Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters











Publication year range
1.
Viruses ; 13(10)2021 10 15.
Article in English | MEDLINE | ID: mdl-34696514

ABSTRACT

Nuclear transport and vesicle trafficking are key cellular functions involved in the pathogenesis of RNA viruses. Among other pleiotropic effects on virus-infected host cells, ivermectin (IVM) inhibits nuclear transport mechanisms mediated by importins and atorvastatin (ATV) affects actin cytoskeleton-dependent trafficking controlled by Rho GTPases signaling. In this work, we first analyzed the response to infection in nasopharyngeal swabs from SARS-CoV-2-positive and -negative patients by assessing the gene expression of the respective host cell drug targets importins and Rho GTPases. COVID-19 patients showed alterations in KPNA3, KPNA5, KPNA7, KPNB1, RHOA, and CDC42 expression compared with non-COVID-19 patients. An in vitro model of infection with Poly(I:C), a synthetic analog of viral double-stranded RNA, triggered NF-κB activation, an effect that was halted by IVM and ATV treatment. Importin and Rho GTPases gene expression was also impaired by these drugs. Furthermore, through confocal microscopy, we analyzed the effects of IVM and ATV on nuclear to cytoplasmic importin α distribution, alone or in combination. Results showed a significant inhibition of importin α nuclear accumulation under IVM and ATV treatments. These findings confirm transcriptional alterations in importins and Rho GTPases upon SARS-CoV-2 infection and point to IVM and ATV as valid drugs to impair nuclear localization of importin α when used at clinically-relevant concentrations.


Subject(s)
Active Transport, Cell Nucleus/drug effects , Atorvastatin/pharmacology , COVID-19 Drug Treatment , Ivermectin/pharmacology , SARS-CoV-2/drug effects , alpha Karyopherins/metabolism , A549 Cells , Actin Cytoskeleton/drug effects , Animals , Antiviral Agents/pharmacology , Cell Line, Tumor , Chlorocebus aethiops , Drug Repositioning , HeLa Cells , Humans , NF-kappa B/metabolism , Vero Cells , rho GTP-Binding Proteins/metabolism
2.
Cells ; 10(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34209875

ABSTRACT

The plant hormone cytokinin (CK) plays central roles in plant development and throughout plant life. The perception of CKs initiating their signaling cascade is mediated by histidine kinase receptors (AHKs). Traditionally thought to be perceived mostly at the endoplasmic reticulum (ER) due to receptor localization, CK was recently reported to be perceived at the plasma membrane (PM), with CK and its AHK receptors being trafficked between the PM and the ER. Some of the downstream mechanisms CK employs to regulate developmental processes are unknown. A seminal report in this field demonstrated that CK regulates auxin-mediated lateral root organogenesis by regulating the endocytic recycling of the auxin carrier PIN1, but since then, few works have addressed this issue. Modulation of the cellular cytoskeleton and trafficking could potentially be a mechanism executing responses downstream of CK signaling. We recently reported that CK affects the trafficking of the pattern recognition receptor LeEIX2, influencing the resultant defense output. We have also recently found that CK affects cellular trafficking and the actin cytoskeleton in fungi. In this work, we take an in-depth look at the effects of CK on cellular trafficking and on the actin cytoskeleton in plant cells. We find that CK influences the actin cytoskeleton and endomembrane compartments, both in the context of defense signaling-where CK acts to amplify the signal-as well as in steady state. We show that CK affects the distribution of FLS2, increasing its presence in the plasma membrane. Furthermore, CK enhances the cellular response to flg22, and flg22 sensing activates the CK response. Our results are in agreement with what we previously reported for fungi, suggesting a fundamental role for CK in regulating cellular integrity and trafficking as a mechanism for controlling and executing CK-mediated processes.


Subject(s)
Actin Cytoskeleton/metabolism , Arabidopsis/immunology , Cytokinins/pharmacology , Actin Cytoskeleton/drug effects , Arabidopsis/drug effects , Arabidopsis/genetics , Biological Transport/drug effects , Endosomes/drug effects , Endosomes/metabolism , Flagellin/pharmacology , Models, Biological , Plant Epidermis/cytology , Plant Immunity/drug effects , Plant Proteins/metabolism , Plants, Genetically Modified , Receptors, Pattern Recognition/metabolism , Nicotiana/metabolism
3.
PLoS One ; 16(5): e0251411, 2021.
Article in English | MEDLINE | ID: mdl-33974655

ABSTRACT

Cells exert traction forces on the extracellular matrix to which they are adhered through the formation of focal adhesions. Spatial-temporal regulation of traction forces is crucial in cell adhesion, migration, cellular division, and remodeling of the extracellular matrix. By cultivating cells on polyacrylamide hydrogels of different stiffness we were able to investigate the effects of substrate stiffness on the generation of cellular traction forces by Traction Force Microscopy (TFM), and characterize the molecular dynamics of the focal adhesion protein zyxin by Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Recovery After Photobleaching (FRAP). As the rigidity of the substrate increases, we observed an increment of both, cellular traction generation and zyxin residence time at the focal adhesions, while its diffusion would not be altered. Moreover, we found a positive correlation between the traction forces exerted by cells and the residence time of zyxin at the substrate elasticities studied. We found that this correlation persists at the subcellular level, even if there is no variation in substrate stiffness, revealing that focal adhesions that exert greater traction present longer residence time for zyxin, i.e., zyxin protein has less probability to dissociate from the focal adhesion.


Subject(s)
Stress, Mechanical , Zyxin/chemistry , Actin Cytoskeleton/drug effects , Amides/pharmacology , Animals , Cattle , Cell Adhesion , Cytochalasin D/pharmacology , Endothelial Cells , Fluorescence Recovery After Photobleaching , Focal Adhesions , Green Fluorescent Proteins , Intravital Microscopy , Kinetics , Lasers , Mice , Mice, Inbred BALB C , Pyridines/pharmacology , Recombinant Fusion Proteins/chemistry , Vinculin/chemistry , rho-Associated Kinases/antagonists & inhibitors
4.
Dalton Trans ; 50(1): 323-335, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33305766

ABSTRACT

This work describes the synthesis of three new ruthenium(ii) complexes with gallic acid and derivatives of the general formula [Ru(L)(dppb)(bipy)]PF6, where L = gallate (GAC), benzoate (BAC), and esterified-gallate (EGA), bipy = 2,2'-bipyridine and dppb = 1,4-bis(diphenylphosphino)butane. The complexes were characterized by elemental analysis, molar conductivity, NMR, cyclic voltammetry, UV-vis and IR spectroscopy, and two of them by X-ray crystallography. Cell viability assays show promising results, indicating higher cytotoxicity of the complexes in MDA-MB-231 cells, a triple-negative breast cancer (TNBC) cell line, compared with the hormone-dependent MCF-7 cell line. Studies in vitro with the MDA-MB-231 cell line showed that only Ru(BAC) and Ru(GAC) interacted with BSA. Besides that, the Ru(GAC) complex, which has a polyphenolic acid, interacted in an apo-Tf structure and function dependent manner and it was able to inhibit the formation of reactive oxygen species. Ru(GAC) was able to cause damage to the cellular cytoskeleton leading to inhibition of some cellular processes of TNBC cells, such as invasion, migration, and adhesion.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Gallic Acid/pharmacology , Pyridines/pharmacology , Ruthenium/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Actin Cytoskeleton/drug effects , Animals , Apoproteins/metabolism , Biphenyl Compounds/chemistry , Cell Adhesion/drug effects , Cell Line , Cell Movement/drug effects , Cell Survival/drug effects , Coordination Complexes/chemistry , Gallic Acid/chemistry , Humans , Mice , Picrates/chemistry , Pyridines/chemistry , Ruthenium/chemistry , Serum Albumin, Bovine/metabolism , Transferrin/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
5.
Cells ; 9(4)2020 04 22.
Article in English | MEDLINE | ID: mdl-32331276

ABSTRACT

The ß-blocker propranolol (PROP) has been proposed as a repurposed treatment for breast cancer. The similarity of action between ß-agonists and antagonists found on breast cells encouraged us to compare PROP and isoproterenol (ISO, agonist) signaling pathways on a human breast cell line. Cell proliferation was measured by cell counting and DNA-synthesis. Cell adhesion was measured counting the cells that remained adhered to the plastic after different treatments. Changes in actin cytoskeleton were observed by fluorescence staining and Western Blot. ISO and PROP caused a diminution of cell proliferation and an increase of cell adhesion, reverted by the pure ß-antagonist ICI-118551. ISO and PROP induced a reorganization of actin cytoskeleton increasing F-actin, p-COFILIN and p-LIMK. While ISO elicited a marked enhancement of cAMP concentrations and an increase of vasodilator-stimulated phosphoprotein (VASP) and cAMP response element-binding protein (CREB) phosphorylation, PROP did not. Clathrin-mediated endocytosis inhibition or ß-arrestin1 dominant-negative mutant abrogated PROP-induced cell adhesion and COFILIN phosphorylation. The fact that PROP has been proposed as an adjuvant drug for breast cancer makes it necessary to determine the specific action of PROP in breast models. These results provide an explanation for the discrepancies observed between experimental results and clinical evidence.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Breast/cytology , Propranolol/pharmacology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Cell Adhesion/drug effects , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclic AMP/biosynthesis , Female , Humans , Isoproterenol/pharmacology , Lim Kinases/metabolism , Protein Stability/drug effects , Signal Transduction/drug effects , Time Factors
6.
Mol Cell Biochem ; 468(1-2): 129-142, 2020 May.
Article in English | MEDLINE | ID: mdl-32185674

ABSTRACT

Fibrosis process in the liver is a clinical condition established in response to chronic lesions and may be reversible in many situations. In this process, hepatic stellate cells (HSCs) activate and produce extracellular matrix compounds. During fibrosis, the lipid metabolism is also altered and contributes to the transdifferentiation of the HSCs. Thus, controlling lipid metabolism in HSCs is suggested as a method to control or reverse the fibrotic condition. In the search for therapies that modulate lipid metabolism and treat liver diseases, silymarin has been identified as a relevant natural compound to treat liver pathologies. The present study aimed to evaluate the cellular and molecular effects of silymarin in the transdifferentiation process of HSCs (LX-2) from activated phenotype to a more quiesced-like cells , also focusing on understanding the modulatory effects of silymarin on lipid metabolism of HSCs. In our analyses, 100 µM of silymarin reduced the synthesis of actin filaments in activated cells, the synthesis of the protein level of α-SMA, and other pro-fibrotic factors such as CTGF and PFGF. The concentration of 150 µM silymarin did not reverse the activation aspects of LX-2 cells. However, both evaluated concentrations of the natural compound protected the cells from the negative effects of dimethyl sulfoxide (DMSO). Furthermore, we evaluated lipid-related molecules correlated to the transdifferentiation process of LX-2, and 100 µM of silymarin demonstrated to control molecules associated with lipid metabolism such as FASN, MLYCD, ACSL4, CPTs, among others. In contrast, cellular incubation with 150 µM of silymarin increased the synthesis of long-chain fatty acids and triglycerides, regarding the higher presence of DMSO (v/v) in the solvent. In conclusion, silymarin acts as a hepatoprotective agent and modulates the pro-fibrogenic stimuli of LX-2 cells, whose effects depend on stress levels in the cellular environment.


Subject(s)
Cell Transdifferentiation/drug effects , Hepatic Stellate Cells/drug effects , Lipid Metabolism/genetics , Liver Cirrhosis/metabolism , Protective Agents/pharmacology , Silymarin/pharmacology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actins/genetics , Actins/metabolism , Cell Line , Chromatography, Gas , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Dimethyl Sulfoxide/toxicity , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Hepatic Stellate Cells/enzymology , Hepatic Stellate Cells/metabolism , Humans , Liver/metabolism , Liver/pathology , Liver Cirrhosis/genetics , Mass Spectrometry , Triglycerides/metabolism
7.
Cell Physiol Biochem ; 53(4): 713-730, 2019.
Article in English | MEDLINE | ID: mdl-31599538

ABSTRACT

BACKGROUND/AIMS: Renal injury related to hypertension is characterized by glomerular and tubulointerstitial damage. The overactivation of the renin-angiotensin system mainly by angiotensin II (AII) seems to be a main contributor to progressive renal fibrosis. Epithelial to mesenchymal transition (EMT) is a mechanism that promotes renal fibrosis. Owing to heat shock protein 70 (Hsp70) cytoprotective properties, the chaperone exhibits an important potential as a therapeutic target. We investigate the role of Hsp70 on Angiotensin II induced epithelial mesenchymal transition within the Losartan effect in proximal tubule cells (PTCs) from a genetic model of hypertension in rats (SHR). METHODS: Primary cell culture of PTCs from SHR and Wistar Kyoto (WKY) rats were stimulated with AII, treated with Losartan (L), (L+AII) or untreated (Cc). The functional Hsp70 role in Losartan effect, after silencing its expression by cell transfection, was determined by Immunofluorescence; Western blotting; Gelatin Zymography assays; Scratch wound assays; flow cytometry; and Live Cell Time-lapse microscopy. RESULTS: (L) and (L+AII) treatments induced highly organized actin filaments and increased cortical actin in SHR PTCs. However, SHR PTCs (Cc) and (AII) treated cells showed disorganized actin. After Hsp72 knockdown in SHR PTCs, (L) was unable to stabilize the actin cytoskeleton. We demonstrated that (L) and (L+AII) increased E-cadherin levels and decreased vinculin, α-SMA, vimentin, pERK, p38 and Smad2-3 activation compared to (AII) and (Cc) SHR PTCs. Moreover, (L) inhibited MMP-2 and MMP-9 secretion, reduced migration and cellular displacement, stabilizing intercellular junctions. Notably, (L) treatment in shHsp72 knockdown SHR PTCs showed results similar to SHR PTCs (Cc). CONCLUSION: Our results demonstrate that Losartan through Hsp70 inhibits the EMT induced by AII in proximal tubule cells derived from SHR.


Subject(s)
Angiotensin II/pharmacology , Epithelial-Mesenchymal Transition/drug effects , HSP70 Heat-Shock Proteins/metabolism , Losartan/pharmacology , Actin Cytoskeleton/drug effects , Animals , Cadherins/metabolism , Cell Movement/drug effects , Cells, Cultured , Focal Adhesions/drug effects , Gene Expression Regulation/drug effects , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/genetics , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/metabolism , Male , Matrix Metalloproteinase 2/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Vinculin/metabolism
8.
Cell Microbiol ; 21(10): e13071, 2019 10.
Article in English | MEDLINE | ID: mdl-31219662

ABSTRACT

Movement and phagocytosis are clue events in colonisation and invasion of tissues by Entamoeba histolytica, the protozoan causative of human amoebiasis. During phagocytosis, EhRab proteins interact with other functional molecules, conducting them to the precise cellular site. The gene encoding EhrabB is located in the complementary chain of the DNA fragment containing Ehcp112 and Ehadh genes, which encode for the proteins of the EhCPADH complex, involved in phagocytosis. This particular genetic organisation suggests that the three corresponding proteins may be functionally related. Here, we studied the relationship of EhRabB with EhCPADH and actin during phagocytosis. First, we obtained the EhRabB 3D structure to carry out docking analysis to predict the interaction sites involved in the EhRabB protein and the EhCPADH complex contact. By confocal microscopy, transmission electron microscopy, and immunoprecipitation assays, we revealed the interaction among these proteins when they move through different vesicles formed during phagocytosis. The role of the actin cytoskeleton in this event was also confirmed using Latrunculin A to interfere with actin polymerisation. This affected the movement of EhRabB and EhCPADH, as well as the rate of phagocytosis. Mutant trophozoites, silenced in EhrabB gene, evidenced the interaction of this molecule with EhCPADH and strengthened the role of actin during erythrophagocytosis.


Subject(s)
Actin Cytoskeleton/ultrastructure , Entamoeba histolytica/metabolism , Phagocytosis/genetics , Trophozoites/ultrastructure , rab GTP-Binding Proteins/chemistry , rab GTP-Binding Proteins/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actins/metabolism , Actins/ultrastructure , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Entamoeba histolytica/genetics , Entamoeba histolytica/pathogenicity , Entamoeba histolytica/ultrastructure , Erythrocytes/parasitology , Erythrocytes/ultrastructure , Humans , Microscopy, Electron, Transmission , Molecular Dynamics Simulation , Mutation , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Trophozoites/drug effects , Trophozoites/metabolism , rab GTP-Binding Proteins/genetics
9.
Apoptosis ; 24(7-8): 562-577, 2019 08.
Article in English | MEDLINE | ID: mdl-30941553

ABSTRACT

Breast cancer is the most frequently diagnosed cancer among women worldwide. Here, recombinant human lactoferrin (rhLf) expressed in Pichia pastoris was tested for its potential cytotoxic activity on a panel of six human breast cancer cell lines. The rhLf cytotoxic effect was determined via a live-cell HTS imaging assay. Also, confocal microscopy and flow cytometry protocols were employed to investigate the rhLf mode of action. The rhLf revealed an effective CC50 of 91.4 and 109.46 µg/ml on non-metastatic and metastatic MDA-MB-231 cells, with favorable selective cytotoxicity index values, 11.68 and 13.99, respectively. Moreover, rhLf displayed satisfactory SCI values on four additional cell lines, MDA-MB-468, HCC70, MCF-7 and T-47D (1.55-3.34). Also, rhLf provoked plasma membrane blebbing, chromatin condensation and cell shrinkage in MDA-MB-231 cells, being all three apoptosis-related morphological changes. Also, rhLf was able to shrink the microfilaments, forming a punctuated cytoplasmic pattern in both the MDA-MB-231 and Hs-27 cells, as visualized in confocal photomicrographs. Moreover, performing flow cytometric analysis, rhLf provoked significant phosphatidylserine externalization, cell cycle arrest in the S phase and apoptosis-induced DNA fragmentation in MDA-MB-231 cells. Hence, rhLf possesses selective cytotoxicity on breast cancer cells. Also, rhLf caused apoptosis-associated morphologic changes, disruption of F-actin cytoskeleton organization, phosphatidylserine externalization, DNA fragmentation, and arrest of the cell cycle progression on triple-negative breast cancer MDA-MB-231 cells. Overall results suggest that rhLf is using the apoptosis pathway as its mechanism to inflict cell death. Findings warranty further evaluation of rhLf as a potential anti-breast cancer drug option.


Subject(s)
Actin Cytoskeleton/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Lactoferrin/pharmacology , Triple Negative Breast Neoplasms/pathology , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Survival/drug effects , DNA Fragmentation/drug effects , Dose-Response Relationship, Drug , Humans , Lactoferrin/genetics , Lactoferrin/isolation & purification , Lactoferrin/metabolism , Phosphatidylserines/metabolism , Pichia/genetics , Pichia/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
10.
Chembiochem ; 20(18): 2390-2401, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31026110

ABSTRACT

Class 1 myosins (Myo1s) were the first unconventional myosins identified and humans have eight known Myo1 isoforms. The Myo1 family is involved in the regulation of gene expression, cytoskeletal rearrangements, delivery of proteins to the cell surface, cell migration and spreading. Thus, the important role of Myo1s in different biological processes is evident. In this study, we have investigated the effects of pentachloropseudilin (PClP), a reversible and allosteric potent inhibitor of Myo1s, on angiogenesis. We demonstrated that treatment of cells with PClP promoted a decrease in the number of vessels. The observed inhibition of angiogenesis is likely to be related to the inhibition of cell proliferation, migration and adhesion, as well as to alteration of the actin cytoskeleton pattern, as shown on a PClP-treated HUVEC cell line. Moreover, we also demonstrated that PClP treatment partially prevented the delivery of integrins to the plasma membrane. Finally, we showed that PClP caused DNA strand breaks, which are probably repaired during the cell cycle arrest in the G1 phase. Taken together, our results suggest that Myo1s participate directly in the angiogenesis process.


Subject(s)
Actin Cytoskeleton/drug effects , Angiogenesis Inhibitors/pharmacology , Cell Cycle/drug effects , Hydrocarbons, Chlorinated/pharmacology , Integrins/metabolism , Pyrroles/pharmacology , Angiogenesis Inhibitors/toxicity , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Hydrocarbons, Chlorinated/toxicity , Integrins/genetics , Myosin Type I/metabolism , Pyrroles/toxicity , RNA, Messenger/metabolism
11.
Biochim Biophys Acta Biomembr ; 1861(2): 387-402, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30423324

ABSTRACT

Hypertension (HTN), i.e. abnormally high blood pressure, is a major risk factor for heart attack, stroke, and kidney failure. The Epithelial Sodium Channel (ENaC), one of the main transporters regulates blood pressure by tightly controlling the sodium reabsorption along the nephron. Recently, we have shown an α-ENaC overexpression in platelets from hypertensive patients compared to platelets from normotensive subjects, suggesting it makes a contribution to the activation state of platelets and the physiopathology of hypertension. However, the involvement of the α-ENaC localized in neutrophils to this disease remains unknown. Neutrophils are the first leukocytes to be recruited to an inflammatory site and are equipped with a strong ability to eliminate intra- or extracellular pathogens using reactive oxygen species or antibacterial proteins contained in their granules. Using the Western blotting (Wb), flow cytometry, and qRT-PCR approaches; we determined α-ENaC neutrophil overexpression at the protein and messenger RNA (mRNA) levels. By confocal and cytometry analysis, we determined the α-ENaC distribution and the heterogeneity of HTN neutrophils population, respectively. Immunoprecipitation and Wb assays demonstrated the presence of both α-ENaC and caveolin-1 phosphorylated forms, compared with neutrophils from healthy individuals. Although neutrophils from hypertensive subjects circulating in an activated state were exhibiting important oxidative stress and modifications registered by confocal, atomic force, and scanning electron microscope, they conserved their defense capabilities. The features described above for neutrophils from hypertensive patients could be attributed to α-ENaC overexpression, as its drug inhibition diminished their activation state modulating the actin cytoskeleton reorganization triggered during the activation process.


Subject(s)
Epithelial Sodium Channels/metabolism , Hypertension/metabolism , Hypertension/pathology , Neutrophils/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Amiloride/pharmacology , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Biophysical Phenomena/drug effects , Case-Control Studies , Caveolin 1/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Epithelial Sodium Channels/genetics , Female , Humans , Hypertension/drug therapy , Hypertension/genetics , Male , Middle Aged , Neutrophil Activation/drug effects , Neutrophils/drug effects , Neutrophils/ultrastructure , Oxidative Stress/drug effects , Phosphorylation/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
Development ; 145(22)2018 11 21.
Article in English | MEDLINE | ID: mdl-30297374

ABSTRACT

Ric-8A is a pleiotropic guanine nucleotide exchange factor involved in the activation of various heterotrimeric G-protein pathways during adulthood and early development. Here, we sought to determine the downstream effectors of Ric-8A during the migration of the vertebrate cranial neural crest (NC) cells. We show that the Gα13 knockdown phenocopies the Ric-8A morphant condition, causing actin cytoskeleton alteration, protrusion instability, and a strong reduction in the number and dynamics of focal adhesions. In addition, the overexpression of Gα13 is sufficient to rescue Ric-8A-depleted cells. Ric-8A and Gα13 physically interact and colocalize in protrusions of the cells leading edge. The focal adhesion kinase FAK colocalizes and interacts with the endogenous Gα13, and a constitutively active form of Src efficiently rescues the Gα13 morphant phenotype in NC cells. We propose that Ric-8A-mediated Gα13 signalling is required for proper cranial NC cell migration by regulating focal adhesion dynamics and protrusion formation.


Subject(s)
Cell Movement , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesions/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Neural Crest/cytology , Signal Transduction , Xenopus Proteins/metabolism , Xenopus/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Animals , Cell Adhesion/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Movement/drug effects , Down-Regulation/drug effects , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Focal Adhesions/drug effects , Models, Biological , Morpholinos/pharmacology , Neural Crest/metabolism , Phenotype , Signal Transduction/drug effects , Xenopus/embryology , src-Family Kinases/metabolism
13.
Biochim Biophys Acta Gen Subj ; 1862(4): 816-824, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29305907

ABSTRACT

BACKGROUND: Class 3 semaphorins are soluble proteins involved in cell adhesion and migration. Semaphorin-3A (Sema3A) was initially shown to be involved in neuronal guidance, and it has also been reported to be associated with immune disorders. Both Sema3A and its receptors are expressed by most immune cells, including monocytes, macrophages, and lymphocytes, and these proteins regulate cell function. Here, we studied the correlation between Sema3A-induced changes in biophysical parameters of thymocytes, and the subsequent repercussions on cell function. METHODS: Thymocytes from mice were treated in vitro with Sema3A for 30min. Scanning electron microscopy was performed to assess cell morphology. Atomic force microscopy was performed to further evaluate cell morphology, membrane roughness, and elasticity. Flow cytometry and/or fluorescence microscopy were performed to assess the F-actin cytoskeleton and ROCK2. Cell adhesion to a bovine serum albumin substrate and transwell migration assays were used to assess cell migration. RESULTS: Sema3A induced filopodia formation in thymocytes, increased membrane stiffness and roughness, and caused a cortical distribution of the cytoskeleton without changes in F-actin levels. Sema3A-treated thymocytes showed reduced substrate adhesion and migratory ability, without changes in cell viability. In addition, Sema3A was able to down-regulate ROCK2. CONCLUSIONS: Sema3A promotes cytoskeletal rearrangement, leading to membrane modifications, including increased stiffness and roughness. This effect in turn affects the adhesion and migration of thymocytes, possibly due to a reduction in ROCK2 expression. GENERAL SIGNIFICANCE: Sema3A treatment impairs thymocyte migration due to biomechanical alterations in cell membranes.


Subject(s)
Biomechanical Phenomena/drug effects , Cell Movement/drug effects , Semaphorin-3A/pharmacology , Thymocytes/drug effects , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cells, Cultured , Mice, Inbred C57BL , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Pseudopodia/drug effects , Pseudopodia/metabolism , Pseudopodia/ultrastructure , Thymocytes/metabolism , Thymocytes/ultrastructure , rho-Associated Kinases/metabolism
14.
J Leukoc Biol ; 103(1): 87-98, 2018 01.
Article in English | MEDLINE | ID: mdl-28798145

ABSTRACT

Although essential for inflammatory responses, leukocyte recruitment to blood vessel walls in response to inflammatory stimuli, such as TNF-α, can contribute to vascular occlusion in inflammatory diseases, including atherosclerosis. We aimed to further characterize the mechanisms by which TNF stimulates adhesive and morphologic alterations in neutrophils. Microfluidic and intravital assays confirmed the potent effect that TNF has on human and murine neutrophil adhesion and recruitment in vitro and in vivo, respectively. Inhibition of actin polymerization by cytochalasin D significantly diminished TNF-induced human neutrophil adhesion in vitro and abolished TNF-induced membrane alterations and cell spreading. In contrast, TNF-induced increases in ß2-integrin (Mac-1 and LFA-1) expression was not significantly altered by actin polymerization inhibition. Consistent with a role for cytoskeletal rearrangements in TNF-induced adhesion, TNF augmented the activity of the Rho GTPase, RhoA, in human neutrophils. However, inhibition of the major RhoA effector protein, Rho kinase (ROCK), by Y-27632 failed to inhibit TNF-induced neutrophil adhesion. In contrast, the formin FH2 domain inhibitor, SMIFH2, abolished TNF-induced human neutrophil adhesion and diminished leukocyte recruitment in vivo. SMIFH2 also inhibited TNF-induced cytoskeletal reorganization in human neutrophils and abolished the alterations in ß2-integrin expression elicited by TNF stimulation. As such, Rho GTPase/mDia formin-mediated cytoskeletal reorganization appears to participate in the orchestration of TNF-induced neutrophil-adhesive interactions, possibly mediated by formin-mediated actin nucleation and subsequent modulation of ß2-integrin activity on the neutrophil surface. This pathway may represent a pharmacologic target for reducing leukocyte recruitment in inflammatory diseases.


Subject(s)
Actin Cytoskeleton/physiology , CD18 Antigens/metabolism , Cell Adhesion , Fetal Proteins/metabolism , Microfilament Proteins/metabolism , Neutrophils/physiology , Nuclear Proteins/metabolism , Tumor Necrosis Factor-alpha/pharmacology , rhoA GTP-Binding Protein/metabolism , Actin Cytoskeleton/drug effects , Adolescent , Adult , Animals , CD18 Antigens/genetics , Cells, Cultured , Fetal Proteins/genetics , Formins , Humans , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/genetics , Middle Aged , Neutrophils/cytology , Neutrophils/drug effects , Nuclear Proteins/genetics , Signal Transduction , Young Adult , rhoA GTP-Binding Protein/genetics
15.
J Histochem Cytochem ; 65(12): 723-741, 2017 12.
Article in English | MEDLINE | ID: mdl-28980852

ABSTRACT

Mast cells are multifunctional immune cells that participate in many important processes such as defense against pathogens, allergic reactions, and tissue repair. These cells perform their functions through the release of a wide variety of mediators. This release occurs mainly through cross-linking IgE (immunoglobulin E) bound to high affinity IgE receptors by multivalent antigens. The abundance of mast cells in connective tissue, surrounding blood vessels, and their involvement in the early stages of bone repair support the possibility of physiological and pathological interactions between mast cells and osteoblasts. However, the participation of mast cell mediators in osteogenesis is not fully understood. Therefore, the objective of this work was to investigate the role of mast cell mediators in the acquisition of the osteogenic phenotype in vitro. The results show that pooled mast cell mediators can affect proliferation, morphology, and cytoskeleton of osteoblastic cells, and impair the activity and expression of alkaline phosphatase as well as the expression of bone sialoprotein. Also, mast cell mediators inhibit the expression of mRNA for those proteins and inhibit the formation and maturation of calcium nodules and consequently inhibit mineralization. Therefore, mast cell mediators can modulate osteogenesis and are potential therapeutic targets for treatments of bone disorders.


Subject(s)
Cell Differentiation/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Mast Cells/cytology , Mast Cells/drug effects , Minerals/metabolism , Osteoblasts/cytology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Alkaline Phosphatase/genetics , Animals , Cell Line , Cell Proliferation/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Integrin-Binding Sialoprotein/genetics , Integrin-Binding Sialoprotein/metabolism , Mast Cells/metabolism , Osteoblasts/drug effects , Osteopontin/genetics , Protein Transport/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats
16.
Cell Mol Biol (Noisy-le-grand) ; 63(9): 13-17, 2017 Sep 30.
Article in English | MEDLINE | ID: mdl-28980916

ABSTRACT

Cetuximab is a chimeric monoclonal antibody that acts as a competitive antagonist, by binding to EGFR. This cell signalling pathways regulates tumor progression. The oral squamous cell carcinoma undergoes to regional spreading and distant metastasis. This study aimed to evaluate the effect of treatment with Cetuximab on cell migration and invasion in OSCC cells, by using the SCC-4 cell line. Cell migration and cell invasion assay were performed and actin cytoskeleton of control and treated with Cetuximab cells were evaluated. Differences were considered significant when p<0.05.Cetuximab inhibited the migration of SCC-4 cells at three concentrations: 1 µg/mL, 50 µg/mL and 100 µg/mL (p<0.0001) in a dose-dependent manner. The number of SCC-4 treated cells with 1 µg/mL that migrated through the membrane was statistically different from 50 µg/mL (p<0.001) and 100 µg/mL (p<0.0001), and between 50 µg/mL and 100 µg/mL (p<0.01). Cetuximab 50 µg/mL inhibited cell invasion through the MatrigelTM compared with SCC-4 control cells (p<0.01). Cetuximab 50 µg/mL affected the organization of the actin cytoskeleton. Cetuximab has an inhibitory effect on actin cytoskeleton organization, cell migration and invasion, suggesting that Cetuximab treatment can be important to avoid oral squamous cell carcinoma metastasis.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Carcinoma, Squamous Cell/drug therapy , Cell Movement/drug effects , Cetuximab/pharmacology , Mouth Neoplasms/drug therapy , Neoplasm Invasiveness/prevention & control , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/pathology , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Humans , Mouth Neoplasms/pathology , Neoplasm Invasiveness/pathology
17.
Colloids Surf B Biointerfaces ; 154: 341-349, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28365423

ABSTRACT

This paper evaluates how effectively chloroaluminum phthalocyanine (ClAlPc) entrapped in colloidal nanocarriers, such as nanocapsule (NC) and nanoemulsion (NE), induces photodamage in human prostate cancer cells (LNCaP) during photodynamic therapy (PDT). The MTT cell viability assay showed that both ClAlPc-NC and ClAlPc-NE induced phototoxicity and efficiently killed LNCaP cells at low ClAlPc-NC and ClAlPc-NE concentrations (0.3µgmL-1) as well as under low light doses of 4Jcm-2 and 7Jcm-2, respectively, upon PDT with a 670-nm diode laser line. Confocal imaging studies indicated that ClAlPc-NC and ClAlPc-NE were preferentially localized in the perinuclear region of LNCaP cells both in the dark and upon irradiation with laser light. After PDT treatment, ClAlPc-NC-treated LNCaP cells exhibited a higher green fluorescence signal, possibly due to the larger shrinkage of the actin cytoskeleton, compared to ClAlPc-NE-treated LNCaP cells. Additionally, ClAlPc-NC or ClAlPc-NE and mitochondria showed a relatively high co-localization level. The cellular morphology did not change in the dark, but confocal micrographs recorded after PDT revealed that LNCaP cells treated with ClAlPc-NC or ClAlPc-NE underwent morphological alterations. Our preliminary in vitro studies reinforced the hypothesis that biocompatible theranostic ClAlPc-loaded nanocarriers could act as an attractive photosensitizer system in PDT and could serve as an interesting molecular probe for the early diagnosis of prostate cancer and other carcinomas.


Subject(s)
Drug Carriers , Epithelial Cells/drug effects , Indoles/pharmacology , Mitochondria/drug effects , Nanocapsules/chemistry , Organometallic Compounds/pharmacology , Photosensitizing Agents/pharmacology , Actin Cytoskeleton/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Emulsions , Epithelial Cells/pathology , Epithelial Cells/ultrastructure , Humans , Light , Male , Microscopy, Confocal , Mitochondria/pathology , Mitochondria/ultrastructure , Nanocapsules/administration & dosage , Photochemotherapy/methods , Prostate/drug effects , Prostate/pathology , Prostate/ultrastructure , Theranostic Nanomedicine/methods
18.
Exp Cell Res ; 351(2): 173-181, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28034672

ABSTRACT

Mechanical properties of cells are known to be influenced by the actin cytoskeleton. In this article, the action of drugs that interact with the actin cortex is investigated by tether extraction and rheology experiments using optical tweezers. The influences of Blebbistatin, Cytochalasin D and Jasplakinolide on the cell mechanical properties are evaluated. The results, in contradiction to current views for Jasplakinolide, show that all three drugs and treatments destabilize the actin cytoskeleton, decreasing the cell membrane tension. The cell membrane bending modulus increased when the actin cytoskeleton was disorganized by Cytochalasin D. This effect was not observed for Blebbistatin and Jasplakinolide. All drugs decreased by two-fold the cell viscoelastic moduli, but only Cytochalasin D was able to alter the actin network into a more fluid-like structure. The results can be interpreted as the interplay between the actin network and the distribution of myosins as actin cross-linkers in the cytoskeleton. This information may contribute to a better understanding of how the membrane and cytoskeleton are involved in cell mechanical properties, underlining the role that each one plays in these properties.


Subject(s)
Actin Cytoskeleton/drug effects , Cytochalasin D/pharmacology , Depsipeptides/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Myosins/chemistry , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/ultrastructure , Animals , Biomechanical Phenomena , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/ultrastructure , Elasticity/drug effects , Humans , Mice , NIH 3T3 Cells , Optical Tweezers , Rheology , Viscosity/drug effects
19.
Oncol Rep ; 36(5): 2731-2736, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27633795

ABSTRACT

Limitless replicative potential is one of the hallmarks of cancer that is mainly due to the activity of telomerase. This holoenzyme maintains telomere length, adding TTAGGG repetitions at the end of chromosomes in each cell division. In addition to this function, there are extratelomeric roles of telomerase that are involved in cancer promoting events. It has been demonstrated that TERT, the catalytic component of telomerase, acts as a transcriptional modulator in many signaling pathways. Taking into account this evidence and our experience on the study of azidothymidine (AZT) as an inhibitor of telomerase activity, the present study analyzes the effect of AZT on some telomeric and extratelomeric activities. To carry out the present study, we evaluated the transcription of genes that are modulated by the Wnt/ß-catenin pathway, such as c-Myc and cyclin-D1 (Cyc-D1) and cell processes related with their expression, such as, proliferation, modifications of the actin cytoskeleton, cell migration and cell cycle in a mammary carcinoma cell line (F3II). Results obtained after treatment with AZT (600 µM) for 15 passages confirmed the inhibitory effect on telomerase. Regarding extratelomeric activities, our results showed a decrease of 64, 38 and 25% in the transcription of c-Myc, Cyc-D1 and TERT, respectively (p<0.05) after AZT treatment. Furthermore, we found an effect on cell migration, reaching an inhibition of 48% (p<0.05) and a significant passage-dependent increase on cell doubling time during treatment. Finally, we evaluated the effect on cell cycle, obtaining a decline in G0/G1 in AZT-treated cells. These results allow us to postulate that AZT is not only an inhibitor of telomerase activity, but also a potential modulator of extratelomeric processes involved in cancer promotion.


Subject(s)
Adenocarcinoma/drug therapy , Breast Neoplasms/drug therapy , Cyclin D1/biosynthesis , Proto-Oncogene Proteins c-myc/biosynthesis , Telomerase/genetics , Zidovudine/administration & dosage , Actin Cytoskeleton/drug effects , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Apoptosis/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Division/genetics , Cell Movement/drug effects , Cell Proliferation/drug effects , Cyclin D1/genetics , Disease Models, Animal , Female , Humans , Proto-Oncogene Proteins c-myc/genetics , Telomerase/antagonists & inhibitors , Telomerase/biosynthesis , Telomere Homeostasis/genetics , Wnt Signaling Pathway/drug effects , beta Catenin/genetics
20.
Neurosci Lett ; 630: 59-65, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27466020

ABSTRACT

Astrocytes are effectively involved in the pathophysiological processes in the central nervous system (CNS) and may contribute to or protect against development of inflammatory and degenerative diseases. Sildenafil is a potent and selective phosphodiesterase-5 (PDE-5) inhibitor, which induces cyclic GMP accumulation. However, the mechanisms of actions on glial cells are not clear. The aim of the present work is to evaluate the role of sildenafil in lipopolysaccharide (LPS)-stimulated astrocytes. The cytoskeleton integrity and Ca(2+) waves were assessed as indicators of inflammatory state. Two main groups were done: (A) one prevention and (B) one restoration. Each of these groups: A1: control; A2: LPS for 24h; A3: sildenafil 1 or 10µM for 4h and then sildenafil 1 or 10µM+LPS for 24h. B1: control; B2: LPS for 24h; B3: LPS for 24h and then LPS+sildenafil 1 or 10µM for 24h. Cytoskeleton integrity was analyzed through GFAP immunolabeling and actin labeling with an Alexa 488-conjugated phalloidin probe. Calcium responses were assessed through a Ca(2+)-sensitive fluorophore Fura-2/AM. The results show that both preventive and restorative treatments with sildenafil (in both concentrations) reduced the Ca(2+) responses in intensity and induced a more organized actin fiber pattern, compared to LPS treated cells. This work demonstrated for the first time that astrocytes are a key part of the sildenafil protective effects in the CNS.


Subject(s)
Astrocytes/drug effects , Calcium Signaling/drug effects , Cytoskeleton/drug effects , Encephalitis/prevention & control , Phosphodiesterase 5 Inhibitors/pharmacology , Sildenafil Citrate/pharmacology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Adenosine Triphosphate/pharmacology , Animals , Astrocytes/metabolism , Cells, Cultured , Encephalitis/chemically induced , Encephalitis/metabolism , Lipopolysaccharides , Rats
SELECTION OF CITATIONS
SEARCH DETAIL