Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38611985

ABSTRACT

Lightweight structures with a high stiffness-to-weight ratio always play a significant role in weight reduction in the aerospace sector. The exploration of non-conventional structures for aerospace applications has been a point of interest over the past few decades. The adaptation of lattice structure and additive manufacturing in the design can lead to improvement in mechanical properties and significant weight reduction. The practicality of the non-conventional wing structure with lattices infilled as a replacement for the conventional spar-ribs wing is determined through finite element analysis. The optimal lattice-infilled wing structures are obtained via an automated iterative method using the commercial implicit modeling tool nTop and an ANSYS workbench. Among five different types of optimized lattice-infilled structures, the Kelvin lattice structure is considered the best choice for current applications, with comparatively minimal wing-tip deflection, weight, and stress. Furthermore, the stress distribution dependency on the lattice-unit cell type and arrangement is also established. Conclusively, the lattice-infilled structures have shown an alternative innovative design approach for lightweight wing structures.

2.
Sci Rep ; 14(1): 6382, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38493231

ABSTRACT

The clavicle has various anatomic shapes unique to each individual. Additionally, with the increase in high-energy traumas such as sports injuries and traffic accidents, the patterns of fractures become complex and complicated. Thus, there is a need for a variety of shapes of locking compression plates (LCP) to accommodate different types of fractures and facilitate quicker rehabilitation. The aim of this study is to present different types of LCP that secure fracture fragments and distribute stress evenly, in comparison to typical anatomical LCPs, for reinforcing clavicle fractures. Three models were compared in this study: the typical shape, the center hole removed shape, and the double-curved wing shape. The DICOM (Digital Imaging and Communications in Medicine) file obtained from the computed tomography scan of the patient's clavicle was used to extract the three-dimensional (3D) clavicle structure. Finite element analysis (FEA) simulation was employed to analyze the structural changes of the LCP under external forces. A reinforced jig was used to apply the same type of external force to each LCP, and an experiment was conducted to analyze the mechanical impact of the LCP's structural characteristics. When comparing the stress values at the fracture zone point, resulting from the FEA simulation with applied bending forces, it was calculated that the stress dispersion effect was approximately ten times greater when transitioning from a typical LCP shape to a double-curved partial wing structure. Moreover, the ultimate stress increased 3.33 times, from 241.322 to 804.057 N, as the LCP design changed under cantilever bending conditions. This double-curved wing LCP design reduces stress concentration at the fracture site and minimizes stress in the fracture area when subjected to cantilever bending forces. Consequently, this newly designed LCP has the potential to decrease complications related to the plate and accelerate rehabilitation protocols.


Subject(s)
Clavicle , Fracture Fixation, Internal , Fractures, Bone , Humans , Biomechanical Phenomena , Bone Plates , Clavicle/diagnostic imaging , Clavicle/injuries , Fracture Fixation, Internal/methods , Fractures, Bone/diagnostic imaging , Fractures, Bone/surgery , Tomography, X-Ray Computed
3.
Insect Sci ; 30(5): 1507-1517, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36434816

ABSTRACT

The ability to fly is crucial for migratory insects. Consequently, the accumulation of damage on the wings over time can affect survival, especially for species that travel long distances. We examined the frequency of irreversible wing damage in the migratory butterfly Vanessa cardui to explore the effect of wing structure on wing damage frequency, as well as the mechanisms that might mitigate wing damage. An exceptionally high migration rate driven by high precipitation levels in their larval habitats in the winter of 2018-2019 provided us with an excellent opportunity to collect data on the frequency of naturally occurring wing damage associated with long-distance flights. Digital images of 135 individuals of V. cardui were collected and analyzed in Germany. The results show that the hindwings experienced a greater frequency of damage than the forewings. Moreover, forewings experienced more severe damage on the lateral margin, whereas hindwings experienced more damage on the trailing margin. The frequency of wing margin damage was higher in the painted lady butterfly than in the migrating monarch butterfly and in the butterfly Pontia occidentalis following artificially induced wing collisions. The results of this study could be used in future comparative studies of patterns of wing damage in butterflies and other insects. Additional studies are needed to clarify whether the strategies for coping with wing damage differ between migratory and nonmigratory species.

4.
Polymers (Basel) ; 14(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35890699

ABSTRACT

Additive manufacturing, through the process of thermoplastic extrusion of filament, allows the manufacture of complex composite sandwich structures in a short time with low costs. This paper presents the design and fabrication by Fused Filament Fabrication (FFF) of composite sandwich structures with short fibers, having three core types C, Z, and H, followed by mechanical performance testing of the structures for compression and bending in three points. Flatwise compression tests and three-point bending have clearly indicated the superior performance of H-core sandwich structures due to dense core structures. The main modes of failure of composite sandwich structures were analyzed microscopically, highlighting core shear buckling in compression tests and face indentation in three-point bending tests. The strength-mass ratio allowed the identification of the structures with the best performances considering the desire to reduce the mass, so: the H-core sandwich structures showed the best results in compression tests and the C-core sandwich structures in three-point bending tests. The feasibility of the FFF process and the three-point bending test of composite wing sections, which will be used on an unmanned aircraft, have also been demonstrated. The finite element analysis showed the distribution of equivalent stresses and reaction forces for the composite wing sections tested for bending, proving to validate the experimental results.

5.
Insects ; 11(8)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32718051

ABSTRACT

The shape and function of insect wings tremendously vary between insect species. This review is engaged in how wing design determines the aerodynamic mechanisms with which wings produce an air momentum for body weight support and flight control. We work out the tradeoffs associated with aerodynamic key parameters such as vortex development and lift production, and link the various components of wing structure to flight power requirements and propulsion efficiency. A comparison between rectangular, ideal-shaped and natural-shaped wings shows the benefits and detriments of various wing shapes for gliding and flapping flight. The review expands on the function of three-dimensional wing structure, on the specific role of wing corrugation for vortex trapping and lift enhancement, and on the aerodynamic significance of wing flexibility for flight and body posture control. The presented comparison is mainly concerned with wings of flies because these animals serve as model systems for both sensorimotor integration and aerial propulsion in several areas of biology and engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...