequencing resources. With its remarkable sensitivity and specificity, this approach promises to significantly improve the early diagnosis and management of ESCC. This study represents a substantial step forward in the application of cfDNA fragmentomics in cancer diagnostics, emphasizing the need for further research to fully establish its clinical efficacy.

15.
Clin Genet ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39091142

ABSTRACT

Overgrowth syndromes (OGS) comprise a heterogeneous group of disorders whose main characteristic is that the weight, height or the head circumference are above the 97th centile or 2-3 standard deviations above the mean for age, gender, and ethnic group. Several copy-number variants (CNVs) have been associated with the development of OGS, such as the 5q35 microdeletion or the duplication of the 15q26.1-qter, among many others. In this study, we have applied 850K SNP-arrays to 112 patients and relatives with OGS from the Spanish OverGrowth Registry Initiative. We have identified CNVs associated with the disorder in nine individuals (8%). Subsequently, whole genome sequencing (WGS) analysis was performed in these nine samples in order to better understand these genomic imbalances. All the CNVs were detected by both techniques, settling that WGS is a useful tool for CNV detection. We have found six patients with genomic abnormalities associated with previously well-established disorders and three patients with CNVs of unknown significance, which may be related to OGS, based on scientific literature. In this report, we describe these findings and comment on genes associated with OGS that are located within the CNV regions.

16.
J Appl Microbiol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096160

ABSTRACT

BACKGROUND: Adequately and accurately identifying carbapenemase-producing Enterobacterales (CPE) is vital for selecting appropriate antimicrobial therapy and implementing effective infection control measures. This study aims to optimize the phenotypic detection method of carbapenemase for routine diagnostics in clinical microbiology laboratories. METHODS: Carbapenemase genes in 2665 non-duplicate carbapenem-resistant Enterobacterales (CRE) clinical strains collected from various regions of China were confirmed through whole-genome sequencing (WGS). The carbapenemase inhibition test (CIT) was conducted and interpreted using different methods and breakpoints, then compared with the NG-Test CARBA 5 for carbapenemase detection. RESULTS: The diagnostic performance of the CIT method was optimal when the carbapenemase types were determined by comparing the inhibition zone diameters of the imipenem disc with 3-aminophenylboronic acid (APB) plus ethylenediaminetetraacetic acid (EDTA) to those of the imipenem disc with either APB or EDTA alone, with a breakpoint of 4 mm. The overall sensitivities of the current CIT, the modified CIT and NG-Test CARBA 5 were 91.4%, 94.9% and 99.9%, respectively. For detecting isolates co-producing Klebsiella pneumoniae carbapenemase (KPC) and metallo-ß-lactamases (MBLs), the modified CIT method had higher sensitivity than the current method (70.0% vs. 53.3%), though this difference was not statistically significant (p = 0.063). The NG-Test CARBA 5 showed excellent performance for multi-carbapenemases diagnosis, with sensitivity and specificity of 97.1% and 100%, respectively. CONCLUSIONS: Optimizing and standardizing the CIT method for clinical use is necessary. It has certain advantages in diagnosing multi-carbapenemase and rare carbapenemase production. However, for identifying common carbapenemase types, the NG-Test CARBA 5 demonstrated superior performance.

18.
R Soc Open Sci ; 11(6): 232025, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39100177

ABSTRACT

Shigella causes shigellosis that requires antibiotic treatment in severe cases. Sublethal antibiotic concentrations can promote resistance, but their effect on antibiotic-sensitive bacteria before resistance development is unclear. This study investigated the effects of sublethal norfloxacin (NOR) challenges on a NOR-sensitive strain, Shigella sonnei UKMCC1015. Firstly, the whole genome of S. sonnei UKMCC1015 was assembled, and 45 antimicrobial resistance (AMR) genes were identified. Interestingly, transcriptomic analysis showed that low NOR levels do not change either the expression of the AMR genes or NOR targets such as gyrA. Instead, multiple ribosomal protein genes were downregulated, which could be attributed to decreased ribosomal protein promoter activity, modulated by elevated guanosine pentaphosphate and tetraphosphate (ppGpp) levels. This alarmone is involved in the bacterial stringent response during environmental stress, and it is mainly produced from the ppGpp synthetase (relA). Additionally, we observed that a relA overexpression (prolonged period of elevated ppGpp levels) may negatively affect the NOR tolerance of the bacteria. In conclusion, this study revealed that a NOR-sensitive strain responds differently to sublethal NOR than commonly reported in resistant strains.

19.
Antonie Van Leeuwenhoek ; 117(1): 111, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103503

ABSTRACT

The strain designated NCCP-602T was isolated from tannery effluent, and displayed aerobic, gram-positive, rod-shaped cells that were characterized by oxidase negative, catalase positive, and non-motile features. The most favourable growth conditions were observed at a temperature of 30°C, pH 7.0, and NaCl concentration of 1% (w/v). It tolerated heavy metals at high concentrations of chromium (3600 ppm), copper (3300 ppm), cadmium (3000 ppm), arsenic (1200 ppm) and lead (1500 ppm). The results of phylogenetic analysis, derived from sequences of the 16S rRNA gene, indicated the position of strain NCCP-602T within genus Brevibacterium and showed that it was closely related to Brevibacterium ammoniilyticum JCM 17537T. Strain NCCP-602 T formed a robust branch that was clearly separate from closely related taxa. A comparison of 16S rRNA gene sequence similarity and dDDH values between the closely related type strains and strain NCCP-602T provided additional evidence supporting the classification of strain NCCP-602T as a distinct novel genospecies. The polar lipid profile included diphosphatidylglycerol, glycolipid, phospholipids and amino lipids. MK-7 and MK-8 were found as the respiratory quinones, while anteiso-C15:0, iso-C15:0, iso-C16:0, iso-C17:0, and anteiso-C17:0 were identified as the predominant cellular fatty acids (> 10%). Considering the convergence of phylogenetic, phenotypic, chemotaxonomic, and genotypic traits, it is suggested that strain NCCP-602 T be classified as a distinct species Brevibacterium metallidurans sp. nov. within genus Brevibacterium with type strain NCCP-602T (JCM 18882T = CGMCC1.62055T).


Subject(s)
Brevibacterium , Fatty Acids , Metals, Heavy , Phylogeny , RNA, Ribosomal, 16S , Brevibacterium/genetics , Brevibacterium/classification , Brevibacterium/isolation & purification , Brevibacterium/metabolism , Brevibacterium/physiology , RNA, Ribosomal, 16S/genetics , Metals, Heavy/metabolism , Pakistan , Fatty Acids/analysis , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Sequence Analysis, DNA , Phospholipids/analysis , Tanning , Genomics
20.
Diabetologia ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103720

ABSTRACT

AIMS/HYPOTHESIS: Diabetic kidney disease (DKD) is a severe diabetic complication that affects one third of individuals with type 1 diabetes. Although several genes and common variants have been shown to be associated with DKD, much of the predicted inheritance remains unexplained. Here, we performed next-generation sequencing to assess whether low-frequency variants, extending to a minor allele frequency (MAF) ≤10% (single or aggregated) contribute to the missing heritability in DKD. METHODS: We performed whole-exome sequencing (WES) of 498 individuals and whole-genome sequencing (WGS) of 599 individuals with type 1 diabetes. After quality control, next-generation sequencing data were available for a total of 1064 individuals, of whom 541 had developed either severe albuminuria or end-stage kidney disease, and 523 had retained normal albumin excretion despite a long duration of type 1 diabetes. Single-variant and gene-aggregate tests for protein-altering variants (PAV) and protein-truncating variants (PTV) were performed separately for WES and WGS data and combined in a meta-analysis. We also performed genome-wide aggregate analyses on genomic windows (sliding window), promoters and enhancers using the WGS dataset. RESULTS: In the single-variant meta-analysis, no variant reached genome-wide significance, but a suggestively associated common THAP7 rs369250 variant (p=1.50 × 10-5, MAF=49%) was replicated in the FinnGen general population genome-wide association study (GWAS) data for chronic kidney disease and DKD phenotypes. The gene-aggregate meta-analysis provided suggestive evidence (p<4.0 × 10-4) at four genes for DKD, of which NAT16 (MAFPAV≤10%) and LTA (also known as TNFß, MAFPAV≤5%) are replicated in the FinnGen general population GWAS data. The LTA rs2229092 C allele was associated with significantly lower TNFR1, TNFR2 and TNFR3 serum levels in a subset of FinnDiane participants. Of the intergenic regions suggestively associated with DKD, the enhancer on chromosome 18q12.3 (p=3.94 × 10-5, MAFvariants≤5%) showed interaction with the METTL4 gene; the lead variant was replicated, and predicted to alter binding of the MafB transcription factor. CONCLUSIONS/INTERPRETATION: Our sequencing-based meta-analysis revealed multiple genes, variants and regulatory regions that were suggestively associated with DKD. However, as no variant or gene reached genome-wide significance, further studies are needed to validate the findings.

SELECTION OF CITATIONS
SEARCH DETAIL