Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92.279
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2403143121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959041

ABSTRACT

Currently, the nanofluidic synapse can only perform basic neuromorphic pulse patterns. One immediate problem that needs to be addressed to further its capability of brain-like computing is the realization of a nanofluidic spiking device. Here, we report the use of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate membrane to achieve bionic ionic current-induced spiking. In addition to the simulation of various electrical pulse patterns, our synapse could produce transmembrane ionic current-induced spiking, which is highly analogous to biological action potentials with similar phases and excitability. Moreover, the spiking properties could be modulated by ions and neurochemicals. We expect that this work could contribute to biomimetic spiking computing in solution.


Subject(s)
Action Potentials , Polystyrenes , Synapses , Action Potentials/physiology , Synapses/physiology , Polystyrenes/chemistry , Nanotechnology/methods , Nanotechnology/instrumentation
2.
Nat Commun ; 15(1): 5501, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951486

ABSTRACT

While light can affect emotional and cognitive processes of the medial prefrontal cortex (mPFC), no light-encoding was hitherto identified in this region. Here, extracellular recordings in awake mice revealed that over half of studied mPFC neurons showed photosensitivity, that was diminished by inhibition of intrinsically photosensitive retinal ganglion cells (ipRGCs), or of the upstream thalamic perihabenular nucleus (PHb). In 15% of mPFC photosensitive neurons, firing rate changed monotonically along light-intensity steps and gradients. These light-intensity-encoding neurons comprised four types, two enhancing and two suppressing their firing rate with increased light intensity. Similar types were identified in the PHb, where they exhibited shorter latency and increased sensitivity. Light suppressed prelimbic activity but boosted infralimbic activity, mirroring the regions' contrasting roles in fear-conditioning, drug-seeking, and anxiety. We posit that prefrontal photosensitivity represents a substrate of light-susceptible, mPFC-mediated functions, which could be ultimately studied as a therapeutical target in psychiatric and addiction disorders.


Subject(s)
Light , Mice, Inbred C57BL , Neurons , Prefrontal Cortex , Retinal Ganglion Cells , Animals , Prefrontal Cortex/physiology , Prefrontal Cortex/radiation effects , Prefrontal Cortex/cytology , Mice , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/radiation effects , Male , Neurons/physiology , Neurons/metabolism , Neurons/radiation effects , Photic Stimulation , Action Potentials/physiology
3.
Sci Rep ; 14(1): 15243, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956102

ABSTRACT

Cortical sensory processing is greatly impacted by internally generated activity. But controlling for that activity is difficult since the thalamocortical network is a high-dimensional system with rapid state changes. Therefore, to unwind the cortical computational architecture there is a need for physiological 'landmarks' that can be used as frames of reference for computational state. Here we use a waveshape transform method to identify conspicuous local field potential sharp waves (LFP-SPWs) in the somatosensory cortex (S1). LFP-SPW events triggered short-lasting but massive neuronal activation in all recorded neurons with a subset of neurons initiating their activation up to 20 ms before the LFP-SPW onset. In contrast, LFP-SPWs differentially impacted the neuronal spike responses to ensuing tactile inputs, depressing the tactile responses in some neurons and enhancing them in others. When LFP-SPWs coactivated with more distant cortical surface (ECoG)-SPWs, suggesting an involvement of these SPWs in global cortical signaling, the impact of the LFP-SPW on the neuronal tactile response could change substantially, including inverting its impact to the opposite. These cortical SPWs shared many signal fingerprint characteristics as reported for hippocampal SPWs and may be a biomarker for a particular type of state change that is possibly shared byboth hippocampus and neocortex.


Subject(s)
Neurons , Somatosensory Cortex , Animals , Somatosensory Cortex/physiology , Neurons/physiology , Touch/physiology , Action Potentials/physiology , Male , Touch Perception/physiology
4.
BMC Cardiovasc Disord ; 24(1): 340, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970012

ABSTRACT

Atrial flutter, a prevalent cardiac arrhythmia, is primarily characterized by reentrant circuits in the right atrium. However, atypical forms of atrial flutter present distinct challenges in terms of diagnosis and treatment. In this study, we examine three noteworthy clinical cases of atypical atrial flutter, which offer compelling evidence indicating the implication of the lesser-known Septopulmonary Bundle (SPB). This inference is based on the identification of distinct electrocardiographic patterns observed in these patients and their favorable response to catheter ablation, which is a standard treatment for atrial flutter. Remarkably, in each case, targeted ablation at the anterior portion of the left atrial roof effectively terminated the arrhythmia, thus providing further support for the hypothesis of SPB involvement. These insightful observations shed light on the potential significance of the SPB in the etiology of atypical atrial flutter and introduce a promising therapeutic target. We anticipate that this paper will stimulate further exploration into the role of the SPB in atrial flutter and pave the way for the development of targeted ablation strategies.


Subject(s)
Action Potentials , Atrial Flutter , Catheter Ablation , Electrocardiography , Heart Rate , Atrial Flutter/physiopathology , Atrial Flutter/diagnosis , Atrial Flutter/surgery , Atrial Flutter/therapy , Atrial Flutter/etiology , Humans , Male , Treatment Outcome , Middle Aged , Female , Aged , Pericardium/physiopathology , Electrophysiologic Techniques, Cardiac
5.
PLoS One ; 19(7): e0305248, 2024.
Article in English | MEDLINE | ID: mdl-38968219

ABSTRACT

Long QT Syndrome type 8 (LQT8) is a cardiac arrhythmic disorder associated with Timothy Syndrome, stemming from mutations in the CACNA1C gene, particularly the G406R mutation. While prior studies hint at CACNA1C mutations' role in ventricular arrhythmia genesis, the mechanisms, especially in G406R presence, are not fully understood. This computational study explores how the G406R mutation, causing increased transmural dispersion of repolarization, induces and sustains reentrant ventricular arrhythmias. Using three-dimensional numerical simulations on an idealized left-ventricular model, integrating the Bidomain equations with the ten Tusscher-Panfilov ionic model, we observe that G406R mutation with 11% and 50% heterozygosis significantly increases transmural dispersion of repolarization. During S1-S4 stimulation protocols, these gradients facilitate conduction blocks, triggering reentrant ventricular tachycardia. Sustained reentry pathways occur only with G406R mutation at 50% heterozygosis, while neglecting transmural heterogeneities of action potential duration prevents stable reentry, regardless of G406R mutation presence.


Subject(s)
Action Potentials , Calcium Channels, L-Type , Computer Simulation , Long QT Syndrome , Syndactyly , Humans , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Calcium Channels, L-Type/genetics , Syndactyly/genetics , Syndactyly/physiopathology , Mutation , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Heart Ventricles/physiopathology , Models, Cardiovascular , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/physiopathology
6.
PLoS One ; 19(7): e0306605, 2024.
Article in English | MEDLINE | ID: mdl-38968286

ABSTRACT

Delays in nerve transmission are an important topic in the field of neuroscience. Spike signals fired or received by the dendrites of a neuron travel from the axon to a presynaptic cell. The spike signal then triggers a chemical reaction at the synapse, wherein a presynaptic cell transfers neurotransmitters to the postsynaptic cell, regenerates electrical signals via a chemical reaction through ion channels, and transmits them to neighboring neurons. In the context of describing the complex physiological reaction process as a stochastic process, this study aimed to show that the distribution of the maximum time interval of spike signals follows extreme-order statistics. By considering the statistical variance in the time constant of the leaky Integrate-and-Fire model, a deterministic time evolution model for spike signals, we enabled randomness in the time interval of the spike signals. When the time constant follows an exponential distribution function, the time interval of the spike signal also follows an exponential distribution. In this case, our theory and simulations confirmed that the histogram of the maximum time interval follows the Gumbel distribution, one of the three forms of extreme-value statistics. We further confirmed that the histogram of the maximum time interval followed a Fréchet distribution when the time interval of the spike signal followed a Pareto distribution. These findings confirm that nerve transmission delay can be described using extreme value statistics and can therefore be used as a new indicator of transmission delay.


Subject(s)
Models, Neurological , Synaptic Transmission , Synaptic Transmission/physiology , Action Potentials/physiology , Neurons/physiology , Humans , Time Factors , Stochastic Processes , Computer Simulation
7.
Europace ; 26(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38970395

ABSTRACT

AIMS: Although electrical activity of the normal human heart is well characterized by the electrocardiogram, detailed insights into within-subject and between-subject variations of ventricular activation and recovery by noninvasive electroanatomic mapping are lacking. We characterized human epicardial activation and recovery within and between normal subjects using non-invasive electrocardiographic imaging (ECGI) as a basis to better understand pathology. METHODS AND RESULTS: Epicardial activation and recovery were assessed by ECGI in 22 normal subjects, 4 subjects with bundle branch block (BBB) and 4 with long-QT syndrome (LQTS). We compared characteristics between the ventricles [left ventricle (LV) and right ventricle (RV)], sexes, and age groups (<50/≥50years). Pearson's correlation coefficient (CC) was used for within-subject and between-subject comparisons. Age of normal subjects averaged 49 ± 14 years, 6/22 were male, and no structural/electrical heart disease was present. The average activation time was longer in LV than in RV, but not different by sex or age. Electrical recovery was similar for the ventricles, but started earlier and was on average shorter in males. Median CCs of between-subject comparisons of the ECG signals, activation, and recovery patterns were 0.61, 0.32, and 0.19, respectively. Within-subject beat-to-beat comparisons yielded higher CCs (0.98, 0.89, and 0.82, respectively). Activation and/or recovery patterns of patients with BBB or LQTS contrasted significantly with those found in the normal population. CONCLUSION: Activation and recovery patterns vary profoundly between normal subjects, but are stable individually beat to beat, with a male preponderance to shorter recovery. Individual characterization by ECGI at baseline serves as reference to better understand the emergence, progression, and treatment of electrical heart disease.


Subject(s)
Action Potentials , Bundle-Branch Block , Electrocardiography , Long QT Syndrome , Humans , Male , Female , Middle Aged , Adult , Bundle-Branch Block/physiopathology , Bundle-Branch Block/diagnosis , Long QT Syndrome/physiopathology , Long QT Syndrome/diagnosis , Heart Rate , Predictive Value of Tests , Aged , Case-Control Studies , Time Factors , Heart Ventricles/physiopathology , Heart Ventricles/diagnostic imaging , Age Factors , Epicardial Mapping
8.
Elife ; 122024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941139

ABSTRACT

Homeostatic plasticity represents a set of mechanisms that are thought to recover some aspect of neural function. One such mechanism called AMPAergic scaling was thought to be a likely candidate to homeostatically control spiking activity. However, recent findings have forced us to reconsider this idea as several studies suggest AMPAergic scaling is not directly triggered by changes in spiking. Moreover, studies examining homeostatic perturbations in vivo have suggested that GABAergic synapses may be more critical in terms of spiking homeostasis. Here, we show results that GABAergic scaling can act to homeostatically control spiking levels. We found that perturbations which increased or decreased spiking in cortical cultures triggered multiplicative GABAergic upscaling and downscaling, respectively. In contrast, we found that changes in AMPA receptor (AMPAR) or GABAR transmission only influence GABAergic scaling through their indirect effect on spiking. We propose that GABAergic scaling represents a stronger candidate for spike rate homeostat than AMPAergic scaling.


Subject(s)
Action Potentials , Receptors, AMPA , Receptors, AMPA/metabolism , Animals , Action Potentials/physiology , Synapses/physiology , Synapses/metabolism , Neuronal Plasticity/physiology , GABAergic Neurons/physiology , GABAergic Neurons/metabolism , Synaptic Transmission/physiology , Cells, Cultured , gamma-Aminobutyric Acid/metabolism , Homeostasis
9.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892248

ABSTRACT

Computational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity. The primary goal is to investigate if adding such realistic constraints could produce firing patterns similar to those measured in real neurons. Biological characteristics included in the work are excitability, connectivity, and synaptic signaling of neuron types defined primarily by their axonal and dendritic morphologies. We investigate the spiking dynamics in specific neuron types and the synaptic activities between groups of neurons. Modeling the rodent hippocampal formation keeps the simulations to a computationally reasonable scale while also anchoring the parameters and results to experimental measurements. Our model generates grid cell activity that well matches the spacing, size, and firing rates of grid fields recorded in live behaving animals from both published datasets and new experiments performed for this study. Our simulations also recreate different scales of those properties, e.g., small and large, as found along the dorsoventral axis of the medial entorhinal cortex. Computational exploration of neuronal and synaptic model parameters reveals that a broad range of neural properties produce grid fields in the simulation. These results demonstrate that the continuous attractor network model of grid cells is compatible with a spiking neural network implementation sourcing data-driven biophysical and anatomical parameters from Hippocampome.org. The software (version 1.0) is released as open source to enable broad community reuse and encourage novel applications.


Subject(s)
Action Potentials , Entorhinal Cortex , Grid Cells , Models, Neurological , Synapses , Animals , Grid Cells/physiology , Synapses/physiology , Entorhinal Cortex/physiology , Entorhinal Cortex/cytology , Action Potentials/physiology , Computer Simulation , Neurons/physiology , Neurons/cytology , Hippocampus/physiology , Hippocampus/cytology , Nerve Net/physiology , Nerve Net/cytology , Neural Networks, Computer
10.
Biosens Bioelectron ; 261: 116507, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38905857

ABSTRACT

In recent years, in vitro three-dimensional (3D) neuronal network models utilizing extracellular matrices have been advancing. To understand the network activity from these models, attempts have been made to measure activity in multiple regions simultaneously using a microelectrode array (MEA). Although there hve been many attempts to measure the activity of 3D networks using 2-dimensional (2D) MEAs, the physical coupling between the 3D network and the microelectrodes was not stable and needed to be improved. In this study, we proposed a neuronal cluster interface that improves the active channel ratio of commercial 2D MEAs, enabling reliable measurement of 3D network activity. To achieve this, neuronal clusters, which consist of a small number of neurons, were patterned on microelectrodes and used as mediators to transmit the signal between the 3D network and the microelectrodes. We confirmed that the patterned neuronal clusters enhanced the active channel ratio and SNR(signal-to-noise-ratio) about 3D network recording and stimulation for a month. Our interface was able to functionally connect with 3D networks and measure the 3D network activity without significant alternation of activity characteristics. Finally, we demonstrated that our interface can be used to analyze the differences in the dynamics of 3D and 2D networks and to construct the 3D clustered network. This method is expected to be useful for studying the functional activity of various 3D neuronal network models, offering broad applications for the use of these models.


Subject(s)
Microelectrodes , Nerve Net , Neurons , Neurons/physiology , Nerve Net/physiology , Animals , Biosensing Techniques/instrumentation , Rats , Action Potentials/physiology , Cells, Cultured , Equipment Design
11.
Cardiovasc Diabetol ; 23(1): 221, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926835

ABSTRACT

BACKGROUND: The incidence of myocardial infarction (MI) and sudden cardiac death (SCD) is significantly higher in individuals with Type 2 Diabetes Mellitus (T2DM) than in the general population. Strategies for the prevention of fatal arrhythmias are often insufficient, highlighting the need for additional non-invasive diagnostic tools. The T-wave heterogeneity (TWH) index measures variations in ventricular repolarization and has emerged as a promising predictor for severe ventricular arrhythmias. Although the EMPA-REG trial reported reduced cardiovascular mortality with empagliflozin, the underlying mechanisms remain unclear. This study investigates the potential of empagliflozin in mitigating cardiac electrical instability in patients with T2DM and coronary heart disease (CHD) by examining changes in TWH. METHODS: Participants were adult outpatients with T2DM and CHD who exhibited TWH > 80 µV at baseline. They received a 25 mg daily dose of empagliflozin and were evaluated clinically including electrocardiogram (ECG) measurements at baseline and after 4 weeks. TWH was computed from leads V4, V5, and V6 using a validated technique. The primary study outcome was a significant (p < 0.05) change in TWH following empagliflozin administration. RESULTS: An initial review of 6,000 medical records pinpointed 800 patients for TWH evaluation. Of these, 412 exhibited TWH above 80 µV, with 97 completing clinical assessments and 90 meeting the criteria for high cardiovascular risk enrollment. Empagliflozin adherence exceeded 80%, resulting in notable reductions in blood pressure without affecting heart rate. Side effects were generally mild, with 13.3% experiencing Level 1 hypoglycemia, alongside infrequent urinary and genital infections. The treatment consistently reduced mean TWH from 116 to 103 µV (p = 0.01). CONCLUSIONS: The EMPATHY-HEART trial preliminarily suggests that empagliflozin decreases heterogeneity in ventricular repolarization among patients with T2DM and CHD. This reduction in TWH may provide insight into the mechanism behind the decreased cardiovascular mortality observed in previous trials, potentially offering a therapeutic pathway to mitigate the risk of severe arrhythmias in this population. TRIAL REGISTRATION: NCT: 04117763.


Subject(s)
Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucosides , Sodium-Glucose Transporter 2 Inhibitors , Humans , Benzhydryl Compounds/therapeutic use , Benzhydryl Compounds/adverse effects , Glucosides/therapeutic use , Glucosides/adverse effects , Male , Female , Middle Aged , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Aged , Diabetes Mellitus, Type 2/mortality , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/physiopathology , Treatment Outcome , Time Factors , Action Potentials/drug effects , Arrhythmias, Cardiac/mortality , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/physiopathology , Heart Rate/drug effects , Coronary Disease/mortality , Coronary Disease/physiopathology , Coronary Disease/drug therapy , Coronary Disease/diagnosis , Electrocardiography , Risk Factors
12.
eNeuro ; 11(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38834302

ABSTRACT

Linked rhythmic behaviors, such as respiration/locomotion or swallowing/chewing, often require coordination for proper function. Despite its prevalence, the cellular mechanisms controlling coordination of the underlying neural networks remain undetermined in most systems. We use the stomatogastric nervous system of the crab Cancer borealis to investigate mechanisms of internetwork coordination, due to its small, well-characterized feeding-related networks (gastric mill [chewing, ∼0.1 Hz]; pyloric [filtering food, ∼1 Hz]). Here, we investigate coordination between these networks during the Gly1-SIFamide neuropeptide modulatory state. Gly1-SIFamide activates a unique triphasic gastric mill rhythm in which the typically pyloric-only LPG neuron generates dual pyloric-plus gastric mill-timed oscillations. Additionally, the pyloric rhythm exhibits shorter cycles during gastric mill rhythm-timed LPG bursts, and longer cycles during IC, or IC plus LG gastric mill neuron bursts. Photoinactivation revealed that LPG is necessary to shorten pyloric cycle period, likely through its rectified electrical coupling to pyloric pacemaker neurons. Hyperpolarizing current injections demonstrated that although LG bursting enables IC bursts, only gastric mill rhythm bursts in IC are necessary to prolong the pyloric cycle period. Surprisingly, LPG photoinactivation also eliminated prolonged pyloric cycles, without changing IC firing frequency or gastric mill burst duration, suggesting that pyloric cycles are prolonged via IC synaptic inhibition of LPG, which indirectly slows the pyloric pacemakers via electrical coupling. Thus, the same dual-network neuron directly conveys excitation from its endogenous bursting and indirectly funnels synaptic inhibition to enable one network to alternately decrease and increase the cycle period of a related network.


Subject(s)
Brachyura , Ganglia, Invertebrate , Neurons , Neuropeptides , Animals , Brachyura/physiology , Neuropeptides/pharmacology , Neuropeptides/metabolism , Neurons/physiology , Neurons/drug effects , Ganglia, Invertebrate/physiology , Ganglia, Invertebrate/drug effects , Action Potentials/physiology , Action Potentials/drug effects , Nerve Net/physiology , Nerve Net/drug effects , Male , Feeding Behavior/physiology , Feeding Behavior/drug effects , Pylorus/physiology , Pylorus/drug effects , Periodicity
13.
Cardiovasc Toxicol ; 24(7): 656-666, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851664

ABSTRACT

Antiviral therapies for treatment of COVID-19 may be associated with significant proarrhythmic potential. In the present study, the potential cardiotoxic side effects of these therapies were evaluated using a Langendorff model of the isolated rabbit heart. 51 hearts of female rabbits were retrogradely perfused, employing a Langendorff-setup. Eight catheters were placed endo- and epicardially to perform an electrophysiology study, thus obtaining cycle length-dependent action potential duration at 90% of repolarization (APD90), QT intervals and dispersion of repolarization. After generating baseline data, the hearts were assigned to four groups: In group 1 (HXC), hearts were treated with 1 µM hydroxychloroquine. Thereafter, 3 µM hydroxychloroquine were infused additionally. Group 2 (HXC + AZI) was perfused with 3 µM hydroxychloroquine followed by 150 µM azithromycin. In group 3 (LOP) the hearts were perfused with 3 µM lopinavir followed by 5 µM and 10 µM lopinavir. Group 4 (REM) was perfused with 1 µM remdesivir followed by 5 µM and 10 µM remdesivir. Hydroxychloroquine- and azithromycin-based therapies have a significant proarrhythmic potential mediated by action potential prolongation and an increase in dispersion. Lopinavir and remdesivir showed overall significantly less pronounced changes in electrophysiology. In accordance with the reported bradycardic events under remdesivir, it significantly reduced the rate of the ventricular escape rhythm.


Subject(s)
Action Potentials , Antiviral Agents , Isolated Heart Preparation , Animals , Rabbits , Female , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , Action Potentials/drug effects , COVID-19 Drug Treatment , Hydroxychloroquine/toxicity , Hydroxychloroquine/pharmacology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Cardiotoxicity , Alanine/analogs & derivatives , Alanine/pharmacology , Heart Rate/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/toxicity , Adenosine Monophosphate/pharmacology , Heart/drug effects
14.
Sci Rep ; 14(1): 14656, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918553

ABSTRACT

Humans and animals can learn new skills after practicing for a few hours, while current reinforcement learning algorithms require a large amount of data to achieve good performances. Recent model-based approaches show promising results by reducing the number of necessary interactions with the environment to learn a desirable policy. However, these methods require biological implausible ingredients, such as the detailed storage of older experiences, and long periods of offline learning. The optimal way to learn and exploit world-models is still an open question. Taking inspiration from biology, we suggest that dreaming might be an efficient expedient to use an inner model. We propose a two-module (agent and model) spiking neural network in which "dreaming" (living new experiences in a model-based simulated environment) significantly boosts learning. Importantly, our model does not require the detailed storage of experiences, and learns online the world-model and the policy. Moreover, we stress that our network is composed of spiking neurons, further increasing the biological plausibility and implementability in neuromorphic hardware.


Subject(s)
Models, Neurological , Neural Networks, Computer , Reinforcement, Psychology , Humans , Action Potentials/physiology , Neurons/physiology , Algorithms , Learning/physiology , Nerve Net/physiology , Animals , Computer Simulation
15.
Nat Commun ; 15(1): 5350, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914568

ABSTRACT

Organic artificial neurons operating in liquid environments are crucial components in neuromorphic bioelectronics. However, the current understanding of these neurons is limited, hindering their rational design and development for realistic neuronal emulation in biological settings. Here we combine experiments, numerical non-linear simulations, and analytical tools to unravel the operation of organic artificial neurons. This comprehensive approach elucidates a broad spectrum of biorealistic behaviors, including firing properties, excitability, wetware operation, and biohybrid integration. The non-linear simulations are grounded in a physics-based framework, accounting for ion type and ion concentration in the electrolytic medium, organic mixed ionic-electronic parameters, and biomembrane features. The derived analytical expressions link the neurons spiking features with material and physical parameters, bridging closer the domains of artificial neurons and neuroscience. This work provides streamlined and transferable guidelines for the design, development, engineering, and optimization of organic artificial neurons, advancing next generation neuronal networks, neuromorphic electronics, and bioelectronics.


Subject(s)
Electronics , Models, Neurological , Neurons , Neurons/physiology , Electronics/instrumentation , Action Potentials/physiology , Neural Networks, Computer
16.
Proc Natl Acad Sci U S A ; 121(25): e2318535121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865270

ABSTRACT

The heart beats approximately 100,000 times per day in humans, imposing substantial energetic demands on cardiac muscle. Adenosine triphosphate (ATP) is an essential energy source for normal function of cardiac muscle during each beat, as it powers ion transport, intracellular Ca2+ handling, and actin-myosin cross-bridge cycling. Despite this, the impact of excitation-contraction coupling on the intracellular ATP concentration ([ATP]i) in myocytes is poorly understood. Here, we conducted real-time measurements of [ATP]i in ventricular myocytes using a genetically encoded ATP fluorescent reporter. Our data reveal rapid beat-to-beat variations in [ATP]i. Notably, diastolic [ATP]i was <1 mM, which is eightfold to 10-fold lower than previously estimated. Accordingly, ATP-sensitive K+ (KATP) channels were active at physiological [ATP]i. Cells exhibited two distinct types of ATP fluctuations during an action potential: net increases (Mode 1) or decreases (Mode 2) in [ATP]i. Mode 1 [ATP]i increases necessitated Ca2+ entry and release from the sarcoplasmic reticulum (SR) and were associated with increases in mitochondrial Ca2+. By contrast, decreases in mitochondrial Ca2+ accompanied Mode 2 [ATP]i decreases. Down-regulation of the protein mitofusin 2 reduced the magnitude of [ATP]i fluctuations, indicating that SR-mitochondrial coupling plays a crucial role in the dynamic control of ATP levels. Activation of ß-adrenergic receptors decreased [ATP]i, underscoring the energetic impact of this signaling pathway. Finally, our work suggests that cross-bridge cycling is the largest consumer of ATP in a ventricular myocyte during an action potential. These findings provide insights into the energetic demands of EC coupling and highlight the dynamic nature of ATP concentrations in cardiac muscle.


Subject(s)
Adenosine Triphosphate , Calcium , Excitation Contraction Coupling , Heart Ventricles , Myocytes, Cardiac , Myocytes, Cardiac/metabolism , Adenosine Triphosphate/metabolism , Excitation Contraction Coupling/physiology , Animals , Calcium/metabolism , Heart Ventricles/metabolism , Heart Ventricles/cytology , Action Potentials/physiology , Sarcoplasmic Reticulum/metabolism , Heart Rate/physiology , Humans , KATP Channels/metabolism , Myocardial Contraction/physiology , Mice
17.
Proc Natl Acad Sci U S A ; 121(25): e2322475121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857404

ABSTRACT

Low temperatures and cooling agents like menthol induce cold sensation by activating the peripheral cold receptors TRPM8 and TRPA1, cation channels belonging to the TRP channel family, while the reduction of potassium currents provides an additional and/or synergistic mechanism of cold sensation. Despite extensive studies over the past decades to identify the molecular receptors that mediate thermosensation, cold sensation is still not fully understood and many cold-sensitive peripheral neurons do not express the well-established cold sensor TRPM8. We found that the voltage-gated potassium channel KCNQ1 (Kv7.1), which is defective in cardiac LQT1 syndrome, is, in addition to its known function in the heart, a highly relevant and sex-specific sensor of moderately cold temperatures. We found that KCNQ1 is expressed in skin and dorsal root ganglion neurons, is sensitive to menthol and cooling agents, and is highly sensitive to moderately cold temperatures, in a temperature range at which TRPM8 is not thermosensitive. C-fiber recordings from KCNQ1-/- mice displayed altered action potential firing properties. Strikingly, only male KCNQ1-/- mice showed substantial deficits in cold avoidance at moderately cold temperatures, with a strength of the phenotype similar to that observed in TRPM8-/- animals. While sex-dependent differences in thermal sensitivity have been well documented in humans and mice, KCNQ1 is the first gene reported to play a role in sex-specific temperature sensation. Moreover, we propose that KCNQ1, together with TRPM8, is a key instrumentalist that orchestrates the range and intensity of cold sensation.


Subject(s)
Cold Temperature , KCNQ1 Potassium Channel , Animals , Male , Female , Mice , KCNQ1 Potassium Channel/metabolism , KCNQ1 Potassium Channel/genetics , Mice, Knockout , Ganglia, Spinal/metabolism , Thermosensing/physiology , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Mice, Inbred C57BL , Action Potentials/physiology , Sex Characteristics , Menthol/pharmacology
18.
J Am Heart Assoc ; 13(12): e032357, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38842296

ABSTRACT

BACKGROUND: We recently demonstrated that acute administration of ibrutinib, a Bruton's tyrosine kinase inhibitor used in chemotherapy for blood malignancies, increases ventricular arrhythmia (VA) vulnerability. A pathway of ibrutinib-induced vulnerability to VA that can be modulated for cardioprotection remains unclear. METHODS AND RESULTS: The effects of ibrutinib on cardiac electrical activity and Ca2+ dynamics were investigated in Langendorff-perfused hearts using optical mapping. We also conducted Western blotting analysis to evaluate the impact of ibrutinib on various regulatory and Ca2+-handling proteins in rat cardiac tissues. Treatment with ibrutinib (10 mg/kg per day) for 4 weeks was associated with an increased VA inducibility (72.2%±6.3% versus 38.9±7.0% in controls, P<0.002) and shorter action potential durations during pacing at various frequencies (P<0.05). Ibrutinib also decreased heart rate thresholds for beat-to-beat duration alternans of the cardiac action potential (P<0.05). Significant changes in myocardial Ca2+ transients included lower amplitude alternans ratios (P<0.05), longer times-to-peak (P<0.05), and greater spontaneous intracellular Ca2+ elevations (P<0.01). We also found lower abundance and phosphorylation of myocardial AMPK (5'-adenosine monophosphate-activated protein kinase), indicating reduced AMPK activity in hearts after ibrutinib treatment. An acute treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside ameliorated abnormalities in action potential and Ca2+ dynamics, and significantly reduced VA inducibility (37.1%±13.4% versus 72.2%±6.3% in the absence of 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside, P<0.05) in hearts from ibrutinib-treated rats. CONCLUSIONS: VA vulnerability inflicted by ibrutinib may be mediated in part by an impairment of myocardial AMPK activity. Pharmacological activation of AMPK may be a protective strategy against ibrutinib-induced cardiotoxicity.


Subject(s)
AMP-Activated Protein Kinases , Action Potentials , Adenine , Arrhythmias, Cardiac , Piperidines , Pyrazoles , Pyrimidines , Animals , Adenine/analogs & derivatives , Adenine/pharmacology , Piperidines/pharmacology , Action Potentials/drug effects , Pyrimidines/pharmacology , AMP-Activated Protein Kinases/metabolism , Pyrazoles/pharmacology , Male , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , Protein Kinase Inhibitors/pharmacology , Heart Rate/drug effects , Isolated Heart Preparation , Calcium/metabolism , Rats , Disease Models, Animal , Rats, Sprague-Dawley , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Calcium Signaling/drug effects , Time Factors
19.
JCI Insight ; 9(12)2024 May 21.
Article in English | MEDLINE | ID: mdl-38912580

ABSTRACT

Peripheral nerve injury-induced neuronal hyperactivity in the dorsal root ganglion (DRG) participates in neuropathic pain. The calcium-activated potassium channel subfamily N member 1 (KCNN1) mediates action potential afterhyperpolarization (AHP) and gates neuronal excitability. However, the specific contribution of DRG KCNN1 to neuropathic pain is not yet clear. We report that chronic constriction injury (CCI) of the unilateral sciatic nerve or unilateral ligation of the fourth lumbar nerve produced the downregulation of Kcnn1 mRNA and KCNN1 protein in the injured DRG. This downregulation was partially attributed to a decrease in DRG estrogen-related receptor gamma (ESRRG), a transcription factor, which led to reduced binding to the Kcnn1 promoter. Rescuing this downregulation prevented CCI-induced decreases in total potassium voltage currents and AHP currents, reduced excitability in the injured DRG neurons, and alleviated CCI-induced development and maintenance of nociceptive hypersensitivities, without affecting locomotor function and acute pain. Mimicking the CCI-induced DRG KCNN1 downregulation resulted in augmented responses to mechanical, heat, and cold stimuli in naive mice. Our findings indicate that ESRRG-controlled downregulation of DRG KCNN1 is likely essential for the development and maintenance of neuropathic pain. Thus, KCNN1 may serve as a potential target for managing this disorder.


Subject(s)
Down-Regulation , Ganglia, Spinal , Neuralgia , Sensory Receptor Cells , Animals , Neuralgia/metabolism , Neuralgia/genetics , Ganglia, Spinal/metabolism , Mice , Sensory Receptor Cells/metabolism , Male , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/genetics , Mice, Inbred C57BL , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Disease Models, Animal , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Action Potentials
20.
Proc Natl Acad Sci U S A ; 121(27): e2311893121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38913890

ABSTRACT

In the quest to model neuronal function amid gaps in physiological data, a promising strategy is to develop a normative theory that interprets neuronal physiology as optimizing a computational objective. This study extends current normative models, which primarily optimize prediction, by conceptualizing neurons as optimal feedback controllers. We posit that neurons, especially those beyond early sensory areas, steer their environment toward a specific desired state through their output. This environment comprises both synaptically interlinked neurons and external motor sensory feedback loops, enabling neurons to evaluate the effectiveness of their control via synaptic feedback. To model neurons as biologically feasible controllers which implicitly identify loop dynamics, infer latent states, and optimize control we utilize the contemporary direct data-driven control (DD-DC) framework. Our DD-DC neuron model explains various neurophysiological phenomena: the shift from potentiation to depression in spike-timing-dependent plasticity with its asymmetry, the duration and adaptive nature of feedforward and feedback neuronal filters, the imprecision in spike generation under constant stimulation, and the characteristic operational variability and noise in the brain. Our model presents a significant departure from the traditional, feedforward, instant-response McCulloch-Pitts-Rosenblatt neuron, offering a modern, biologically informed fundamental unit for constructing neural networks.


Subject(s)
Models, Neurological , Neurons , Neurons/physiology , Humans , Neuronal Plasticity/physiology , Action Potentials/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...