Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.851
Filter
1.
Curr Biol ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39260363

ABSTRACT

How multiple growth programs coordinate during development is a fundamental question in biology. During plant stem development, radial growth is continuously adjusted in response to longitudinal-growth-derived weight increase to guarantee stability.1,2,3 Here, we demonstrate that weight-stimulated stem radial growth depends on the auxin efflux carrier PIN3, which, upon weight increase, expands its cellular localization from the lower to the lateral sides of xylem parenchyma, phloem, procambium, and starch sheath cells, imposing a radial auxin flux that results in radial growth. Using the protein synthesis inhibitor cycloheximide (CHX) or the fluorescent endocytic tracer FM4-64, we reveal that this expansion of the PIN3 cellular localization domain occurs because weight increase breaks the balance between PIN3 biosynthesis and removal, favoring PIN3 biosynthesis. Experimentation using brefeldin A (BFA) treatments or arg1 and arl2 mutants further supports this conclusion. Analyses of CRISPR-Cas9 lines for Populus PIN3 orthologs reveals that PIN3 dependence of weight-induced radial growth is conserved at least in these woody species. Altogether, our work sheds new light on how longitudinal and radial growth coordinate during stem development.

2.
Adv Sci (Weinh) ; : e2403215, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39263934

ABSTRACT

Although bioluminescence is documented both anecdotally and experimentally, the parameters involved in the production of fungal bioluminescence during wood colonization have not been identified to date. Here, for the first time, this work develops a methodology to produce a hybrid living material by manipulating wood colonization through merging the living fungus Desarmillaria tabescens with nonliving balsa (Ochroma pyramidale) wood to achieve and control the autonomous emission of bioluminescence. The hybrid material with the highest bioluminescence is produced by soaking the wood blocks before co-cultivating them with the fungus for 3 months. Regardless of the incubation period, the strongest bioluminescence is evident from balsa wood blocks with a moisture content of 700-1200%, highlighting the fundamental role of moisture content for bioluminescence production. Further characterization reveals that D. tabescens preferentially degraded hemicelluloses and lignin in balsa wood. Fourier-transform infrared spectroscopy reveals a decrease in lignin, while X-ray diffraction analysis confirms that the cellulose crystalline structure is not altered during the colonization process. This information will enable the design of ad-hoc synthetic materials that use fungi as tools to maximize bioluminescence production, paving the way for an innovative hybrid material that could find application in the sustainable production of light.

3.
Am J Bot ; : e16400, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238126

ABSTRACT

PREMISE: Understanding the responses of functional traits in tree species to climate variability is essential for predicting the future of tropical montane cloud forest (TMCF) tree species, especially in Andean montane environments where fog pockets act as moisture traps. METHODS: We studied the distribution of Magnolia gentryi, measured its spatial arrangement, identified local hotspots, and evaluated the extent to which climate-related factors are associated with its distribution. We then analyzed the variation in 13 functional traits of M. gentryi and the relationship with climate. RESULTS: Andean TMCF climatic factors constrain M. gentryi spatial distribution with significant patches or gaps that are associated with high precipitation and mean minimum temperature. The functional traits of M. gentryi are limited by the Andean TMCF climatic factors, resulting in reduced within-species variation in traits associated with water deficit. CONCLUSIONS: The association between functional traits and climate oscillation is crucial for understanding the growth conditions of relict-endemic species and is essential for conservation efforts. Forest trait diversity and species composition change because of fluctuations in hydraulic safety-efficiency gradients.

4.
Article in English | MEDLINE | ID: mdl-39240062

ABSTRACT

Nineteen isolates representing a candidate for a novel yeast species belonging to the genus Spencermartinsiella were recovered from rotting wood samples collected at different sites in Atlantic Rainforest and Amazonian Forest ecosystems in Brazil. Similarity search of the nucleotide sequence of the intergenic spacer (ITS)-5.8S and large subunit D1/D2 regions of the ribosomal gene cluster showed that this novel yeast is closely related to Spencermartinsiella cellulosicola. The isolates differ by four nucleotide substitutions in the D1/D2 domain and six substitutions and 31 indels in the ITS region from the holotype of S. cellulosicola. Phylogenomic analysis based on 1474 single-copy orthologues for a set of Spencermartinsiella species whose whole genome sequences are available confirmed that the novel species is phylogenetically close to S. cellulosicola. The low average nucleotide identity value of 83% observed between S. cellulosicola and the candidate species confirms that they are distinct. The novel species produced asci with hemispherical ascospores. The name Spencermartinsiella nicolii sp. nov. is proposed. The holotype is CBS 14238T. The MycoBank number is MB855027. Interestingly, the D1/D2 sequence of the S. nicolii was identical to that of an uncultured strain of Spencermartinsiella causing systemic infection in a male adult crocodile (Crocodylus niloticus). The characterization of some virulence factors and antifungal susceptibility of S. nicolii isolates suggest that this yeast may be an opportunistic pathogen for animals, including humans; the isolates grow at 37 °C.


Subject(s)
DNA, Fungal , Phylogeny , Saccharomycetales , Sequence Analysis, DNA , Wood , Brazil , Wood/microbiology , DNA, Fungal/genetics , Saccharomycetales/genetics , Saccharomycetales/isolation & purification , Saccharomycetales/classification , Mycological Typing Techniques , DNA, Ribosomal Spacer/genetics , Rainforest , Forests
5.
Int J Biol Macromol ; 279(Pt 2): 135258, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233166

ABSTRACT

Moisture-induced electricity generation (MEG), which can directly harvest electricity from moisture, is considered as an effective strategy for alleviating the growing energy crisis. Recently, tremendous efforts have been devoted to developing MEG active materials from wood lignocellulose (WLC) due to its excellent properties including environmental friendliness, sustainability, and biodegradability. This review comprehensively summarizes the recent advances in MEG based on WLC (wood, cellulose, lignin, and woody biochar), covering its principles, preparation, performances, and applications. In detail, the basic working mechanisms of MEG are discussed, and the natural features of WLC and their significant advantages in the fabrication of MEG active materials are emphasized. Furthermore, the recent advances in WLC-based MEG for harvesting electrical energy from moisture are specifically discussed, together with their potential applications (sensors and power sources). Finally, the main challenges of current WLC-based MEG are presented, as well as the potential solutions or directions to develop highly efficient MEG from WLC.

6.
Mycoscience ; 65(2): 86-91, 2024.
Article in English | MEDLINE | ID: mdl-39234516

ABSTRACT

We investigated factors affecting the community composition of lignicolous myxomycetes in dead wood with white and brown rot through summer and autumn surveys in a subalpine forest in Central Japan. In both seasons, wood had decayed to a softer state under brown rot than under white rot. The pH of wood with white rot was nearly neutral, while wood with brown rot was weakly acidic. Wood pH was lower in summer than in autumn. Forty-two myxomycetes taxa in 19 genera were identified in 302 fruiting-body colonies; white rot yielded 31 taxa and brown rot 24 taxa. Species diversity was higher on wood with white rot than on wood with brown rot. The effect of wood hardness on species composition depended on season. Several species exhibited a preference for one of the rot types. The substrate conditions associated with brown rot limit myxomycetes species diversity.

7.
Heliyon ; 10(16): e36138, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39229519

ABSTRACT

Xylotrechus arvicola Olivier 1795 (Coleoptera: Cerambycidae) is an insect pest that affects Vitis vinifera L. 1753 (Vitales: Vitaceae) plants in the main wine-producing regions of Spain. X. arvicola larvae bore into grapevine wood, causing both direct damage (ingestion of vascular tissues) and indirect damages (introduction of wood fungi) to the plant. The aim of research was to evaluate the effective section of wood damaged by larvae and assess its resistance capacity through compression tests and loading and breaking times. Compressive tests (on trunks) and flexural tests (on branches) were performed to evaluate the effective section. Trunk samples exhibited a higher effective section than branches samples, with effective section percentages ranging from 91.49 % to 93.53 % in trunks and decreasing from 84.91 % to 86.95 % in branches. Both loading times (Time 1) and breakage times (Time 2) increased with the effective section of the wood, although these times were lower in damaged wood samples of both trunks and branches. Additionally, significant differences were observed in the interactions between loading time x effective section and breakage time x effective section in dry trunks. This indicates a stronger relationship between the effective section and increased resistance in trunks. The results suggest that, in 'Tempranillo' variety, branches with a lower effective section are more prone to breakage when affected by X. arvicola larvae, whereas trunks, with a greater effective section, maintain better stability. This research should be continued with the evaluation of other vine varieties and different years of X. arvicola attacks, as the current findings are based on a single variety ('Tempranillo') over a period of ten years.

8.
Environ Entomol ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235993

ABSTRACT

Anoplophora glabripennis (Motschulsky), the Asian longhorned beetle, is a serious wood-boring pest of hardwood trees. There have been records that suggest Elaeagnus angustifolia L. (Elaeagnaceae) might be an "attract and kill" tree species for A. glabripennis, i.e., a tree that is attractive to A. glabripennis adults but kills their oviposited eggs. To evaluate the possibility of E. angustifolia as a control measure for A. glabripennis, we carried out a series of behavioral experiments in the laboratory and in the field. Results showed that: (i) A. glabripennis females preferred E. angustifolia branches and leaves over poplar tree species evaluated; the weight of feces from both female and male A. glabripennis feeding on E. angustifolia was significantly higher than from those feeding on Populus deltoides 'Shalinyang' or Populus alba. L. var. pyramidalis; (ii) the average lifespan of females and males feeding on E. angustifolia was significantly longer than those feeding on other host trees evaluated; (iii) in the laboratory oviposition choice experiment, there were significantly fewer egg notch grooves on E. angustifolia than on P. deltoides 'Shalinyang', and those made in E. angustifolia were without eggs; (iv) in the field, the number of egg notch grooves on E. angustifolia was 43.6 ±â€…18.1 per stem, but the number of eggs laid was only 14.4 ±â€…6.4 per stem; and (v) Field surveys of existing mixed forests showed that when E. angustifolia was planted with P. alba. var. pyramidalis or Populus simonii × (Populus pyramidalis + Salix matsudana) 'Poparis' in the mixed forest, both poplar varieties suffered greater infestation than E. angustifolia. Therefore, E. angustifolia is not a suitable attract and kill tree to be extensively planted in mixed forests for control of A. glabripennis.

9.
Int J Biol Macromol ; : 135490, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39255882

ABSTRACT

Wastewater purification has evolved into a global problem in the face of increasing scarcity of freshwater resources. Photocatalysis technology possesses prominent advantages in treating pollutants in water because of its low cost and mild reaction conditions, which provides an effective way to treat multiple pollutants and reduce membrane fouling. Herein, we combine photocatalysis technology with filtration technology via in situ reduction Bi0 with Bi2SiO5 strategy incorporating a carbonized wood filter to synthesize carbon/Bi2SiO5@Bi bi-functional composite. Thus, simultaneous filtration and photocatalytic degradation of Rhodamine B and tetracycline were achieved. After filtrating for 30 min, the degradation rate of RhB and TC were 94.23 % and 81.39 %, respectively. Especially, the flux of RhB and TC were up to 2162.16 L m-2 h-1 and 1811.32 L m-2 h-1. In addition, the composite filter also has good recyclability and reusability, after 5 cycles, the degradation efficiency of RhB remains at 91 %. This study utilized photocatalytic technology combined with membrane filtration technology to successfully solve the contradiction between catalytic efficiency and water flux, which realized rapid and dynamic removal of organic pollutants from water. Besides, the use of carbonized wood-based materials provides a potential biomass technology for the preparation of bifunctional photocatalytic filters.

10.
J Wood Sci ; 70(1): 35, 2024.
Article in English | MEDLINE | ID: mdl-39257695

ABSTRACT

Wood constantly interacts with the surrounding, locally varying climate, leading to changes in the moisture content. Advanced simulation tools can predict the two-dimensional moisture distributions caused by these changing climate conditions within wood cross sections over time. However, there is a notable absence of systematic simulation results for diverse climatic conditions and various wood cross sections. This study seeks to bridge this gap in research. Here, we present moisture fields in three solid timber and three glued laminated timber cross sections in Austria and show the effect of the location and the altitude on the moisture content distribution. The results reveal decreasing influence of the location on the moisture content development with increasing cross section size, and primarily the altitude affecting the moisture content. In addition, the results are compared with the standard for the design of timber-concrete composite structures (ONR CEN/TS 19103), revealing appropriate values in most of the cases. Only for cross sections with a width of 14 cm and larger, assigned to a specific region, the standard value is assumed underestimated. Furthermore, the distribution of moisture gradients, which are related to the crack depth development, are analyzed for Austria, demonstrating the influence of mountain areas in the moisture gradient development. Supplementary Information: The online version contains supplementary material available at 10.1186/s10086-024-02147-z.

11.
Article in English | MEDLINE | ID: mdl-39251537

ABSTRACT

This study focused on investigating thermal degradation behaviors, kinetics, reaction mechanisms, synergistic effects, and thermodynamic parameters of wood sawdust (WSD), linear low-density polyethylene (LLDPE), and their blends (LW1:3, LW1:1, and LW3:1) during co-pyrolysis in a thermogravimetric analyzer (TGA). Thermal behavior exhibited a LW1:3 blend (25 wt.% LLDPE) showing significant mass loss at lower temperatures (150 to 300 °C) compared to the individual feedstocks, such as 150 to 400 °C and 300 to 520 °C for WSD and LLDPE, respectively. The iso-conversional methods (KAS, FWO, and FM) were used to determine the kinetic parameters (Ea and A), and the activation energy drop was highest for the LW1:3 blend. According to the master plots, the third-order reaction (O3), nucleation (P2/3), and diffusional model (D4) were the predominant reaction mechanisms for the co-pyrolysis of the LW1:3, LW1:1, and LW3:1 blend, respectively. The thermodynamic parameters demonstrate that a small amount of plastic addition into WSD can improve the reactivity of the blend, shorten the reaction time, and cause less energy-intensive reactions. The values of ΔH, ΔG, and ΔS also confirmed the co-pyrolysis process's spontaneity and endothermic nature. The Fourier transforms infrared spectrometer (FTIR) spectra of raw feedstock, blends, and their biochar revealed some of the peaks were shifted, the intensity was reduced, and disappearance can happen when the temperature was increased. Using the experimental and theoretical/predicted activation energies, the parity chart illustrates the synergistic effects of co-pyrolysis of different blends, and the LW1:3 blend has a favorable synergistic impact. These results could be helpful in process optimization and designing an effective reactor system for co-pyrolysis.

12.
Wellcome Open Res ; 9: 124, 2024.
Article in English | MEDLINE | ID: mdl-39246514

ABSTRACT

We present a genome assembly from an individual specimen of Luzula sylvatica (great wood-rush; Tracheophyta; Magnoliopsida; Poales; Juncaceae). The genome sequence is 444.5 megabases in span. Most of the assembly is scaffolded into 6 chromosomal pseudomolecules. The mitochondrial and plastid genome assemblies have lengths of 633.36 kilobases and 201.32 kilobases in length, respectively.

13.
MycoKeys ; 108: 115-146, 2024.
Article in English | MEDLINE | ID: mdl-39246551

ABSTRACT

The wood-inhabiting fungi play an integral role in wood degradation and the cycle of matter in the ecological system. They are considered as the "key player" in wood decomposition, because of their ability to produce lignocellulosic enzymes that break down woody lignin, cellulose and hemicellulose. In the present study, four new wood-inhabiting fungal species, Adustochaetealbomarginata, Ad.punctata, Alloexidiopsisgrandinea and Al.xantha collected from southern China, are proposed, based on a combination of morphological features and molecular evidence. Adustochaetealbomarginata is characterised by resupinate basidiomata with cream to buff, a smooth, cracked, hymenial surface, a monomitic hyphal system with clamped generative hyphae and subcylindrical to allantoid basidiospores (12-17.5 × 6.5-9 µm). Adustochaetepunctata is characterised by resupinate basidiomata with cream, a smooth, punctate hymenial surface, a monomitic hyphal system with clamped generative hyphae and subcylindrical to allantoid basidiospores (13.5-18 × 6-8.2 µm). Alloexidiopsisgrandinea is characterised by resupinate basidiomata with buff to slightly yellowish, a grandinioid hymenial surface, a monomitic hyphal system with clamped generative hyphae and allantoid basidiospores (10-12.3 × 5-5.8 µm). Additionally, Alloexidiopsisxantha is characterised by resupinate basidiomata with cream to slightly buff, a smooth hymenial surface, a monomitic hyphal system with clamped generative hyphae and subcylindrical to allantoid basidiospores measuring 20-24 × 5-6.2 µm. Sequences of the internal transcribed spacers (ITS) and the large subunit (nrLSU) of the nuclear ribosomal DNA (rDNA) markers of the studied samples were generated. Phylogenetic analyses were performed with the Maximum Likelihood, Maximum Parsimony and Bayesian Inference methods. The phylogram, based on the ITS+nLSU rDNA gene regions, revealed that four new species were assigned to the genera Adustochaete and Alloexidiopsis within the order Auriculariales, individually. The phylogenetic tree inferred from the ITS sequences highlighted that Ad.albomarginata was retrieved as a sister to Ad.yunnanensis and the species Ad.punctata was sister to Ad.rava. The topology, based on the ITS sequences, showed that Al.grandinea was retrieved as a sister to Al.schistacea and the taxon Al.xantha formed a monophyletic lineage. Furthermore, two identification keys to Adustochaete and Alloexidiopsis worldwide are provided.

14.
Heliyon ; 10(16): e35786, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39247256

ABSTRACT

Blockage of cross-drainage hydraulic structures is a significant concern in water resources and civil engineering projects, particularly in urban areas experiencing increased debris supply. During storms or floods, debris can accumulate and restrict the flow capacity of these structures, leading to potential failures and adverse impacts on flood levels. While some argue that blockage at culverts is a non-issue, scientific research supports its significance in specific regions. However, in context of rivers and dams, blockage by Large Wood (LW) is an established issue with plenty of research in terms of its hydraulic impacts, dynamics, modeling and scouring impacts. Specifically in Australasia the Australian Rainfall and Runoff (ARR) initiative recognized the importance of studying blockage at culverts and introduced guidelines incorporating it into design and modeling. These guidelines also included post flood visual inspections of structures to understand blockage, however, this approach has been criticized by hydraulic engineers arguing that post flood visuals can not be considered as the representation of the peak floods blockage. Recently, an approach of using visual information to interpret the blockage has been adopted as a new dimension to the problem. This paper, therefore, highlights the advances, challenges, and opportunities in studying blockage, emphasizing the need for data-driven approaches and interdisciplinary collaboration. Understanding and addressing blockage are crucial for ensuring the efficient operation and longevity of hydraulic structures and promoting the resilience of infrastructure systems in the face of evolving environmental conditions.

15.
J Colloid Interface Sci ; 678(Pt B): 188-199, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39243719

ABSTRACT

Although bio-based sensing materials have a wide range of applications in the field of pressure detection, they still need to improve their sensitivity, detection limit and hysteresis. This paper studied the relationship between the 3D pore structure and sensing performance under dynamics. Using Balsa wood as the substrate, CWA/TPU aerogel and its sensor were prepared with lightweight, compressibility, highly sensitivity, wide-detection, and low-hysteresis. Meanwhile, the brittleness problem of the carbonized aerogel was solved by uniformly attaching TPU to the aerogel interface. In this paper, the 3D structure of CWA/TPU aerogel during compression was reconstructed by Micro-XCT technology, and the results show that the sensitivity of the bio-based carbonized material is directly proportional to the porosity and inversely proportional to the aspect ratio. This CWA/TPU aerogel pressure sensor has a high sensitivity of 76.18 kPa-1 in a wide detection limit of 0.6 Pa-100 kPa, 90 % supercompression strain, ±7.4 % low hysteresis and outstanding stability over 10,000 cycles. And the sensor can detect different ranges of pressure strains and has great potential for future applications in physiological signal monitoring, action recognition, and sports training.

16.
Sci Rep ; 14(1): 20918, 2024 09 09.
Article in English | MEDLINE | ID: mdl-39251732

ABSTRACT

Halophilic archaea are a unique group of microorganisms that thrive in high-salt environments, exhibiting remarkable adaptations to survive extreme conditions. Archaeological wood and El-Hamra Lake serve as a substrate for a diverse range of microorganisms, including archaea, although the exact role of archaea in archaeological wood biodeterioration remains unclear. The morphological and chemical characterizations of archaeological wood were evaluated using FTIR, SEM, and EDX. The degradation of polysaccharides was identified in Fourier transform infrared analysis (FTIR). The degradation of wood was observed through scanning electron microscopy (SEM). The energy dispersive X-ray spectroscopy (EDX) revealed the inclusion of minerals, such as calcium, silicon, iron, and sulfur, into archaeological wood structure during burial and subsequent interaction with the surrounding environment. Archaea may also be associated with detected silica in archaeological wood since several organosilicon compounds have been found in the crude extracts of archaeal cells. Archaeal species were isolated from water and sediment samples from various sites in El-Hamra Lake and identified as Natronococcus sp. strain WNHS2, Natrialba hulunbeirensisstrain WNHS14, Natrialba chahannaoensis strain WNHS9, and Natronococcus occultus strain WNHS5. Additionally, three archaeal isolates were obtained from archaeological wood samples and identified as Natrialba chahannaoensisstrain W15, Natrialba chahannaoensisstrain W22, and Natrialba chahannaoensisstrain W24. These archaeal isolates exhibited haloalkaliphilic characteristics since they could thrive in environments with high salinity and alkalinity. Crude extracts of archaeal cells were analyzed for the organic compounds using gas chromatography-mass spectrometry (GC-MS). A total of 59 compounds were identified, including free saturated and unsaturated fatty acids, saturated fatty acid esters, ethyl and methyl esters of unsaturated fatty acids, glycerides, phthalic acid esters, organosiloxane, terpene, alkane, alcohol, ketone, aldehyde, ester, ether, and aromatic compounds. Several organic compounds exhibited promising biological activities. FTIR spectroscopy revealed the presence of various functional groups, such as hydroxyl, carboxylate, siloxane, trimethylsilyl, and long acyl chains in the archaeal extracts. Furthermore, the archaeal extracts exhibited antioxidant effects. This study demonstrates the potential of archaeal extracts as a valuable source of bioactive compounds with pharmaceutical and biomedical applications.


Subject(s)
Archaeology , Lakes , Wood , Wood/chemistry , Wood/microbiology , Lakes/microbiology , Egypt , Archaea , Spectroscopy, Fourier Transform Infrared , Phylogeny , Spectrometry, X-Ray Emission
17.
J Histotechnol ; : 1-10, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222359

ABSTRACT

Although many of the structures and organelles of vegetative cells are comparable to those of animal tissues, significant differences between the two kingdoms require modifications in histological techniques for both tissue processing steps and histochemical staining techniques. The authors investigated the challenges of working with plant tissues by collecting various flora to represent the four main plant organs: leaf, stem, root, and flower/fruit. Triplicate samples for each specimen were placed into formalin for paraffin embedding, placed into formalin for later frozen sections, and used fresh to undergo immediate frozen sectioning. Frozen sections of plant tissues were more difficult to obtain than formalin-fixed paraffin-embedded (FFPE) sections, exhibited tissue loss during staining, and were inferior morphologically to FFPE sections. Although, historically, plant tissue fixation and processing has employed several different reagents compared with those used in animal tissue processing and took significantly longer times, the current investigation determined reagents and protocols from a modern histology laboratory which processes mammalian tissues can be applied to plant tissue processing with only slight modifications in respect to reagent timing. Additionally, staining techniques were compared and while it is well known that plant cell walls stain well with safranin O, the current investigation determined the uptake of safranin O can be accelerated by incubating at 60°C.

18.
J Agric Food Chem ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39233330

ABSTRACT

Barrel aging is a crucial stage that influences the taste of wines and spirits, particularly increasing their sweetness and bitterness. This increase is caused by nonvolatile compounds released from oak wood. To search for such molecules, we performed a taste-guided inductive fractionation protocol using several analytical techniques. By using HRMS and NMR, two new galloylated derivatives were elucidated. Their enzymatic hydrolysis revealed the formation of ß-methyl-γ-octalactone, indicating that they are potential precursors. The taste properties of these isomers revealed a sweet and bitter taste for P-WL-1 and P-WL-2, respectively. An LC-HRMS quantification method was performed to evaluate the influence of aging parameters such as botanical origin and toasting process on their concentrations. Several spirits were also analyzed to confirm their presence in this matrix. These results improve the understanding of the molecular markers responsible for the taste of beverages.

19.
Data Brief ; 55: 110729, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39234058

ABSTRACT

The interaction of wood and moisture has to be considered in many industrial sectors. Wood is highly hygroscopic material while the absorbed moisture affects all its technical properties. One of them is a moisture permeability which is further affected by the sorption hysteresis and also differs in the three wood anatomical directions - radial, tangential, and axial. For the prediction of the dynamic hygro-thermal behaviour of wood can be used numerical simulation tools. However, data from carefully designed and controlled experiments are needed for reliable validation of these tools. This paper presents data from a 45-day dynamic laboratory experiment. The one-dimensional moisture transport in spruce wood in the tangential and radial directions under isothermal conditions was studied. The samples were exposed to cyclic step-changes in relative humidity 72-95 % at 23 °C. Data show the rate of stabilisation of moisture content in the samples, the effect of sorption hysteresis, and changes in the temperature of samples due to moisture sorption. In addition, the paper also presents material functions describing the sorption properties and moisture permeability of spruce wood. These properties were determined based on laboratory measurements using the spruce wood of the same origin as used for the dynamic experiment. The dynamic data, together with the proposed material functions can be used in the development or verification of hygro-thermal numerical simulation tools.

20.
Sci Rep ; 14(1): 19101, 2024 08 17.
Article in English | MEDLINE | ID: mdl-39154137

ABSTRACT

Worldwide, silicified woods are found in many geological formations. Significantly, the organic materials of wood are no longer dominant; almost all wood fossils have been mineralized into inorganic silica materials. These unique geological processes must be understood to develop better understanding on organic material fossilization, particularly in the micron scale. Therefore, our aim was to characterize the composition of silicified wood using comprehensive microanalysis. The methods utilized were XRF, ICP-MS, XRD, FTIR, and FE-EPMA. Specimens are from Jasinga, West Java, Indonesia. The results showed that wood silicification was controlled by the infiltration of silica from the host rock into the spaces of the wood structure. In Jasinga, they are controlled by Pliocene tuffaceous sedimentary rocks. The ratio of silica phases revealed a trend in the degree of silicification. Besides silica, the distribution of trace elements also demonstrates the geochemical interaction between the wood fossil and host rock. Wood fossils are affected by the gradual replacement of organic carbon-based materials with silica through silicification. Silica enrichment occurs in the internal of wood, facilitates permineralization and recrystallization. Silica replaces organic material and preserves the wood structures. The microanalytical approach provides comprehensive perspectives on wood petrification, leads to better insights for paleontological studies.


Subject(s)
Fossils , Silicon Dioxide , Wood , Wood/chemistry , Indonesia , Silicon Dioxide/chemistry , Geologic Sediments/chemistry , Geologic Sediments/analysis , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction , Spectrometry, X-Ray Emission
SELECTION OF CITATIONS
SEARCH DETAIL