Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.201
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999924

ABSTRACT

Acinetobacter baumannii represents a significant concern in nosocomial settings, particularly in critically ill patients who are forced to remain in hospital for extended periods. The challenge of managing and preventing this organism is further compounded by its increasing ability to develop resistance due to its extraordinary genomic plasticity, particularly in response to adverse environmental conditions. Its recognition as a significant public health risk has provided a significant impetus for the identification of new therapeutic approaches and infection control strategies. Indeed, currently used antimicrobial agents are gradually losing their efficacy, neutralized by newer and newer mechanisms of bacterial resistance, especially to carbapenem antibiotics. A deep understanding of the underlying molecular mechanisms is urgently needed to shed light on the properties that allow A. baumannii enormous resilience against standard therapies. Among the most promising alternatives under investigation are the combination sulbactam/durlobactam, cefepime/zidebactam, imipenem/funobactam, xeruborbactam, and the newest molecules such as novel polymyxins or zosurabalpin. Furthermore, the potential of phage therapy, as well as deep learning and artificial intelligence, offer a complementary approach that could be particularly useful in cases where traditional strategies fail. The fight against A. baumannii is not confined to the microcosm of microbiological research or hospital wards; instead, it is a broader public health dilemma that demands a coordinated, global response.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Bacterial/drug effects
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000144

ABSTRACT

A growing body of experimental data indicates that ceragenins (CSAs), which mimic the physicochemical properties of the host's cationic antimicrobial peptide, hold promise for the development of a new group of broad-spectrum antimicrobials. Here, using a set of in vivo experiments, we assessed the potential of ceragenins in the eradication of an important etiological agent of nosocomial infections, Acinetobacter baumannii. Assessment of the bactericidal effect of ceragenins CSA-13, CSA-44, and CSA-131 on clinical isolates of A. baumannii (n = 65) and their effectiveness against bacterial cells embedded in the biofilm matrix after biofilm growth on abiotic surfaces showed a strong bactericidal effect of the tested molecules regardless of bacterial growth pattern. AFM assessment of bacterial cell topography, bacterial cell stiffness, and adhesion showed significant membrane breakdown and rheological changes, indicating the ability of ceragenins to target surface structures of A. baumannii cells. In the cell culture of A549 lung epithelial cells, ceragenin CSA-13 had the ability to inhibit bacterial adhesion to host cells, suggesting that it interferes with the mechanism of bacterial cell invasion. These findings highlight the potential of ceragenins as therapeutic agents in the development of antimicrobial strategies against bacterial infections caused by A. baumannii.


Subject(s)
Acinetobacter baumannii , Bacterial Adhesion , Biofilms , Steroids , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Humans , Biofilms/drug effects , Biofilms/growth & development , Steroids/pharmacology , Steroids/chemistry , Bacterial Adhesion/drug effects , A549 Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology
3.
Article in English | MEDLINE | ID: mdl-38960471

ABSTRACT

Acinetobacter baumannii is a gram-negative bacterium well known for its multidrug resistance and connection to nosocomial infections under ESKAPE pathogens. This opportunistic pathogen is ubiquitously associated with nosocomial infections, posing significant threats within healthcare environments. Its critical clinical symptoms, namely, meningitis, urinary tract infections, bloodstream infections, ventilator-associated pneumonia, and pneumonia, catalyze the imperative demand for innovative therapeutic interventions. The proposed research focuses on delineating the role of Zinc, a crucial metallo-binding protein and micronutrient integral to bacterial metabolism and virulence, to enhance understanding of the pathogenicity of A. baumannii. RNA sequencing and subsequent DESeq2 analytical methods were used to identify differential gene expressions influenced by zinc exposure. Exploiting the STRING database for functional enrichment analysis has demonstrated the complex molecular mechanisms underlying the enhancement of pathogenicity prompted by Zinc. Moreover, hub genes like gltB, ribD, AIL77834.1, sdhB, nuoI, acsA_1, acoC, accA, accD were predicted using the cytohubba tool in Cytoscape. This investigation underscores the pivotal role of Zinc in the virulence of A. baumannii elucidates the underlying molecular pathways responsible for its pathogenicity. The research further accentuates the need for innovative therapeutic strategies to combat A. baumannii infections, particularly those induced by multidrug-resistant strains.


Subject(s)
Acinetobacter baumannii , Drug Resistance, Multiple, Bacterial , Zinc , Acinetobacter baumannii/genetics , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/metabolism , Zinc/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Virulence/genetics , Humans , Gene Expression Profiling , Transcriptome , Acinetobacter Infections/microbiology , Acinetobacter Infections/metabolism , Acinetobacter Infections/drug therapy , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
4.
Clin Transl Sci ; 17(7): e13876, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963161

ABSTRACT

Plerixafor is a CXCR4 antagonist approved in 2008 by the FDA for hematopoietic stem cell collection. Subsequently, plerixafor has shown promise as a potential pathogen-agnostic immunomodulator in a variety of preclinical animal models. Additionally, investigator-led studies demonstrated plerixafor prevents viral and bacterial infections in patients with WHIM syndrome, a rare immunodeficiency with aberrant CXCR4 signaling. Here, we investigated whether plerixafor could be repurposed to treat sepsis or severe wound infections, either alone or as an adjunct therapy. In a Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced zebrafish sepsis model, plerixafor reduced sepsis mortality and morbidity assessed by tail edema. There was a U-shaped response curve with the greatest effect seen at 0.1 µM concentration. We used Acinetobacter baumannii infection in a neutropenic murine thigh infection model. Plerixafor did not show reduced bacterial growth at 24 h in the mouse thigh model, nor did it amplify the effects of a rifampin antibiotic therapy, in varying regimens. While plerixafor did not mitigate or treat bacterial wound infections in mice, it did reduce sepsis mortality in zebra fish. The observed mortality reduction in our LPS model of zebrafish was consistent with prior research demonstrating a mortality benefit in a murine model of sepsis. However, based on our results, plerixafor is unlikely to be successful as an adjunct therapy for wound infections. Further research is needed to better define the scope of plerixafor as a pathogen-agnostic therapy. Future directions may include the use of longer acting CXCR4 antagonists, biased CXCR4 signaling, and optimization of animal models.


Subject(s)
Benzylamines , Cyclams , Disease Models, Animal , Heterocyclic Compounds , Receptors, CXCR4 , Sepsis , Zebrafish , Animals , Cyclams/pharmacology , Cyclams/administration & dosage , Benzylamines/pharmacology , Sepsis/drug therapy , Sepsis/microbiology , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/administration & dosage , Mice , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Thigh/microbiology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Female , Lipopolysaccharides , Wound Infection/microbiology , Wound Infection/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
5.
Clin Transl Sci ; 17(7): e13870, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952168

ABSTRACT

The AIDA randomized clinical trial found no significant difference in clinical failure or survival between colistin monotherapy and colistin-meropenem combination therapy in carbapenem-resistant Gram-negative infections. The aim of this reverse translational study was to integrate all individual preclinical and clinical pharmacokinetic-pharmacodynamic (PKPD) data from the AIDA trial in a pharmacometric framework to explore whether individualized predictions of bacterial burden were associated with the trial outcomes. The compiled dataset included for each of the 207 patients was (i) information on the infecting Acinetobacter baumannii isolate (minimum inhibitory concentration, checkerboard assay data, and fitness in a murine model), (ii) colistin plasma concentrations and colistin and meropenem dosing history, and (iii) disease scores and demographics. The individual information was integrated into PKPD models, and the predicted change in bacterial count at 24 h for each patient, as well as patient characteristics, was correlated with clinical outcomes using logistic regression. The in vivo fitness was the most important factor for change in bacterial count. A model-predicted growth at 24 h of ≥2-log10 (164/207) correlated positively with clinical failure (adjusted odds ratio, aOR = 2.01). The aOR for one unit increase of other significant predictors were 1.24 for SOFA score, 1.19 for Charlson comorbidity index, and 1.01 for age. This study exemplifies how preclinical and clinical anti-infective PKPD data can be integrated through pharmacodynamic modeling and identify patient- and pathogen-specific factors related to clinical outcomes - an approach that may improve understanding of study outcomes.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Meropenem , Microbial Sensitivity Tests , Humans , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Meropenem/pharmacokinetics , Meropenem/administration & dosage , Meropenem/pharmacology , Middle Aged , Female , Male , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Colistin/pharmacokinetics , Colistin/administration & dosage , Adult , Aged , Animals , Treatment Outcome , Mice , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Translational Research, Biomedical , Drug Therapy, Combination/methods , Models, Biological
6.
J Neuroimmune Pharmacol ; 19(1): 32, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886254

ABSTRACT

With the increasing resistance of Acinetobacter baumannii (A. baumannii) to antibiotics, researchers have turned their attention to the development of new antimicrobial agents. Among them, coumarin-based heterocycles have attracted much attention due to their unique biological activities, especially in the field of antibacterial infection. In this study, a series of coumarin derivatives were synthesized and screened for their bactericidal activities (Ren et al. 2018; Salehian et al. 2021). The inhibitory activities of these compounds on bacterial strains were evaluated, and the related mechanism of the new compounds was explored. Firstly, the MIC values and bacterial growth curves were measured after compound treatment to evaluate the antibacterial activity in vitro. Then, the in vivo antibacterial activities of the new compounds were assessed on A. baumannii-infected mice by determining the mice survival rates, counting bacterial CFU numbers, measuring inflammatory cytokine levels, and histopathology analysis. In addition, the ROS levels in the bacterial cells were measured with DCFH-DA detection kit. Furthermore, the potential target and detailed mechanism of the new compounds during infection disease therapy were predicted and evidenced with molecular docking. After that, ADMET characteristic prediction was completed, and novel, synthesizable, drug-effective molecules were optimized with reinforcement learning study based on the probed compound as a training template. The interaction between the selected structures and target proteins was further evidenced with molecular docking. This series of innovative studies provides important theoretical and experimental data for the development of new anti-A. baumannii infection drugs.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Coumarins , High-Throughput Screening Assays , Microbial Sensitivity Tests , Animals , Acinetobacter baumannii/drug effects , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/therapeutic use , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/therapeutic use , Acinetobacter Infections/drug therapy , High-Throughput Screening Assays/methods , Molecular Docking Simulation , Male , Mice, Inbred BALB C , Female
7.
PLoS One ; 19(6): e0305939, 2024.
Article in English | MEDLINE | ID: mdl-38913680

ABSTRACT

Current antimicrobial susceptibility testing (AST) requires 16-24 hours, delaying initiation of appropriate antibiotics. Hence, there is a need for rapid AST. This study aims to develop and evaluate the feasibility of a rapid flow cytometric AST assay to determine minimum inhibitory concentration (MIC) for carbapenem-resistant Acinetobacter baumannii (CRAB). Antibiotic exposure causes increased intracellular reactive oxygen species (ROS) in bacteria. We hypothesized that ROS can be used as a marker to determine MIC. We assessed three CRAB clinical isolates across fifteen antibiotics at various concentrations in a customized 96-well microtiter plate. The antibiotics assessed include amikacin, beta-lactams (ampicillin/sulbactam, aztreonam, cefepime, ceftolozane/tazobactam, doripenem, imipenem, meropenem, and piperacillin/tazobactam), levofloxacin, polymyxin B, rifampicin, trimethoprim/sulfamethoxazole, and tetracyclines (tigecycline and minocycline). These clinical CRAB isolates were assessed for ROS after antibiotic treatment. Increased ROS levels indicated by increased RedoxSensorTM Green (RSG) fluorescence intensity was assessed using flow cytometry (FCM). MIC was set as the lowest antibiotic concentration that gives a ≥1.5-fold increase in mode RSG fluorescence intensity (MICRSG). Accuracy of MICRSG was determined by comparing against microtiter broth dilution method performed under CLSI guidelines. ROS was deemed accurate in determining the MICs for ß-lactams (83.3% accuracy) and trimethoprim/sulfamethoxazole (100% accuracy). In contrast, ROS is less accurate in determining MICs for levofloxacin (33.3% accuracy), rifampicin (0% accuracy), amikacin (33.3% accuracy), and tetracyclines (33.3% accuracy). Collectively, this study described an FCM-AST assay to determine antibiotic susceptibility of CRAB isolates within 5 hours, reducing turnaround time up to 19 hours.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Flow Cytometry , Microbial Sensitivity Tests , Reactive Oxygen Species , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/metabolism , Flow Cytometry/methods , Microbial Sensitivity Tests/methods , Anti-Bacterial Agents/pharmacology , Reactive Oxygen Species/metabolism , Humans , Carbapenems/pharmacology , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy
8.
J Med Microbiol ; 73(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38842435

ABSTRACT

Introduction. Colistin (polymyxin E) has emerged as a last-resort treatment option for multidrug-resistant infections.Hypothesis/Gap Statement. Studies on the use, safety and efficacy of colistin in South Africa are limited.Aim. This study aims to describe the use of colistin and its clinical outcomes at a tertiary public hospital in South Africa.Methodology. We conducted a retrospective review of adult and paediatric patients who received parenteral colistin between 2015 and 2019.Results. A total of 69 patients (26 adults, 13 children and 30 neonates) were reviewed. Acinetobacter baumannii was the most common causative pathogen isolated (70.1 %). Colistin was predominately used to treat septicaemia (75.4 %). It was primarily administered as definitive therapy (71.0 %) and as monotherapy (56.5 %). It was used in 11.5 % of adults with infections susceptible to other antibiotics. Loading doses of intravenous colistin were administered in only 15 (57.7 %) adult patients. Neurotoxicity and nephrotoxicity occurred in 5.8 % and 43.5 % of patients, respectively. Clinical cure was achieved in 37 (53.6 %) patients. On multivariate logistic regression analysis, adults [adjusted odds ratio (aOR), 25.54; 95 % CI, 2.73-238.65; P < 0.01] and children (aOR, 8.56; 95 % CI, 1.06-69.10; P < 0.05) had higher odds of death than neonates.Conclusion. The study identified significant stewardship opportunities to improve colistin prescription and administration. Achieving optimal patient outcomes necessitates a multidisciplinary approach and vigilant monitoring of colistin use.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Stewardship , Colistin , Tertiary Care Centers , Humans , Colistin/administration & dosage , Colistin/therapeutic use , Tertiary Care Centers/statistics & numerical data , South Africa , Retrospective Studies , Female , Adult , Male , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Infant , Middle Aged , Infant, Newborn , Child , Child, Preschool , Acinetobacter baumannii/drug effects , Adolescent , Young Adult , Aged , Drug Resistance, Multiple, Bacterial , Acinetobacter Infections/drug therapy , Sepsis/drug therapy , Sepsis/microbiology
9.
Am J Case Rep ; 25: e943953, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831580

ABSTRACT

BACKGROUND Peritoneal dialysis (PD) serves as a critical renal replacement therapy for individuals with end-stage renal disease (ESRD), leveraging the peritoneum for fluid and substance exchange. Despite its effectiveness, PD is marred by complications such as peritonitis, which significantly impacts patient outcomes. The novelty of our report lies in the presentation of a rare case of PD-associated peritonitis caused by 2 unusual pathogens, emphasizing the importance of rigorous infection control measures. CASE REPORT We report on an 80-year-old African-American female patient with ESRD undergoing PD, who was admitted twice within 8 months for non-recurring episodes of peritonitis. These episodes were attributed to the rare pathogens Achromobacter denitrificans/xylosoxidans and Carbapenem-resistant Acinetobacter baumannii. Despite presenting with similar symptoms during each episode, such as abdominal pain and turbid dialysis effluent, the presence of these uncommon bacteria highlights the intricate challenges in managing infections associated with PD. The treatment strategy encompassed targeted antibiotic therapy, determined through susceptibility testing. Notably, the decision to remove the PD catheter followed extensive patient education, ensuring the patient comprehended the rationale behind this approach. This crucial step, along with the subsequent shift to hemodialysis, was pivotal in resolving the infection, illustrating the importance of patient involvement in the management of complex PD-related infections. CONCLUSIONS This case underscores the complexities of managing PD-associated peritonitis, particularly with uncommon and resistant bacteria. It emphasizes the importance of rigorous infection control measures, the need to consider atypical pathogens, and the critical role of patient involvement in treatment decisions. Our insights advocate for a more informed approach to handling such infections, aiming to reduce morbidity and improve patient outcomes. The examination of the literature on recurrent peritonitis and treatment strategies provides key perspectives for navigating these challenging cases effectively.


Subject(s)
Kidney Failure, Chronic , Peritoneal Dialysis , Peritonitis , Humans , Peritonitis/microbiology , Peritonitis/etiology , Female , Aged, 80 and over , Peritoneal Dialysis/adverse effects , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/complications , Acinetobacter baumannii , Achromobacter denitrificans , Anti-Bacterial Agents/therapeutic use , Gram-Negative Bacterial Infections/diagnosis , Acinetobacter Infections/drug therapy , Practice Guidelines as Topic
10.
Am J Trop Med Hyg ; 111(1): 136-140, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38834085

ABSTRACT

Acinetobacter baumannii (Ab) is a well-known nosocomial pathogen that has emerged as a cause of community-acquired pneumonia (CAP) in tropical regions. Few global epidemiological studies of CAP-Ab have been published to date, and no data are available on this disease in France. We conducted a retrospective chart review of severe cases of CAP-Ab admitted to intensive care units in Réunion University Hospital between October 2014 and October 2022. Eight severe CAP-Ab cases were reviewed. Median patient age was 56.5 years. Sex ratio (male-to-female) was 3:1. Six cases (75.0%) occurred during the rainy season. Chronic alcohol use and smoking were found in 75.0% and 87.5% of cases, respectively. All patients presented in septic shock and with severe acute respiratory distress syndrome. Seven patients (87.5%) presented in cardiogenic shock, and renal replacement therapy was required for six patients (75.0%). Five cases (62.5%) presented with bacteremic pneumonia. The mortality rate was 62.5%. The median time from hospital admission to death was 3 days. All patients received inappropriate initial antibiotic therapy. Acinetobacter baumannii isolates were all susceptible to ceftazidime, cefepime, piperacillin-tazobactam, ciprofloxacin, gentamicin, and imipenem. Six isolates (75%) were also susceptible to ticarcillin, piperacillin, and cotrimoxazole. Severe CAP-Ab has a fulminant course and high mortality. A typical case is a middle-aged man with smoking and chronic alcohol use living in a tropical region and developing severe CAP during the rainy season. This clinical presentation should prompt administration of antibiotic therapy targeting Ab.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Community-Acquired Infections , Humans , Male , Middle Aged , Female , Community-Acquired Infections/microbiology , Community-Acquired Infections/epidemiology , Community-Acquired Infections/drug therapy , Reunion/epidemiology , Acinetobacter Infections/epidemiology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/therapeutic use , Aged , Retrospective Studies , Adult , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/epidemiology , Pneumonia, Bacterial/complications , Pneumonia, Bacterial/drug therapy , Shock, Septic/microbiology , Shock, Septic/epidemiology , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/microbiology
11.
Eur J Med Res ; 29(1): 331, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38880888

ABSTRACT

BACKGROUND: Carbapenem-resistant Acinetobacter baumannii (CRAB) infections are one of the most common causes of nosocomial infections and have high mortality rates due to difficulties in treatment. In this study, the in vitro synergistic interactions of the colistin (CT)-meropenem (MEM) combination and patient clinical outcomes were compared in CRAB-infected patients that receive CT-MEM antimicrobial combination therapy. In addition, in vitro synergistic interactions of MEM-ertapenem (ETP), MEM-fosfomycin (FF) and CT-FF antimicrobial combinations were investigated. Finally, the epsilometer (E) test and checkerboard test results were compared and the compatibility of these two tests was evaluated. METHODS: Twenty-one patients were included in the study. Bacterial identification was performed with MALDI-TOF, and antimicrobial susceptibility was assessed with an automated system. Synergy studies were performed using the E test and checkerboard method. RESULTS: For the checkerboard method, the synergy rates for CT-MEM, MEM-FF, MEM-ETP and CT-FF were 100%, 52.3%, 23.8% and 28.5%, respectively. In the E test synergy tests, synergistic effects were detected for two isolates each in the CT-MEM and CT-FF combinations. Microbial eradication was achieved in nine (52.9%) of the 17 patients that received CT-MEM combination therapy. The agreement between the E test and the checkerboard test was 6.5%. CONCLUSIONS: A synergistic effect was found with the checkerboard method for the CT-MEM combination in all isolates in our study, and approximately 70% of the patients benefited from treatment with this combination. In addition, more than half of the isolates showed a synergistic effect for the MEM-FF combination. Combinations of CT-MEM and MEM-FF may be options for the treatment of CRAB infections. However, a comprehensive understanding of the potential of the microorganism to develop resistant mutants under applied exposures, as well as factors that directly affect antimicrobial activity, such as pharmacokinetics/pharmacodynamics, is essential for providing treatment advice. We found a low rate of agreement between the E test method and the checkerboard test method in our study, in contrast to the literature. Comprehensive studies that compare clinical results with methods are needed to determine the ideal synergy test and interpretation method.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Carbapenems , Colistin , Microbial Sensitivity Tests , Acinetobacter baumannii/drug effects , Humans , Colistin/pharmacology , Carbapenems/pharmacology , Male , Female , Middle Aged , Microbial Sensitivity Tests/methods , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Aged , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Adult , Drug Synergism , Aged, 80 and over , Drug Therapy, Combination/methods , Meropenem/pharmacology , Meropenem/administration & dosage
12.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38886125

ABSTRACT

AIMS: To investigate the genetic profile and characterize antimicrobial resistance, including the main ß-lactam antibiotic resistance genes, in Acinetobacterbaumannii isolates from a tertiary hospital in Recife-PE, Brazil, in the post-COVID-19 pandemic period. METHODS AND RESULTS: Acinetobacter baumannii isolates were collected between 2023 and 2024 from diverse clinical samples. Antimicrobial resistance testing followed standardized protocols, with ß-lactamase-encoding genes detected via PCR and sequencing. Investigation into ISAba1 upstream of blaOXA-carbapenemase and blaADC genes was also conducted. Genetic diversity was assessed through ERIC-PCR. Among the 78 A. baumannii, widespread resistance to multiple antimicrobials was evident. Various acquired ß-lactamase-encoding genes (blaOXA-23,-24,-58,-143, blaVIM, and blaNDM) were detected. Furthermore, this is the first report of blaVIM-2 in A. baumannii isolates harboring either the blaOXA-23-like or the blaOXA-143 gene in Brazil. Molecular typing revealed a high genetic heterogeneity among the isolates, and multi-clonal dissemination. CONCLUSION: The accumulation of genetic resistance determinants underscores the necessity for stringent infection control measures and robust antimicrobial stewardship programs to curb multidrug-resistant strains.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , COVID-19 , Microbial Sensitivity Tests , SARS-CoV-2 , Tertiary Care Centers , beta-Lactamases , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Brazil , Humans , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , SARS-CoV-2/genetics , Drug Resistance, Multiple, Bacterial/genetics , Bacterial Proteins/genetics , Male , Adult , Female , Middle Aged , Drug Resistance, Bacterial/genetics
13.
BMC Infect Dis ; 24(1): 631, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914964

ABSTRACT

BACKGROUND: Acinetobacter baumannii is a health threat due to its antibiotic resistance. Herein, antibiotic susceptibility and its association with the Toxin-antitoxin (TA) system genes in A. baumannii clinical isolates from Iran were investigated. Next, we prepared meropenem-loaded chitosan nanoparticles (MP-CS) and investigated their antibacterial effects against meropenem-susceptible bacterial isolates. METHODS: Out of 240 clinical specimens, 60 A. baumannii isolates were assessed. Antibiotic resistance of the isolates against conventional antibiotics was determined alongside investigating the presence of three TA system genes (mazEF, relBE, and higBA). Chitosan nanoparticles were characterized in terms of size, zeta potential, encapsulation efficiency, and meropenem release activity. Their antibacterial effects were assessed using the well diffusion method, minimum inhibitory concentration (MIC), and colony-forming unit (CFU) counting. Their cytotoxic effects and biocompatibility index were determined via the MTT, LDH, and ROS formation assays. RESULTS: Ampicillin, ceftazidime, and colistin were the least effective, and amikacin and tobramycin were the most effective antibiotics. Out of the 60 isolates, 10 (16.7%), 5 (8.3%), and 45 (75%) were multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR), respectively. TA system genes had no significant effect on antibiotic resistance. MP-CS nanoparticles demonstrated an average size of 191.5 and zeta potential of 27.3 mV alongside a maximum encapsulation efficiency of 88.32% and release rate of 69.57%. MP-CS nanoparticles mediated similar antibacterial effects, as compared with free meropenem, against the A. baumannii isolates with significantly lower levels of meropenem. MP-CS nanoparticles remarkably prevented A549 and NCI-H292 cell infection by the A. baumannii isolates alongside demonstrating a favorable biocompatibility index. CONCLUSION: Antibiotic-loaded nanoparticles should be further designed and investigated to increase their antibacterial effect against A. baumannii and assess their safety and applicability in vivo settings.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Chitosan , Meropenem , Microbial Sensitivity Tests , Nanoparticles , Acinetobacter baumannii/drug effects , Meropenem/pharmacology , Chitosan/pharmacology , Chitosan/chemistry , Chitosan/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Humans , Nanoparticles/chemistry , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy , Iran , Polyphosphates/pharmacology , Polyphosphates/chemistry
14.
ACS Infect Dis ; 10(6): 2239-2249, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38787939

ABSTRACT

Multidrug-resistant Acinetobacter baumannii is a serious threat pathogen rapidly spreading in clinics and causing a range of complicated human infections. The major contributor to A. baumannii antibiotic resistance is the overproduction of AdeIJK and AdeABC multidrug efflux pumps of the resistance-nodulation-division (RND) superfamily of proteins. The dominant role of efflux in antibiotic resistance and the relatively high permeability of the A. baumannii outer membrane to amphiphilic compounds make this pathogen a promising target for the discovery of clinically relevant efflux pump inhibitors. In this study, we identified 4,6-diaminoquoniline analogs with inhibitory activities against A. baumannii AdeIJK efflux pump and followed up on these compounds with a focused synthetic program to improve the target specificity and to reduce cytotoxicity. We identified several candidates that potentiate antibacterial activities of antibiotics erythromycin, tetracycline, and novobiocin not only in the laboratory antibiotic susceptible strain A. baumannii ATCC17978 but also in multidrug-resistant clinical isolates AB5075 and AYE. The best analogs potentiated the activities of antibiotics in low micromolar concentrations, did not have antibacterial activities on their own, inhibited AdeIJK-mediated efflux of its fluorescent substrate ethidium ion, and had low cytotoxicity in A549 human lung epithelial cells.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Acinetobacter baumannii/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy , Membrane Transport Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , A549 Cells , Drug Synergism
15.
Front Public Health ; 12: 1385118, 2024.
Article in English | MEDLINE | ID: mdl-38784576

ABSTRACT

Background: This study aimed to explore the risk factors for failed treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia (CRAB-VAP) with tigecycline and to establish a predictive model to predict the incidence of failed treatment and the prognosis of CRAB-VAP. Methods: A total of 189 CRAB-VAP patients were included in the safety analysis set from two Grade 3 A national-level hospitals between 1 January 2022 and 31 December 2022. The risk factors for failed treatment with CRAB-VAP were identified using univariate analysis, multivariate logistic analysis, and an independent nomogram to show the results. Results: Of the 189 patients, 106 (56.1%) patients were in the successful treatment group, and 83 (43.9%) patients were in the failed treatment group. The multivariate logistic model analysis showed that age (OR = 1.04, 95% CI: 1.02, 1.07, p = 0.001), yes. of hypoproteinemia (OR = 2.43, 95% CI: 1.20, 4.90, p = 0.013), the daily dose of 200 mg (OR = 2.31, 95% CI: 1.07, 5.00, p = 0.034), yes. of medication within 14 days prior to surgical intervention (OR = 2.98, 95% CI: 1.19, 7.44, p = 0.019), and no. of microbial clearance (OR = 0.31, 95% CI: 0.14, 0.70, p = 0.005) were risk factors for the failure of tigecycline treatment. Receiver operating characteristic (ROC) analysis showed that the AUC area of the prediction model was 0.745 (0.675-0.815), and the decision curve analysis (DCA) showed that the model was effective in clinical practice. Conclusion: Age, hypoproteinemia, daily dose, medication within 14 days prior to surgical intervention, and microbial clearance are all significant risk factors for failed treatment with CRAB-VAP, with the nomogram model indicating that high age was the most important factor. Because the failure rate of CRAB-VAP treatment with tigecycline was high, this prediction model can help doctors correct or avoid risk factors during clinical treatment.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Carbapenems , Pneumonia, Ventilator-Associated , Tigecycline , Treatment Failure , Humans , Acinetobacter baumannii/drug effects , Risk Factors , Male , Female , Middle Aged , Carbapenems/therapeutic use , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/microbiology , Anti-Bacterial Agents/therapeutic use , Aged , Logistic Models , Acinetobacter Infections/drug therapy , Tigecycline/therapeutic use , Adult , Retrospective Studies , China , Drug Resistance, Bacterial
16.
Int J Antimicrob Agents ; 64(1): 107190, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697579

ABSTRACT

BACKGROUND: Severe infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) have been reported increasingly over the past few years. Many in-vivo and in-vitro studies have suggested a possible role of intravenous fosfomycin for the treatment of CRAB infections. METHODS: This multi-centre, retrospective study included patients treated with intravenous fosfomycin for severe infections caused by CRAB admitted consecutively to four hospitals in Italy from December 2017 to December 2022. The primary goal of the study was to evaluate the risk factors associated with 30-day mortality in the study population. A propensity score matched analysis was added to the model. RESULTS: One hundred and two patients with severe infections caused by CRAB treated with an intravenous fosfomycin-containing regimen were enrolled in this study. Ventilator-associated pneumonia (VAP) was diagnosed in 59% of patients, primary bacteraemia in 22% of patients, and central-venous-catheter-related infection in 16% of patients. All patients were treated with a regimen containing intravenous fosfomycin, mainly in combination with cefiderocol (n=54), colistin (n=48) or ampicillin/sulbactam (n=18). Forty-eight (47%) patients died within 30 days. Fifty-eight (57%) patients experienced clinical therapeutic failure. Cox regression analysis showed that diabetes, primary bacteraemia and a colistin-containing regimen were independently associated with 30-day mortality, whereas adequate source control of infection, early 24-h active in-vitro therapy, and a cefiderocol-containing regimen were associated with survival. A colistin-based regimen, A. baumannii colonization and primary bacteraemia were independently associated with clinical failure. Conversely, adequate source control of infection, a cefiderocol-containing regimen, and early 24-h active in-vitro therapy were associated with clinical success. CONCLUSIONS: Different antibiotic regimens containing fosfomycin in combination can be used for treatment of severe infections caused by CRAB.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Administration, Intravenous , Anti-Bacterial Agents , Carbapenems , Fosfomycin , Pneumonia, Ventilator-Associated , Sulbactam , Humans , Fosfomycin/therapeutic use , Fosfomycin/administration & dosage , Acinetobacter baumannii/drug effects , Acinetobacter Infections/drug therapy , Acinetobacter Infections/mortality , Acinetobacter Infections/microbiology , Retrospective Studies , Male , Female , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Aged , Middle Aged , Carbapenems/therapeutic use , Sulbactam/therapeutic use , Sulbactam/administration & dosage , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/microbiology , Pneumonia, Ventilator-Associated/mortality , Colistin/therapeutic use , Colistin/administration & dosage , Italy , Ampicillin/therapeutic use , Ampicillin/administration & dosage , Cefiderocol , Aged, 80 and over , Drug Therapy, Combination , Bacteremia/drug therapy , Bacteremia/microbiology , Bacteremia/mortality , Drug Resistance, Multiple, Bacterial
17.
mSystems ; 9(6): e0032524, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38700330

ABSTRACT

Global challenges presented by multidrug-resistant Acinetobacter baumannii infections have stimulated the development of new treatment strategies. We reported that outer membrane protein W (OmpW) is a potential therapeutic target in A. baumannii. Here, a library of 11,648 natural compounds was subjected to a primary screening using quantitative structure-activity relationship (QSAR) models generated from a ChEMBL data set with >7,000 compounds with their reported minimal inhibitory concentration (MIC) values against A. baumannii followed by a structure-based virtual screening against OmpW. In silico pharmacokinetic evaluation was conducted to assess the drug-likeness of these compounds. The ten highest-ranking compounds were found to bind with an energy score ranging from -7.8 to -7.0 kcal/mol where most of them belonged to curcuminoids. To validate these findings, one lead compound exhibiting promising binding stability as well as favorable pharmacokinetics properties, namely demethoxycurcumin, was tested against a panel of A. baumannii strains to determine its antibacterial activity using microdilution and time-kill curve assays. To validate whether the compound binds to the selected target, an OmpW-deficient mutant was studied and compared with the wild type. Our results demonstrate that demethoxycurcumin in monotherapy and in combination with colistin is active against all A. baumannii strains. Finally, the compound was found to significantly reduce the A. baumannii interaction with host cells, suggesting its anti-virulence properties. Collectively, this study demonstrates machine learning as a promising strategy for the discovery of curcuminoids as antimicrobial agents for combating A. baumannii infections. IMPORTANCE: Acinetobacter baumannii presents a severe global health threat, with alarming levels of antimicrobial resistance rates resulting in significant morbidity and mortality in the USA, ranging from 26% to 68%, as reported by the Centers for Disease Control and Prevention (CDC). To address this threat, novel strategies beyond traditional antibiotics are imperative. Computational approaches, such as QSAR models leverage molecular structures to predict biological effects, expediting drug discovery. We identified OmpW as a potential therapeutic target in A. baumannii and screened 11,648 natural compounds. We employed QSAR models from a ChEMBL bioactivity data set and conducted structure-based virtual screening against OmpW. Demethoxycurcumin, a lead compound, exhibited promising antibacterial activity against A. baumannii, including multidrug-resistant strains. Additionally, demethoxycurcumin demonstrated anti-virulence properties by reducing A. baumannii interaction with host cells. The findings highlight the potential of artificial intelligence in discovering curcuminoids as effective antimicrobial agents against A. baumannii infections, offering a promising strategy to address antibiotic resistance.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Artificial Intelligence , Drug Discovery , Microbial Sensitivity Tests , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Humans , Quantitative Structure-Activity Relationship , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism
19.
Antimicrob Agents Chemother ; 68(7): e0029024, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38809000

ABSTRACT

We report the emergence of cefiderocol resistance in a blaOXA-72 carbapenem-resistant Acinetobacter baumannii isolate from a sacral decubitus ulcer. Cefiderocol was initially used; however, a newly approved sulbactam-durlobactam therapy with source control and flap coverage was successful in treating the infection. Laboratory investigation revealed cefiderocol resistance mediated by ISAba36 insertion into the siderophore receptor pirA.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Carbapenems , Cefiderocol , Cephalosporins , Microbial Sensitivity Tests , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Humans , Cephalosporins/pharmacology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Carbapenems/pharmacology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Sulbactam/pharmacology , Male , Drug Resistance, Multiple, Bacterial/genetics , Azabicyclo Compounds/pharmacology , DNA Transposable Elements/genetics , Bacterial Outer Membrane Proteins
20.
J Hosp Infect ; 149: 77-87, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710306

ABSTRACT

BACKGROUND: Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Acinetobacter baumannii infections pose challenges for clinical treatment and cause high mortality, particularly in intensive care units (ICUs). AIM: To systematically summarize and analyse the risk factors for MDR/XDR A. baumannii-infected patients admitted to ICUs. METHODS: PubMed, Embase, Web of Science, and the Cochrane Library were searched for eligible original studies published in English before October 2023. Meta-analysis was conducted where appropriate, with mean differences (MDs) and odds ratios (ORs) calculated for continuous and nominal scaled data. The quality of included studies was assessed using the Newcastle-Ottawa Scale (NOS). FINDINGS: Ten studies reporting 1199 ICU patients (604 from general ICUs, 435 from neonatal ICUs, and 160 from paediatric ICUs) from eight countries were included in our analysis. Risk factors associated with MDR A. baumannii infection among patients admitted to general ICUs included high Acute Physiology And Clinical Health II (APACHE Ⅱ) score (mean difference (MD): 7.52; 95% confidence interval (CI): 3.24-11.80; P = 0.0006), invasive procedures (odds ratio (OR): 3.47; 95% CI: 1.70-7.10; P = 0.0006), longer ICU stay (MD: 3.40; 95% CI: 2.94-3.86; P < 0.00001), and use of antibiotics (OR: 2.69; 95% CI: 1.22-5.94; P = 0.01). In the sub-group analysis, longer neonatal ICU stay (MD: 16.88; 95% CI: 9.79-23.97; P < 0.00001) was associated with XDR A. baumannii infection. CONCLUSION: Close attention should be paid to patients with longer ICU stays, undergoing invasive procedures, using antibiotics, and with high APACHE Ⅱ scores to reduce the risk of MDR and XDR A. baumannii infections.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Drug Resistance, Multiple, Bacterial , Intensive Care Units , Humans , Acinetobacter baumannii/drug effects , Acinetobacter Infections/epidemiology , Acinetobacter Infections/drug therapy , Anti-Bacterial Agents/therapeutic use , Cross Infection/epidemiology , Cross Infection/microbiology , Intensive Care Units/statistics & numerical data , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...