Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.388
Filter
1.
Transpl Int ; 37: 13213, 2024.
Article in English | MEDLINE | ID: mdl-39149569

ABSTRACT

Antibody-mediated rejection (AMR) is among the most frequent causes for graft loss after kidney transplantation. While there are no approved therapies, several case reports with daratumumab and the very recent phase 2 trial of felzartamab in AMR have indicated the potential efficacy of therapeutic interventions targeting CD38. Donor-derived cell-free DNA (dd-cfDNA) is an emerging biomarker with injury-specific release and a short half-life, which could facilitate early diagnosis of AMR and monitoring of treatment response. We describe two cases of patients with chronic active AMR, who were treated with monthly daratumumab infusions, and in whom donor-derived cell-free DNA (dd-cfDNA) was measured longitudinally to monitor treatment response. In both patients, daratumumab treatment led to stabilization of kidney function parameters, a strong decline of dd-cfDNA below the previously established threshold for rejection, and partial or complete histologic resolution of AMR activity. Our case series suggests that dd-cfDNA may be a useful companion biomarker for longitudinal monitoring of anti-CD38 treatment in patients with AMR.


Subject(s)
Antibodies, Monoclonal , Biomarkers , Cell-Free Nucleic Acids , Graft Rejection , Kidney Transplantation , Humans , Cell-Free Nucleic Acids/blood , Antibodies, Monoclonal/therapeutic use , Graft Rejection/drug therapy , Male , Middle Aged , Biomarkers/blood , Female , Tissue Donors , Adult , ADP-ribosyl Cyclase 1
2.
Cells ; 13(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39120331

ABSTRACT

Hypertension (HTN) impacts almost half of adults, predisposing them to cardiovascular disease and renal damage. Salt-sensitive HTN (SSHTN) and angiotensin II (A2)-induced HTN (A2HTN) both involve immune system activation and renal innate immune cell infiltration. Subpopulations of activated [Cluster of differentiation 38 (CD38)] innate immune cells, such as macrophages and dendritic cells (DCs), play distinct roles in modulating renal function and blood pressure. It is unknown how these cells become CD38+ or which subtypes are pro-hypertensive. When bone marrow-derived monocytes (BMDMs) were grown in granulocyte-macrophage colony stimulating factor (GM-CSF) and treated with salt or A2, CD38+ macrophages and CD38+ DCs increased. The adoptive transfer of GM-CSF-primed BMDMs into mice with either SSHTN or A2HTN increased renal CD38+ macrophages and CD38+ DCs. Flow cytometry revealed increased renal M1 macrophages and type-2 conventional DCs (cDC2s), along with their CD38+ counterparts, in mice with either SSHTN or A2HTN. These results were replicable in vitro. Either salt or A2 treatment of GM-CSF-primed BMDMs significantly increased bone marrow-derived (BMD)-M1 macrophages, CD38+ BMD-M1 macrophages, BMD-cDC2s, and CD38+ BMD-cDC2s. Overall, these data suggest that GM-CSF is necessary for the salt or A2 induction of CD38+ innate immune cells, and that CD38 distinguishes pro-hypertensive immune cells. Further investigation of CD38+ M1 macrophages and CD38+ cDC2s could provide new therapeutic targets for both SSHTN and A2HTN.


Subject(s)
Angiotensin II , Dendritic Cells , Granulocyte-Macrophage Colony-Stimulating Factor , Immunity, Innate , Macrophages , Animals , Angiotensin II/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Mice , Immunity, Innate/drug effects , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Hypertension/immunology , Mice, Inbred C57BL , ADP-ribosyl Cyclase 1/metabolism , Male , Monocytes/drug effects , Monocytes/metabolism , Monocytes/immunology , Kidney/immunology , Kidney/drug effects
3.
Hematol Oncol ; 42(5): e3302, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39096249

ABSTRACT

To retrospectively analyze whether the second revision of the international staging system (R2-ISS) influenced prognosis at treatment initiation in patients with multiple myeloma (MM) receiving anti-CD38 antibody-based triplet treatments. High-risk chromosomal abnormalities were examined from diagnosis to treatment initiation and considered positive if detected once. R2-ISS was recalculated at the initiation of treatment and defined as "dynamic R2-ISS." Data from 150 patients who underwent the defined treatments were analyzed. The median progression-free survival (PFS) was 19.5 months, and the median overall survival (OS) was 36.5 months. Dynamic R2-ISS significantly stratified prognoses for both PFS and OS. The median PFS for patients with dynamic R2-ISS IV was 3.3 months, and the median OS was 11.7 months, indicating extremely poor outcomes. Although the Revised International Staging System (R-ISS) calculated at the initiation of treatment significantly stratified treatment outcomes, the patients classified as R-ISS could be further stratified by R2-ISS to provide better prognostic information. Dynamic R2-ISS showed potential as a prognostic tool in patients with MM who are treated with anti-CD38 antibody-based triplet therapies.


Subject(s)
ADP-ribosyl Cyclase 1 , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/mortality , Multiple Myeloma/therapy , Multiple Myeloma/pathology , Male , Female , ADP-ribosyl Cyclase 1/antagonists & inhibitors , Middle Aged , Aged , Prognosis , Retrospective Studies , Adult , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasm Staging , Survival Rate , Membrane Glycoproteins
4.
Front Immunol ; 15: 1398508, 2024.
Article in English | MEDLINE | ID: mdl-38983860

ABSTRACT

Background: CD38 and CD47 are expressed in many hematologic malignancies, including multiple myeloma (MM), B-cell non-Hodgkin lymphoma (NHL), B-cell acute lymphoblastic leukemia (ALL), and B-cell chronic lymphocytic leukemia (CLL). Here, we evaluated the antitumor activities of CD38/CD47 bispecific antibodies (BsAbs). Methods: Five suitable anti-CD38 antibodies for co-targeting CD47 and CD38 BsAb were developed using a 2 + 2 "mAb-trap" platform. The activity characteristics of the CD38/CD47 BsAbs were evaluated using in vitro and in vivo systems. Results: Using hybridoma screening technology, we obtained nine suitable anti-CD38 antibodies. All anti-CD38 antibodies bind to CD38+ tumor cells and kill tumor cells via antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Five anti-CD38 antibodies (4A8, 12C10, 26B4, 35G5, and 65A7) were selected for designing CD38/CD47 BsAbs (IMM5605) using a "mAb-trap" platform. BsAbs had higher affinity and binding activity to the CD38 target than those to the CD47 target, decreasing the potential on-target potential and off-tumor effects. The CD38/CD47 BsAbs did not bind to RBCs and did not induce RBC agglutination; thus, BsAbs had much lower blood toxicity. The CD38/CD47 BsAbs had a greater ability to block the CD47/SIRPα signal in CD38+/CD47+ tumor cells than IMM01 (SIRPα Fc fusion protein). Through Fc domain engineering, CD38/CD47 BsAbs were shown to kill tumors more effectively by inducing ADCC and ADCP. IMM5605-26B4 had the strongest inhibitory effect on cellular CD38 enzymatic activity. IMM5605-12C10 had the strongest ability to directly induce the apoptosis of tumor cells. The anti-CD38 antibody 26B4 combined with the SIRPα-Fc fusion proteins showed strong antitumor effects, which were better than any of the mono-therapeutic agents used alone in the NCI-H929 cell xenograft model. The CD38/CD47 BsAbs exhibited strong antitumor effects; specifically, IMM5605-12C10 efficiently eradicated all established tumors in all mice. Conclusion: A panel of BsAbs targeting CD38 and CD47 developed based on the "mAb-tarp" platform showed potent tumor-killing ability in vitro and in vivo. As BsAbs had lower affinity for binding to CD47, higher affinity for binding to CD38, no affinity for binding to RBCs, and did not induce RBC agglutination, we concluded that CD38/CD47 BsAbs are safe and have a satisfactory tolerability profile.


Subject(s)
ADP-ribosyl Cyclase 1 , CD47 Antigen , Hematologic Neoplasms , CD47 Antigen/immunology , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/metabolism , ADP-ribosyl Cyclase 1/antagonists & inhibitors , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/metabolism , Humans , Animals , Mice , Hematologic Neoplasms/therapy , Hematologic Neoplasms/immunology , Cell Line, Tumor , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Xenograft Model Antitumor Assays , Membrane Glycoproteins/immunology , Membrane Glycoproteins/antagonists & inhibitors , Antibody-Dependent Cell Cytotoxicity , Female , Antineoplastic Agents, Immunological/pharmacology
5.
Exp Cell Res ; 440(1): 114137, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38897410

ABSTRACT

Glaucoma is characterized by pathological elevation of intraocular pressure (IOP) due to dysfunctional trabecular meshwork (TM), which is the primary cause of irreversible vision loss. There are currently no effective treatment strategies for glaucoma. Mitochondrial function plays a crucial role in regulating IOP within the TM. In this study, primary TM cells treated with dexamethasone were used to simulate glaucomatous changes, showing abnormal cellular cytoskeleton, increased expression of extracellular matrix, and disrupted mitochondrial fusion and fission dynamics. Furthermore, glaucomatous TM cell line GTM3 exhibited impaired mitochondrial membrane potential and phagocytic function, accompanied by decreased oxidative respiratory levels as compared to normal TM cells iHTM. Mechanistically, lower NAD + levels in GTM3, possibly associated with increased expression of key enzymes CD38 and PARP1 related to NAD + consumption, were observed. Supplementation of NAD + restored mitochondrial function and cellular viability in GTM3 cells. Therefore, we propose that the aberrant mitochondrial function in glaucomatous TM cells may be attributed to increased NAD + consumption dependent on CD38 and PARP1, and NAD + supplementation could effectively ameliorate mitochondrial function and improve TM function, providing a novel alternative approach for glaucoma treatment.


Subject(s)
Glaucoma , Mitochondria , NAD , Trabecular Meshwork , Trabecular Meshwork/metabolism , Trabecular Meshwork/drug effects , Trabecular Meshwork/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Glaucoma/metabolism , Glaucoma/pathology , Glaucoma/drug therapy , NAD/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Intraocular Pressure/drug effects , Cell Survival/drug effects , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/genetics , Cell Line , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Dexamethasone/pharmacology , Cells, Cultured
6.
Isr Med Assoc J ; 26(6): 369-375, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38884310

ABSTRACT

BACKGROUND: Immunoglobulin G4-related disease (IgG4-RD) is a chronic, immune-mediated condition characterized by fibro-inflammatory lesions with lymphoplasmacytic infiltration. Diagnosis traditionally relies on histopathological findings, including the presence of IgG4+ plasma cells. However, due to challenges in biopsy accessibility, additional measures are needed to facilitate diagnosis. OBJECTIVES: To identify additional parameters for characterizing IgG4-RD patients. METHODS: We compared several circulating factors between a cohort of patients with IgG4-RD disease seen at our hospital between 2017 and 2023 and healthy controls. RESULTS: Among 16 suspected patients, 13 were confirmed to have IgG4-RD, and 3 were classified as highly likely. Comparison with controls revealed differences in white blood cell count (WBC) (Folf change (FC) 1.46, P < 0.05), plasmablasts (FC 3.76, P< 0.05), plasmablasts CD38 (FC 1.43, P < 0.05), and CD27 (FC 0.66, P = 0.054), thus highlighting potential markers for IgG4-RD diagnosis. Treatments with steroids/rituximab tend to reduce plasmablast (FC 0.6) and IgG4 (FC 0.28) levels and to increase Gal-3 levels. CONCLUSIONS: Levels of plasmablasts are a significant diagnostic feature in IgG4-RD. Healthy individuals have a lower level of plasmablasts. Elevated Gal-3 in serum of patients with IgG4-RD suggests a role in plasmablast activation. CD38/CD27 expression by plasmablasts emerges as a potential marker. Further research on a larger cohort is needed to confirm these findings.


Subject(s)
Biomarkers , Immunoglobulin G4-Related Disease , Immunoglobulin G , Plasma Cells , Humans , Immunoglobulin G4-Related Disease/diagnosis , Immunoglobulin G4-Related Disease/blood , Plasma Cells/immunology , Male , Female , Middle Aged , Immunoglobulin G/blood , Biomarkers/blood , Aged , Leukocyte Count/methods , Case-Control Studies , Adult , Rituximab/therapeutic use , ADP-ribosyl Cyclase 1 , Tumor Necrosis Factor Receptor Superfamily, Member 7
7.
Neurochem Res ; 49(9): 2491-2504, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38862726

ABSTRACT

Idebenone, an antioxidant used in treating oxidative damage-related diseases, has unclear neuroprotective mechanisms. Oxidative stress affects cell and mitochondrial membranes, altering Adp-ribosyl cyclase (CD38) and Silent message regulator 3 (SIRT3) protein expression and possibly impacting SIRT3's ability to deacetylate Tumor protein p53 (P53). This study explores the relationship between CD38, SIRT3, and P53 in H2O2-injured HT22 cells treated with Idebenone. Apoptosis was detected using flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining after determining appropriate H2O2 and Idebenone concentrations.In this study, Idebenone was found to reduce apoptosis and decrease P53 and Caspase3 expression in H2O2-injured HT22 cells by detecting apoptosis-related protein expression. Through bioinformatics methods, CD38 was identified as the target of Idebenone, and it further demonstrated that Idebenone decreased the expression of CD38 and increased the level of SIRT3. An increased NAD+/NADH ratio was detected, suggesting Idebenone induces SIRT3 expression and protects HT22 cells by decreasing apoptosis-related proteins. Knocking down SIRT3 downregulated acetylated P53 (P53Ac), indicating SIRT3's importance in P53 deacetylation.These results supported that CD38 was used as a target of Idebenone to up-regulate SIRT3 to deacetylate activated P53, thereby protecting HT22 cells from oxidative stress injury. Thus, Idebenone is a drug that may show great potential in protecting against reactive oxygen species (ROS) induced diseases such as Parkinson's disease, and Alzheimer's disease. And it might be able to compensate for some of the defects associated with CD38-related diseases.


Subject(s)
ADP-ribosyl Cyclase 1 , Apoptosis , Oxidative Stress , Sirtuin 3 , Tumor Suppressor Protein p53 , Ubiquinone , Tumor Suppressor Protein p53/metabolism , Oxidative Stress/drug effects , ADP-ribosyl Cyclase 1/metabolism , Animals , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Mice , Sirtuin 3/metabolism , Apoptosis/drug effects , Cell Line , Neurons/drug effects , Neurons/metabolism , Hydrogen Peroxide/toxicity , Antioxidants/pharmacology , Membrane Glycoproteins/metabolism , Neuroprotective Agents/pharmacology
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731936

ABSTRACT

Multiple myeloma is a malignancy characterized by the accumulation of malignant plasma cells in bone marrow and the production of monoclonal immunoglobulin. A hallmark of cancer is the evasion of immune surveillance. Histone deacetylase inhibitors have been shown to promote the expression of silenced molecules and hold potential to increase the anti-MM efficacy of immunotherapy. The aim of the present work was to assess the potential effect of tinostamustine (EDO-S101), a first-in-class alkylating deacetylase inhibitor, in combination with daratumumab, an anti-CD38 monoclonal antibody (mAb), through different preclinical studies. Tinostamustine increases CD38 expression in myeloma cell lines, an effect that occurs in parallel with an increment in CD38 histone H3 acetylation levels. Also, the expression of MICA and MICB, ligands for the NK cell activating receptor NKG2D, augments after tinostamustine treatment in myeloma cell lines and primary myeloma cells. Pretreatment of myeloma cell lines with tinostamustine increased the sensitivity of these cells to daratumumab through its different cytotoxic mechanisms, and the combination of these two drugs showed a higher anti-myeloma effect than individual treatments in ex vivo cultures of myeloma patients' samples. In vivo data confirmed that tinostamustine pretreatment followed by daratumumab administration significantly delayed tumor growth and improved the survival of mice compared to individual treatments. In summary, our results suggest that tinostamustine could be a potential candidate to improve the efficacy of anti-CD38 mAbs.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal , Multiple Myeloma , NK Cell Lectin-Like Receptor Subfamily K , Animals , Humans , Mice , ADP-ribosyl Cyclase 1/drug effects , ADP-ribosyl Cyclase 1/metabolism , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Cell Line, Tumor , Drug Synergism , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Membrane Glycoproteins/drug effects , Membrane Glycoproteins/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , NK Cell Lectin-Like Receptor Subfamily K/drug effects , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Up-Regulation/drug effects , Xenograft Model Antitumor Assays , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use
9.
Transfusion ; 64(7): 1217-1222, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38767410

ABSTRACT

BACKGROUND: Drugs such as daratumumab (Darzalex, anti-CD38) and Hu5F9-G4 (magrolimab, anti-CD47) may interfere with red blood cell compatibility testing as CD38 and CD47 are expressed on red blood cells. STUDY DESIGN AND METHODS: A survey of AABB member transfusion services was undertaken to understand their experiences of managing patients taking therapeutic monoclonal antibodies that are known to interfere with blood grouping and compatibility testing. RESULTS: The survey was distributed to the contact person at US-based AABB member transfusion services. The response rate was 27%. 172 of 240 (72%) indicated they had difficulties in performing compatibility testing in patients taking daratumumab and 66 of 91 (73%) reported difficulties in performing compatibility testing in patients taking magrolimab. Actions taken to provide compatible blood for these patients included referral of all samples to a reference center, blood group pheno/genotyping the patient in advance of starting the drug, treating reagent cells with 0.2 M dithiothreitol and using K-negative red cell units for patients taking daratumumab, and Gamma-clone (Immucor) anti-IgG for indirect antiglobulin testing for patients taking magrolimab. Lack of communication from clinical services about drug treatment was identified as a concern. CONCLUSION: The results of the survey demonstrate that transfusion services are having challenges with the transfusion management of patients taking therapeutic monoclonal antibodies, and further education is needed.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal , CD47 Antigen , Humans , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Blood Grouping and Crossmatching , Erythrocytes/immunology , Blood Group Incompatibility , Blood Transfusion , Surveys and Questionnaires , Membrane Glycoproteins
10.
Anticancer Res ; 44(6): 2747-2753, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821591

ABSTRACT

BACKGROUND/AIM: The relevance of cytogenetic markers as prognostic risk factors has been demonstrated in a vast number of studies, with many prognostication tools utilizing these factors to determine treatment approaches. Patients aged above 60 years represent an important subgroup of acute myeloid leukemia (AML) patients, especially because they usually exhibit a poorer cytogenetic landscape and are less suitable for intensive treatments. The importance of evaluating prognostic parameters in AML, especially in low-income countries, prompted an investigation into CD38 expression and its effects. PATIENTS AND METHODS: Medical records of AML patients aged above 60 years from three hospitals in Brazil's northwest region were analyzed. A total of 67 patients were evaluated in terms of overall survival and factors predicting worse outcomes. The risk stratification was performed based on the European LeukemiaNet 2022 guidelines. The analysis of immunophenotyping markers was conducted using multi-parametric flow cytometry. RESULTS: The overall survival of CD38-positive AML patients was higher than that of patients with CD38-negative AML, with survival rates of 15.6 months versus 4 months, respectively (p-value=0.026). The impact of CD38 positivity was relevant also in multivariable Cox proportional hazards regression, demonstrating a positive effect on overall survival, with a hazard ratio of 0.33 (95%CI=0.13-0.79; p-value=0.014). CONCLUSION: Expression of CD38 in patients with AML was associated with better overall survival and serves as a relevant predictor of improved outcome in patients aged above 60 years.


Subject(s)
ADP-ribosyl Cyclase 1 , Biomarkers, Tumor , Immunophenotyping , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/mortality , Aged , ADP-ribosyl Cyclase 1/metabolism , Female , Male , Prognosis , Middle Aged , Biomarkers, Tumor/genetics , Aged, 80 and over , Membrane Glycoproteins/metabolism
11.
Drug Deliv Transl Res ; 14(8): 2203-2215, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38802679

ABSTRACT

This study explores the efficacy of human serum albumin (HSA)-based Drug-Free Macromolecular Therapeutics (DFMT) in treating Chronic Lymphocytic Leukemia (CLL), a prevalent adult leukemia subtype. DFMT, a novel strategy, employs biomimetic crosslinking of CD20 and CD38 receptors on malignant B cells without the need for low molecular weight drugs. Apoptosis is initiated via a two-step process: i) Recognition of a bispecific engager, Fab' fragment conjugated with morpholino oligonucleotide (Fab'-MORF1), by a cell surface antigen; followed by ii) crosslinking of the MORF1-decorated cells with a multivalent effector, HSA holding multiple copies of complementary MORF2, HSA-(MORF2)x. Herein we evaluated the efficacy of HSA-based DFMT in the treatment of 56 samples isolated from patients diagnosed with CLL. Fab' fragments from Obinutuzumab (OBN) and Isatuximab (ISA) were employed in the synthesis of anti-CD20 (Fab'OBN-MORF1) and anti-CD38 (Fab'ISA-MORF1) bispecific engagers. The efficacy of DFMT was significantly influenced by the expression levels of CD20 and CD38 receptors. Dual-targeting DFMT strategies (CD20 + CD38) were more effective than single-target approaches, particularly in samples with elevated receptor expression. Pretreatment of patient cells with gemcitabine or ricolinostat markedly increased cell surface CD20 and CD38 expression, respectively. Apoptosis was effectively initiated in 62.5% of CD20-targeted samples and in 42.9% of CD38-targeted samples. Our findings demonstrate DFMT's potential in personalized CLL therapy. Further research is needed to validate these outcomes in a larger number of patient samples and to explore DFMT's applicability to other malignancies.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal, Humanized , Antigens, CD20 , Apoptosis , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Apoptosis/drug effects , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/administration & dosage , Serum Albumin, Human/chemistry , Immunoglobulin Fab Fragments/administration & dosage , Immunoglobulin Fab Fragments/pharmacology , Immunoglobulin Fab Fragments/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cross-Linking Reagents/chemistry , Membrane Glycoproteins
12.
Front Immunol ; 15: 1410457, 2024.
Article in English | MEDLINE | ID: mdl-38765013

ABSTRACT

Introduction: CM313 is currently under clinical investigation for treatments of multiple myeloma, systemic lupus erythematosus, and immune thrombocytopenia. We aimed to report the preclinical profile of the novel therapeutic anti-CD38 monoclonal antibody (mAb) CM313, with an emphasis on the difference with other CD38-targeting mAb. Methods: The binding of CM313 to CD38 recombinant protein across species was assessed using ELISA. The binding of CM313 to CD38-positive (CD38+) cells was detected using flow cytometry assays. CM313-induced complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and apoptosis on different CD38+ cells were assessed by LDH release assays or flow cytometry assays. The effect of CM313 on CD38 enzymatic activity was measured using fluorescence spectroscopy. CM313 immunotoxicity in human blood was assessed using flow cytometry assays, ELISA, and LDH release assays. Anti-tumor activity of CM313 was assessed in multiple mouse xenograft models. Safety profile of CM313 were evaluated in cynomolgus monkeys and human CD38 transgenic (B-hCD38) mice. Results: There exist unique sequences at complementarity-determining regions (CDR) of CM313, which facilitates its affinity to CD38 is consistently higher across a spectrum of CD38+ cell lines than daratumumab. In vitro studies showed that CM313 induces comparable killing activity than daratumumab, including ADCC, CDC, ADCP, apoptosis induced by Fc-mediated cross-linking, and effectively inhibited the enzymatic activity of CD38. However, CM313 showed more potent CDC than isatuximab. In vivo, CM313 dose-dependently inhibited xenograft tumor growth, both as a monotherapy and in combination with dexamethasone or lenalidomide. Furthermore, CM313 was well tolerated with no drug-related clinical signs or off-target risks, as evidenced by 4-week repeat-dose toxicology studies in cynomolgus monkeys and B-hCD38 mice, with the later study showing no observed adverse effect level (NOAEL) of 300mg/kg once weekly. Discussion: CM313 is a novel investigational humanized mAb with a distinct CDR sequence, showing comparable killing effects with daratumumab and stronger CDC activity than isatuximab, which supports its clinical development.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal , Antibody-Dependent Cell Cytotoxicity , Animals , Female , Humans , Mice , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/drug effects , Antineoplastic Agents, Immunological/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Macaca fascicularis , Membrane Glycoproteins , Mice, Transgenic , Xenograft Model Antitumor Assays
13.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747919

ABSTRACT

BACKGROUND: For many years it has been postulated that the immune system controls the progress of multiple myeloma (MM). However, the phenotypes of T cells in MM remain to be elucidated. In this study, we compared the phenotypes of T cells, which were obtained from the peripheral blood, in MM patients with those in healthy donors (HD). The expression of CCR7, CD57, CD28, HLA-DR, CD38, CD45RA, and CD45RO were assessed on T cells from MM patients and HDs using multicolor flow cytometry (MFC). METHODS: For this study, 17 newly diagnosed MM patients were selected, and 20 healthy people were selected as a control group. MFC was used to detect the markers on T cells. RESULTS: We detected significant increases in the expression levels of HLA-DR, CD38, and CD57on CD8+ T cells, significant decreases in the expression levels of CD28 and CD45RA on CD8+ T cells, and a decrease of CD4+ effec-tor T cells in MM patients, compared to the HD group. CONCLUSIONS: Our study shows that the accumulation of peripheral CD8+CD57+T cells, CD8+CD38high T cells, and CD8+HLA-DR+CD38high T cells is reflective of an ongoing antitumor T cell response and a progressive immune dysfunction in MM. During chemotherapy, the recovery of immune function can be monitored by detecting the proportion of activated molecules of T lymphocytes.


Subject(s)
ADP-ribosyl Cyclase 1 , CD28 Antigens , Flow Cytometry , HLA-DR Antigens , Leukocyte Common Antigens , Multiple Myeloma , Female , Humans , Male , ADP-ribosyl Cyclase 1/metabolism , Case-Control Studies , CD28 Antigens/immunology , CD28 Antigens/metabolism , CD57 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , HLA-DR Antigens/immunology , HLA-DR Antigens/metabolism , HLA-DR Antigens/blood , Immunophenotyping/methods , Leukocyte Common Antigens/metabolism , Membrane Glycoproteins/immunology , Multiple Myeloma/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
14.
Cells ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786100

ABSTRACT

Current treatment strategies for multiple myeloma (MM) are highly effective, but most patients develop relapsed/refractory disease (RRMM). The anti-CD38/CD3xCD28 trispecific antibody SAR442257 targets CD38 and CD28 on MM cells and co-stimulates CD3 and CD28 on T cells (TCs). We evaluated different key aspects such as MM cells and T cells avidity interaction, tumor killing, and biomarkers for drug potency in three distinct cohorts of RRMM patients. We found that a significantly higher proportion of RRMM patients (86%) exhibited aberrant co-expression of CD28 compared to newly diagnosed MM (NDMM) patients (19%). Furthermore, SAR442257 mediated significantly higher TC activation, resulting in enhanced MM killing compared to bispecific functional knockout controls for all relapse cohorts (Pearson's r = 0.7). Finally, patients refractory to anti-CD38 therapy had higher levels of TGF-ß (up to 20-fold) compared to other cohorts. This can limit the activity of SAR442257. Vactoserib, a TGF-ß inhibitor, was able to mitigate this effect and restore sensitivity to SAR442257 in these experiments. In conclusion, SAR442257 has high potential for enhancing TC cytotoxicity by co-targeting CD38 and CD28 on MM and CD3/CD28 on T cells.


Subject(s)
ADP-ribosyl Cyclase 1 , Multiple Myeloma , T-Lymphocytes , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Multiple Myeloma/immunology , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/antagonists & inhibitors , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/drug effects , CD3 Complex/metabolism , CD28 Antigens/metabolism , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Cell Line, Tumor , Recurrence
15.
Expert Opin Biol Ther ; 24(5): 365-381, 2024 May.
Article in English | MEDLINE | ID: mdl-38757726

ABSTRACT

INTRODUCTION: Gain/amplification of 1q (+1q) represents one of the most prevalent cytogenetic abnormalities (CAs) observed in multiple myeloma (MM). Historical studies predating the advent of anti-CD38 monoclonal antibodies (moAbs) implicated + 1q in poor prognoses, prompting its integration into novel staging systems. However, with the emergence of daratumumab and isatuximab, two pivotal anti-CD38 moAbs, the landscape of MM therapy has undergone a profound transformation. AREAS COVERED: This review encompasses a comprehensive analysis of diverse study methodologies, including observational investigations, clinical trials, meta-analyses, and real-world database analyses. By synthesizing these data sources, we aim to provide an overview of the current understanding of + 1q in the context of anti-CD38 moAbs therapies. EXPERT OPINION: Despite the paucity of available data, evidence suggests a potential mitigating effect of daratumumab on the adverse prognostic implications of + 1q. However, this benefit seems to diminish in patients harboring ≥ 4 copies or with concurrent high-risk CAs. On the other hand, isatuximab demonstrated promising outcomes in the relapsed-refractory setting for + 1q MM patients. Nevertheless, direct comparison between the two compounds is currently challenging. The current evidence firmly supports the integration of anti-CD38 moAb-based therapies as the standard of care for + 1q patients, pending further elucidation.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/immunology , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/antagonists & inhibitors , ADP-ribosyl Cyclase 1/genetics , Antibodies, Monoclonal/therapeutic use , Chromosomes, Human, Pair 1/genetics , Membrane Glycoproteins , Antibodies, Monoclonal, Humanized
16.
Front Immunol ; 15: 1382977, 2024.
Article in English | MEDLINE | ID: mdl-38799465

ABSTRACT

CD38 antigen is a glycoprotein that found on the surface of several immune cells, and this property makes its monoclonal antibodies have the effect of targeted elimination of immune cells. Therefore, the CD38 monoclonal antibody (such as daratumumab, Isatuximab) becomes a new treatment option for membranous nephropathy, lupus nephritis, renal transplantation, and other refractory kidney diseases. This review summarizes the application of CD38 monoclonal antibodies in different kidney diseases and highlights future prospects.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal , Kidney Diseases , Humans , ADP-ribosyl Cyclase 1/immunology , ADP-ribosyl Cyclase 1/antagonists & inhibitors , ADP-ribosyl Cyclase 1/metabolism , Antibodies, Monoclonal/therapeutic use , Kidney Diseases/immunology , Animals , Membrane Glycoproteins/immunology , Membrane Glycoproteins/antagonists & inhibitors , Kidney Transplantation , Antibodies, Monoclonal, Humanized/therapeutic use
17.
Invest Ophthalmol Vis Sci ; 65(5): 36, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38776115

ABSTRACT

Purpose: The purpose of this study was to investigate the protective effect of CD38 deletion on retinal ganglion cells (RGCs) in a mouse retinal ischemia/reperfusion (I/R) model and an optic nerve crush (ONC) model, and to elucidate the underlying molecular mechanisms. Methods: Retinal I/R and ONC models were constructed in mice. PCR was used to identify the deletion of CD38 gene in mice, hematoxylin and eosin (H&E) staining was used to evaluate the changes in retinal morphology, and electroretinogram (ERG) was used to evaluate the changes in retinal function. The survival of RGCs and activation of retinal macroglia were evaluated by immunofluorescence staining. The expression of Sirt1, CD38, Ac-p65, Ac-p53, TNF-α, IL-1ß, and Caspase3 proteins in the retina was further evaluated by protein imprinting. Results: In retinal I/R and ONC models, CD38 deficiency reduced the loss of RGCs and activation of macroglia and protected the retinal function. CD38 deficiency increased the concentration of NAD+, reduced the degree of acetylation of NF-κB p65 and p53, and reduced expression of the downstream inflammatory cytokines TNFα, IL-1ß, and apoptotic protein Caspase3 in the retina in the ONC model. Intraperitoneal injection of the Sirt1 inhibitor EX-527 partially counteracted the effects of CD38 deficiency, suggesting that CD38 deficiency acts at least in part through the NAD+/Sirt1 pathway. Conclusions: CD38 plays an important role in the pathogenesis of retinal I/R and ONC injury. CD38 deletion protects RGCs by attenuating inflammatory responses and apoptosis through the NAD+/Sirt1 pathway.


Subject(s)
ADP-ribosyl Cyclase 1 , Disease Models, Animal , Mice, Inbred C57BL , NAD , Optic Nerve Injuries , Reperfusion Injury , Retinal Ganglion Cells , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Mice , NAD/metabolism , Optic Nerve Injuries/metabolism , Electroretinography , Nerve Crush , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Male , Signal Transduction/physiology
18.
Vox Sang ; 119(8): 785-791, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38705581

ABSTRACT

Certain therapies that target CD markers on some blood cells can affect pretransfusion testing. Key examples are anti-CD38, CD47 monoclonal antibody (mAb) therapies such as daratumumab (DARA) and magrolimab, which have presented a challenge for transfusion medicine laboratories around the globe. Scientists have been faced with not only introducing a protocol to provide safe blood to patients but also investigating the most effective method to remove the pretransfusion pan-agglutinating interference caused. A number of papers in the last 5 years have reported on various methods to remove pretransfusion interference; however, most of these studies have been conducted only in a few countries. Most recent reviews on this topic have focused on techniques and reagents to remove pretransfusion interference, and dithiothreitol is currently the gold standard for removing DARA interference. However, it was clear from this review that while many laboratories have developed processes for addressing interference in pretransfusion testing, and DARA interference may not be a major issue, there are still laboratories around the world, that may not have adequately addressed this issue. In addition, the impact of mAb interference on widely used techniques such as flow cytometry is unclear.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal , Humans , Antibodies, Monoclonal/therapeutic use , ADP-ribosyl Cyclase 1/antagonists & inhibitors , ADP-ribosyl Cyclase 1/immunology , Blood Transfusion , Membrane Glycoproteins/immunology , CD47 Antigen/antagonists & inhibitors , Flow Cytometry/methods
20.
Scand J Immunol ; 99(6): e13364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720521

ABSTRACT

Mucosal-associated invariant T-cells (MAIT) are unconventional T-cells with cytotoxic and pro-inflammatory properties. Previous research has reported contradictory findings on their role in cancerogenesis with data being even scarcer in haematological malignancies. Here, we report the results of a systematic analysis of MAIT cells in treatment-naïve patients with a broad range of haematological malignancies. We analysed peripheral blood of 204 patients and 50 healthy subjects. The pool of haematological patients had a statistically significant lower both the absolute value (median values, 0.01 × 109/L vs. 0.05 × 109/L) of MAIT cells and their percentage (median values 0.94% vs. 2.56%) among T-cells compared to the control group. Separate analysis showed that the decrease in the absolute number of MAIT cells is significant in patients with acute myeloid leukaemia, myeloproliferative neoplasms, plasma cell myeloma, B-cell non-Hodgkin lymphomas, otherwise not specified, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma compared to the control population. Furthermore, in haematological malignancies, MAIT cells overexpress PD-1 (average values, 51.7% vs. 6.7%), HLA-DR (average values, 40.2% vs. 7%), CD38 (average values, 25.9% vs. 4.9%) and CD69 (average values, 40.2% vs. 9.2%). Similar results were obtained when comparing patients with individual malignancies to the control population. Our data show that the depletion of circulating MAIT cells is a common observation in a broad spectrum of haematological malignancies. In addition to their reduced numbers, MAIT cells acquire an activated/exhausted phenotype.


Subject(s)
Hematologic Neoplasms , Mucosal-Associated Invariant T Cells , Programmed Cell Death 1 Receptor , Humans , Mucosal-Associated Invariant T Cells/immunology , Hematologic Neoplasms/immunology , Male , Female , Middle Aged , Aged , Adult , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Antigens, CD/metabolism , Aged, 80 and over , Antigens, Differentiation, T-Lymphocyte/metabolism , Lymphocyte Count , ADP-ribosyl Cyclase 1/metabolism , ADP-ribosyl Cyclase 1/immunology , Immunophenotyping , Young Adult , Membrane Glycoproteins/immunology , Lectins, C-Type
SELECTION OF CITATIONS
SEARCH DETAIL