Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.521
Filter
1.
BMC Pharmacol Toxicol ; 25(1): 63, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243105

ABSTRACT

The impact of Sodium Houttuyniae (SH) on lipopolysaccharide (LPS)-induced ALI has been investigated extensively. However, it remains ambiguous whether ferroptosis participates in this process. This study aimed to find out the impacts and probable mechanisms of SH on LPS-induced ferroptosis. A rat ALI model and type II alveolar epithelial (ATII) cell injury model were treated with LPS. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, and Giemsa staining were executed to ascertain the effects of SH on LPS-induced ALI. Moreover, Transmission electron microscopy, Cell Counting Kit-8 (CCK8), ferrous iron colorimetric assay kit, Immunohistochemistry, Immunofluorescence, Reactive oxygen species assay kit, western blotting (Wb), and qRT-PCR examined the impacts of SH on LPS-induced ferroptosis and ferroptosis-related pathways. Theresults found that by using SH treatment, there was a remarkable attenuation of ALI by suppressing LPS-induced ferroptosis. Ferroptosis was demonstrated by a decline in the levels of glutathione peroxidase 4 (GPX4), FTH1, and glutathione (GSH) and a surge in the accumulation of malondialdehyde (MDA), reactive oxygen species (ROS), NOX1, NCOA4, and Fe2+, and disruption of mitochondrial structure, which were reversed by SH treatment. SH suppressed ferroptosis by regulating TRAF6-c-Myc in ALI rats and rat ATII cells. The results suggested that SH treatment attenuated LPS-induced ALI by repressing ferroptosis, and the mode of action can be linked to regulating the TRAF6-c-Myc signaling pathway in vivo and in vitro.


Subject(s)
Acute Lung Injury , Ferroptosis , Lipopolysaccharides , Proto-Oncogene Proteins c-myc , Rats, Sprague-Dawley , Signal Transduction , TNF Receptor-Associated Factor 6 , Animals , Lipopolysaccharides/toxicity , Ferroptosis/drug effects , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Signal Transduction/drug effects , Male , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Rats , Reactive Oxygen Species/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
2.
ACS Nano ; 18(32): 21009-21023, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39087239

ABSTRACT

Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), induce high morbidity and mortality rates, which challenge the present approaches for the treatment of ALI/ARDS. The clinically used photosensitizer verteporfin (VER) exhibits great potential in the treatment of acute lung injury and acute respiratory distress syndrome (ALI/ARDS) by regulating macrophage polarization and reducing inflammation. Nevertheless, its hydrophobic characteristics, nonspecificity, and constrained bioavailability hinder its therapeutic efficacy. In this work, we developed a type of VER-cored artificial exosome (EVM), which was produced by using mesoporous silica nanoparticles (MSNs) to load VER, followed by the exocytosis of internalized VER-MSNs from mouse bone marrow-derived mesenchymal stem cells (mBMSCs) without further modification. Both in vitro and in vivo assessments confirmed the powerful anti-inflammation induced by EVM. EVM also showed significant higher accumulation to inflammatory lungs compared with healthy ones, which was beneficial to the treatment of ALI/ARDS. EVM improved pulmonary function, attenuated lung injury, and reduced mortality in ALI mice with high levels of biocompatibility, exhibiting a 5-fold higher survival rate than the control. This type of artificial exosome emitted near-infrared light in the presence of laser activation, which endowed EVM with trackable ability both in vitro and in vivo. Our work developed a type of clinically used photosensitizer-loaded artificial exosome with membrane integrity and traceability. To the best of our knowledge, this kind of intracellularly synthesized artificial exosome was developed and showed great potential in ALI/ARDS therapy.


Subject(s)
Acute Lung Injury , Exosomes , Silicon Dioxide , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Acute Lung Injury/therapy , Mice , Exosomes/metabolism , Exosomes/chemistry , Silicon Dioxide/chemistry , Verteporfin/pharmacology , Verteporfin/chemistry , Verteporfin/therapeutic use , Nanoparticles/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Male , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Porosity
3.
Nat Commun ; 15(1): 7241, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174557

ABSTRACT

Type 2 alveolar epithelial (AT2) cells of the lung are fundamental in regulating alveolar inflammation in response to injury. Impaired mitochondrial long-chain fatty acid ß-oxidation (mtLCFAO) in AT2 cells is assumed to aggravate alveolar inflammation in acute lung injury (ALI), yet the importance of mtLCFAO to AT2 cell function needs to be defined. Here we show that expression of carnitine palmitoyltransferase 1a (CPT1a), a mtLCFAO rate limiting enzyme, in AT2 cells is significantly decreased in acute respiratory distress syndrome (ARDS). In mice, Cpt1a deletion in AT2 cells impairs mtLCFAO without reducing ATP production and alters surfactant phospholipid abundance in the alveoli. Impairing mtLCFAO in AT2 cells via deleting either Cpt1a or Acadl (acyl-CoA dehydrogenase long chain) restricts alveolar inflammation in ALI by hindering the production of the neutrophilic chemokine CXCL2 from AT2 cells. This study thus highlights mtLCFAO as immunometabolism to injury in AT2 cells and suggests impaired mtLCFAO in AT2 cells as an anti-inflammatory response in ARDS.


Subject(s)
Acute Lung Injury , Alveolar Epithelial Cells , Carnitine O-Palmitoyltransferase , Fatty Acids , Mitochondria , Oxidation-Reduction , Respiratory Distress Syndrome , Animals , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Mitochondria/metabolism , Alveolar Epithelial Cells/metabolism , Fatty Acids/metabolism , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/immunology , Acute Lung Injury/genetics , Mice , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/genetics , Male , Humans , Chemokine CXCL2/metabolism , Chemokine CXCL2/genetics , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/metabolism , Mice, Knockout , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Inflammation/metabolism , Inflammation/pathology , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Pulmonary Alveoli/immunology , Adenosine Triphosphate/metabolism , Pneumonia/metabolism , Pneumonia/immunology , Pneumonia/pathology , Pneumonia/genetics
4.
PLoS One ; 19(8): e0308557, 2024.
Article in English | MEDLINE | ID: mdl-39178201

ABSTRACT

OBJECTIVES: To investigate the effect of dexamethasone (DXM) on acute lung and kidney injury with sepsis and its possible mechanism. METHODS: Control (NC), lipopolysaccharide (LPS) and lipopolysaccharide + dexamethasone (LPS+DXM) treated groups were established by random assignment of 72 Wistar rats. The NC rats were injected with physiological saline, while the LPS group was injected with LPS (5 mg/kg) and LPS+DXM group was injected with LPS(5 mg/kg) first and followed by DXM (1 mg/kg). Serum tumor necrosis factor-α (TNF-α) and serum macrophage inflammatory protein 1α (MIP-1α) were measured by ELISA. Lung wet/dry weight ratio, serum creatinine(SCR) and blood urea nitrogen(BUN) were determined at various time points. Hematoxylin Eosin staining (HE) for pathological changes in the lung and kidney. Radioimmunoassay was used to detect the levels of angiotensin II (Ang II) in plasma, lung and kidney tissues. Immunohistochemistry and western blot (WB) were used to detect angiotensin II receptor type 1 (AT1R) protein and angiotensin II receptor type 2 (AT2R) protein in lung and kidney tissues. The level of nitric oxide (NO) in serum, lung and kidney were detected using nitrate reductase method. RESULTS: Compared with control group, serum TNF-α, MIP-1α, SCR, BUN, lung W/D, Ang II level in plasma, lung and kidney, lung and kidney AT2R protein, NO level in serum, lung and kidney were significantly elevated(P<0.05) and pathological damage of lung and kidney tissues were showed in LPS group rats (P<0.05), whereas DXM down-regulated the above indexes and alleviate pathological damage of lung and kidney tissues. However, the expression of the lung and kidney AT1R protein was opposite to the above results. CONCLUSIONS: Sepsis can cause acute lung and kidney injury and changes RAAS components in circulating, lung and renal. DXM can improve acute lung and kidney injury in septic rats, and the mechanism may be related to the down-regulation of inflammatory factors, AngII, AT2R, NO and up-regulation of AT1R expression by DXM.


Subject(s)
Angiotensin II , Dexamethasone , Rats, Wistar , Sepsis , Animals , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Dexamethasone/pharmacology , Rats , Male , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Lung/pathology , Lung/metabolism , Lung/drug effects , Lipopolysaccharides , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Acute Lung Injury/prevention & control , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Receptor, Angiotensin, Type 1/metabolism , Nitric Oxide/metabolism , Receptor, Angiotensin, Type 2/metabolism , Blood Urea Nitrogen
5.
Eur J Pharmacol ; 980: 176817, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39089462

ABSTRACT

Infection-related lipopolysaccharide (LPS) release causes cytokine storm and acute lung injury. Emerging data show that the interleukin 6 (IL-6) inhibitor tocilizumab can improve lung damage in patients with sepsis. This study aimed to investigate the therapeutic effect of tocilizumab on acute lung injury in cirrhotic rats. Biliary cirrhosis was induced in Sprague-Dawley rats with common bile duct ligation (BDL). Sham-operated rats served as surgical controls. Tocilizumab was administered on post-operative day 21, and LPS was injected intraperitoneally on day 29. Three hours after LPS injection, hemodynamic parameters, biochemistry data, and arterial blood gas analysis were evaluated, along with measurements of IL-6 and tumor necrosis factor-α (TNF-α). Liver and lung histology was examined, and protein levels were analyzed. LPS administration reduced portal pressure, portal venous flow and cardiac index in the BDL rats. In addition, LPS administration induced acute lung injury, hypoxia and elevated TNF-α and IL-6 levels. Pre-treatment with tocilizumab did not affect hemodynamic and biochemistry data, but it ameliorated lung injury and decreased TNF-α, IL-6, and CD68-positive macrophage infiltration. Moreover, tocilizumab administration improved hypoxia and gas exchange in the BDL rats, and downregulated hepatic and pulmonary inflammatory protein expression. In conclusion, LPS administration induced acute lung injury in biliary cirrhotic rats. Pre-treatment with tocilizumab reduces lung damage and hypoxia, possibly by downregulating inflammatory proteins and reducing IL-6, TNF-α and CD68-positive macrophage recruitment in the lung.


Subject(s)
Acute Lung Injury , Antibodies, Monoclonal, Humanized , Interleukin-6 , Lipopolysaccharides , Liver Cirrhosis, Biliary , Rats, Sprague-Dawley , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Acute Lung Injury/etiology , Male , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Rats , Interleukin-6/metabolism , Liver Cirrhosis, Biliary/drug therapy , Liver Cirrhosis, Biliary/complications , Liver Cirrhosis, Biliary/pathology , Lung/pathology , Lung/drug effects , Lung/metabolism , Tumor Necrosis Factor-alpha/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Hemodynamics/drug effects
6.
Biomed Pharmacother ; 178: 116992, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39106709

ABSTRACT

The effective treatment of acute lung injury (ALI) remains a significant challenge. Patients with ALI demonstrate an abundance of proinflammatory mediators in both bronchoalveolar lavage fluid (BALF) and circulating plasma. Bardoxolone methyl (BM) is a semi-synthetic triterpenoid derived from oleanolic acid, a natural product known for its ability to inhibit proinflammatory signaling. GSDMD is a signaling protein involved in pyroptosis, a form of programmed cell death. It has been reported that its upstream proteins play a role in the pathogenesis of ALI. However, there is currently no research examining whether the effect of BM on the occurrence and development of ALI is associated with changes in GSDMD protein. In this study, we prepared nanostructured lipid carriers loaded with BM and conjugated with anti-PECAM-1 antibody (PECAM@BM NLCs). PECAM@BM NLCs were designed to specifically bind to pulmonary vascular endothelial cells that highly express the PECAM-1 receptors. We also aimed to investigate the protective effects of PECAM@BM NLCs on ALI and elucidate the underlying molecular mechanisms. The results demonstrated that PECAM@BM NLCs accumulated in the lung tissues and significantly alleviated the inflammatory injury of ALI. This was evidenced by the changes in the lung wet/dry ratio, the total protein concentration, proinflammatory cytokines in BALF, and the histopathological progress. Additionally, we elucidated that PECAM@BM NLCs had the ability to inhibit the assembly of NLRP3 inflammasome and pro-caspase-1 complex, thereby suppressing the induction of pyroptosis. This mechanism resulted in the inhibition of N-terminal GSDMD expression and effectively prevented the progression of ALI.


Subject(s)
Acute Lung Injury , Lung , Nanostructures , Oleanolic Acid , Platelet Endothelial Cell Adhesion Molecule-1 , Oleanolic Acid/pharmacology , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/administration & dosage , Oleanolic Acid/chemistry , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Nanostructures/chemistry , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Lung/drug effects , Lung/metabolism , Lung/pathology , Drug Carriers/chemistry , Male , Mice , Pneumonia/drug therapy , Pneumonia/pathology , Pneumonia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Inbred C57BL , Lipids/chemistry , Antibodies/pharmacology , Bronchoalveolar Lavage Fluid/chemistry , Humans , Drug Delivery Systems/methods , Inflammasomes/metabolism , Inflammasomes/drug effects
7.
Int J Mol Sci ; 25(16)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39201430

ABSTRACT

Xanthoxylin, a bioactive phenolic compound extracted from the traditional herbal medicine Penthorum Chinense Pursh, is renowned for its anti-inflammatory effects. While previous studies have highlighted the anti-inflammatory and antioxidant properties of Xanthoxylin, its precise mechanisms, particularly concerning immune response and organ protection, remain underexplored. This study aimed to elucidate the effects of Xanthoxylin on inflammation and associated signaling pathways in a mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). ALI was induced via intratracheal administration of LPS, followed by intraperitoneal injections of Xanthoxylin at doses of 1, 2.5, 5, and 10 mg/kg, administered 30 min post-LPS exposure. Lung tissues were harvested for analysis 6 h after LPS challenge. Xanthoxylin treatment significantly mitigated lung tissue damage, pathological alterations, immune cell infiltration, and the production of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Additionally, Xanthoxylin modulated the expression of key proteins in the protein kinase B (Akt)/hypoxia-inducible factor 1-alpha (HIF-1α)/nuclear factor-kappa B (NF-κB) signaling pathway, as well as nuclear factor erythroid 2-related factor 2 (Nrf2) and oxidative markers such as superoxide dismutase (SOD) and malondialdehyde (MDA) in the context of LPS-induced injury. This study demonstrates that Xanthoxylin exerts protective and anti-inflammatory effects by down-regulating and inhibiting the Akt/HIF-1α/NF-κB pathways, suggesting its potential as a therapeutic target for the prevention and treatment of ALI or acute respiratory distress syndrome (ARDS).


Subject(s)
Acute Lung Injury , Hypoxia-Inducible Factor 1, alpha Subunit , Lipopolysaccharides , NF-E2-Related Factor 2 , NF-kappa B , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Lipopolysaccharides/adverse effects , Lipopolysaccharides/toxicity , NF-E2-Related Factor 2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , NF-kappa B/metabolism , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Signal Transduction/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Oxidative Stress/drug effects
8.
PLoS Negl Trop Dis ; 18(8): e0012424, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39150978

ABSTRACT

The risk of severe malaria from the zoonotic parasite Plasmodium knowlesi approximates that from P. falciparum. In severe falciparum malaria, neutrophil activation contributes to inflammatory pathogenesis, including acute lung injury (ALI). The role of neutrophil activation in the pathogenesis of severe knowlesi malaria has not been examined. We evaluated 213 patients with P. knowlesi mono-infection (138 non-severe, 75 severe) and 49 Plasmodium-negative controls from Malaysia. Markers of neutrophil activation (soluble neutrophil elastase [NE], citrullinated histone [CitH3] and circulating neutrophil extracellular traps [NETs]) were quantified in peripheral blood by microscopy and immunoassays. Findings were correlated with malaria severity, ALI clinical criteria, biomarkers of parasite biomass, haemolysis, and endothelial activation. Neutrophil activation increased with disease severity, with median levels higher in severe than non-severe malaria and controls for NE (380[IQR:210-930]ng/mL, 236[139-448]ng/mL, 218[134-307]ng/mL, respectively) and CitH3 (8.72[IQR:3.0-23.1]ng/mL, 4.29[1.46-9.49]ng/mL, 1.53[0.6-2.59]ng/mL, respectively)[all p<0.01]. NETs were higher in severe malaria compared to controls (126/µL[IQR:49-323] vs 51[20-75]/µL, p<0.001). In non-severe malaria, neutrophil activation fell significantly upon discharge from hospital (p<0.03). In severe disease, NETs, NE, and CitH3 were correlated with parasitaemia, cell-free haemoglobin and angiopoietin-2 (all Pearson's r>0.24, p<0.05). Plasma NE and angiopoietin-2 were higher in knowlesi patients with ALI than those without (p<0.008); neutrophilia was associated with an increased risk of ALI (aOR 3.27, p<0.01). In conclusion, neutrophil activation is increased in ALI and in proportion to disease severity in knowlesi malaria, is associated with endothelial activation, and may contribute to disease pathogenesis. Trials of adjunctive therapies to regulate neutrophil activation are warranted in severe knowlesi malaria.


Subject(s)
Acute Lung Injury , Extracellular Traps , Malaria , Neutrophil Activation , Neutrophils , Plasmodium knowlesi , Severity of Illness Index , Humans , Male , Female , Malaria/immunology , Malaria/blood , Malaria/parasitology , Adult , Acute Lung Injury/immunology , Acute Lung Injury/parasitology , Acute Lung Injury/pathology , Middle Aged , Neutrophils/immunology , Extracellular Traps/immunology , Malaysia , Biomarkers/blood , Young Adult , Leukocyte Elastase/blood , Histones/blood , Adolescent
9.
J Cell Mol Med ; 28(15): e18589, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135202

ABSTRACT

Sepsis causes systemic inflammatory responses and acute lung injury (ALI). Despite modern treatments, sepsis-related ALI mortality remains high. Aqueous extract of Descuraniae Semen (AEDS) exerts anti-endoplasmic reticulum (ER) stress, antioxidant and anti-inflammatory effects. AEDS alleviates inflammation and oedema in ALI. Sodium-potassium-chloride co-transporter isoform 1 (NKCC1) is essential for regulating alveolar fluid and is important in ALI. The NKCC1 activity is regulated by upstream with-no-lysine kinase-4 (WNK4) and STE20/SPS1-related proline/alanine-rich kinase (SPAK). This study aimed to investigate the effects of AEDS on lipopolysaccharide (LPS)-induced ALI model in A549 cells, considering the regulation of ER stress, WNK4-SPAK-NKCC1 cascades, inflammation and apoptosis. Cell viability was investigated by the CCK-8 assay. The expressions of the proteins were assessed by immunoblotting analysis assays. The levels of pro-inflammatory cytokines were determined by ELISA. The expression of cytoplasmic Ca2+ in A549 cells was determined using Fluo-4 AM. AEDS attenuates LPS-induced inflammation, which is associated with increased pro-inflammatory cytokine expression and activation of the WNK4-SPAK-NKCC1 pathway. AEDS inhibits the WNK4-SPAK-NKCC1 pathway by regulating of Bcl-2, IP3R and intracellular Ca2+. WNK4 expression levels are significantly higher in the WNK4-overexpressed transfected A549 cells and significantly decrease after AEDS treatment. AEDS attenuates LPS-induced inflammation by inhibiting the WNK4-SPAK-NKCC1 cascade. Therefore, AEDS is regarded as a potential therapeutic agent for ALI.


Subject(s)
Endoplasmic Reticulum Stress , Inflammation , Lipopolysaccharides , Protein Serine-Threonine Kinases , Signal Transduction , Solute Carrier Family 12, Member 2 , Humans , Protein Serine-Threonine Kinases/metabolism , Endoplasmic Reticulum Stress/drug effects , A549 Cells , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Solute Carrier Family 12, Member 2/metabolism , Solute Carrier Family 12, Member 2/genetics , Signal Transduction/drug effects , Apoptosis/drug effects , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Plant Extracts/pharmacology , Cell Survival/drug effects , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology
10.
Int Immunopharmacol ; 140: 112838, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39116501

ABSTRACT

Acute lung injury (ALI) has been a hot topic in the field of critical care research in recent years. Mitochondrial dynamics consists of mitochondrial fusion and mitochondrial fission. Dynamin-related protein 1 (Drp1), a key molecule that regulates mitochondrial fission, is important in the oxidative stress and inflammatory response to ALI. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a core protein that mediates mitochondrial biogenesis. G-protein pathway suppressor 2 (GPS2) acts as a transcriptional cofactor with regulatory effects on nuclear-encoded mitochondrial genes. This study aimed to investigate the mechanism of PGC-1α/Drp1-mediated mitochondrial dynamics involved in ALI and to demonstrate the protective mechanism of GPS2 in regulating mitochondrial structure and function and inflammation in ALI. The ALI model was constructed using LPS-induced wild-type mice and human pulmonary microvascular endothelial cells (HPMVECs). It was found that lung injury, oxidative stress and inflammation were exacerbated in the mice ALI model and that mitochondrial structure and function were disrupted in HPMVECs. In vitro studies revealed that LPS led to the upregulated expression of Drp1 and the downregulated expression of PGC-1α and GPS2. Mitochondrial division was reduced and respiratory function was restored in Drp1 knockdown cells, which inhibited oxidative stress and inflammatory response. In addition, the overexpression of PGC-1α and GPS2 significantly inhibited the expression of Drp1, mitochondrial function was restored, and inhibited reactive oxygen species (ROS) production and inflammatory factor release. Moreover, the overexpression of GPS2 promoted the upregulated expression of PGC-1α. This mechanism was also validated in vivo, in which the low expression of GPS2 in mice resulted in the upregulated expression of Drp1 and the downregulated expression of PGC-1α, and further exacerbated LPS-induced ALI. In the present study, we also found that LPS-induced the downregulated expression of GPS2 may be associated with its increased degradation by the proteasome. Therefore, these findings revealed that GPS2 inhibited oxidative stress and inflammation by modulating PGC-1α/Drp1-mediated mitochondrial dynamics to alleviate LPS-induced ALI, which may provide a new approach to the therapeutic orientation for LPS-induced ALI.


Subject(s)
Acute Lung Injury , Dynamins , Lipopolysaccharides , Mice, Inbred C57BL , Mitochondrial Dynamics , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Acute Lung Injury/pathology , Acute Lung Injury/chemically induced , Acute Lung Injury/immunology , Acute Lung Injury/metabolism , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Dynamins/metabolism , Dynamins/genetics , Humans , Mice , Male , Endothelial Cells/metabolism , Disease Models, Animal , Mitochondria/metabolism , Inflammation/metabolism , Lung/pathology , Lung/immunology , Cells, Cultured
11.
Int Immunopharmacol ; 140: 112814, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39094364

ABSTRACT

The aim of this study was to investigated the effects of forsythiaside A (FA) on acute lung injury (ALI). The lung tissue pathological was detected by hematoxylin-eosin staining (HE) staining. Wet weight/dry weight (w/d) of the lung in mice was measured. Cytokine such as interleukin 1ß (IL-1ß), IL-6 and tumor necrosis factor-α (TNF-α) were also detected. Compared with the vector group, the protein expression levels of TRAF6 and TAK1 the RNF99 group were significantly reduced. Ubiquitinated TRAF6 protein was increased after knockdown of RNF99. Finally, it was found that FA significantly ameliorated ALI via regulation of RNF99/TRAF6/NF-κB signal pathway. In conclusion, RNF99 was an important biomarker in ALI and FA alleviated ALI via RNF99/ TRAF6/NF-κB signal pathway.


Subject(s)
Acute Lung Injury , Signal Transduction , Animals , Humans , Male , Mice , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Glycosides/pharmacology , Glycosides/therapeutic use , Lung/pathology , Lung/drug effects , Lung/metabolism , Mice, Inbred C57BL , NF-kappa B/metabolism , Signal Transduction/drug effects , TNF Receptor-Associated Factor 6/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
12.
Nat Commun ; 15(1): 6737, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112475

ABSTRACT

Sepsis is a critical global health concern linked to high mortality rates, often due to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). While the gut-lung axis involvement in ALI is recognized, direct migration of gut immune cells to the lung remains unclear. Our study reveals sepsis-induced migration of γδ T17 cells from the small intestine to the lung, triggering an IL-17A-dominated inflammatory response in mice. Wnt signaling activation in alveolar macrophages drives CCL1 upregulation, facilitating γδ T17 cell migration. CD44+ Ly6C- IL-7Rhigh CD8low cells are the primary migratory subtype exacerbating ALI. Esketamine attenuates ALI by inhibiting pulmonary Wnt/ß-catenin signaling-mediated migration. This work underscores the pivotal role of direct gut-to-lung memory γδ T17 cell migration in septic ALI and clarifies the importance of localized IL-17A elevation in the lung.


Subject(s)
Acute Lung Injury , Cell Movement , Interleukin-17 , Lung , Mice, Inbred C57BL , Sepsis , Animals , Sepsis/immunology , Sepsis/complications , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Mice , Interleukin-17/metabolism , Interleukin-17/immunology , Lung/immunology , Lung/pathology , Male , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Wnt Signaling Pathway/immunology , Macrophages, Alveolar/immunology , Intestine, Small/immunology , Intestine, Small/pathology , Intraepithelial Lymphocytes/immunology , Disease Models, Animal , Antigens, Ly/metabolism , Immunologic Memory
13.
Respir Res ; 25(1): 303, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112999

ABSTRACT

BACKGROUND: Acute lung injury (ALI) following pneumonia involves uncontrolled inflammation and tissue injury, leading to high mortality. We previously confirmed the significantly increased cargo content and extracellular vesicle (EV) production in thrombin-preconditioned human mesenchymal stromal cells (thMSCs) compared to those in naïve and other preconditioning methods. This study aimed to investigate the therapeutic efficacy of EVs derived from thMSCs in protecting against inflammation and tissue injury in an Escherichia coli (E. coli)-induced ALI mouse model. METHODS: In vitro, RAW 264.7 cells were stimulated with 0.1 µg/mL liposaccharides (LPS) for 1 h, then were treated with either PBS (LPS Ctrl) or 5 × 107 particles of thMSC-EVs (LPS + thMSC-EVs) for 24 h. Cells and media were harvested for flow cytometry and ELISA. In vivo, ICR mice were anesthetized, intubated, administered 2 × 107 CFU/100 µl of E. coli. 50 min after, mice were then either administered 50 µL saline (ECS) or 1 × 109 particles/50 µL of thMSC-EVs (EME). Three days later, the therapeutic efficacy of thMSC-EVs was assessed using extracted lung tissue, bronchoalveolar lavage fluid (BALF), and in vivo computed tomography scans. One-way analysis of variance with post-hoc TUKEY test was used to compare the experimental groups statistically. RESULTS: In vitro, IL-1ß, CCL-2, and MMP-9 levels were significantly lower in the LPS + thMSC-EVs group than in the LPS Ctrl group. The percentages of M1 macrophages in the normal control, LPS Ctrl, and LPS + thMSC-EV groups were 12.5, 98.4, and 65.9%, respectively. In vivo, the EME group exhibited significantly lower histological scores for alveolar congestion, hemorrhage, wall thickening, and leukocyte infiltration than the ECS group. The wet-dry ratio for the lungs was significantly lower in the EME group than in the ECS group. The BALF levels of CCL2, TNF-a, and IL-6 were significantly lower in the EME group than in the ECS group. In vivo CT analysis revealed a significantly lower percentage of damaged lungs in the EME group than in the ECS group. CONCLUSION: Intratracheal thMSC-EVs administration significantly reduced E. coli-induced inflammation and lung tissue damage. Overall, these results suggest therapeutically enhanced thMSC-EVs as a novel promising therapeutic option for ARDS/ALI.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Mesenchymal Stem Cells , Mice, Inbred ICR , Thrombin , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Acute Lung Injury/metabolism , Acute Lung Injury/microbiology , Acute Lung Injury/pathology , Acute Lung Injury/therapy , Mice , Mesenchymal Stem Cells/metabolism , RAW 264.7 Cells , Thrombin/metabolism , Escherichia coli , Male , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Escherichia coli Infections/therapy , Treatment Outcome , Disease Models, Animal , Humans
14.
J Cell Mol Med ; 28(13): e18386, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38990057

ABSTRACT

Acute lung injury (ALI) is a major pathophysiological problem characterized by severe inflammation, resulting in high morbidity and mortality. Plumbagin (PL), a major bioactive constituent extracted from the traditional Chinese herb Plumbago zeylanica, has been shown to possess anti-inflammatory and antioxidant pharmacological activities. However, its protective effect on ALI has not been extensively studied. The objective of this study was to investigate the protective effect of PL against ALI induced by LPS and to elucidate its possible mechanisms both in vivo and in vitro. PL treatment significantly inhibited pathological injury, MPO activity, and the wet/dry ratio in lung tissues, and decreased the levels of inflammatory cells and inflammatory cytokines TNF-α, IL-1ß, IL-6 in BALF induced by LPS. In addition, PL inhibited the activation of the PI3K/AKT/mTOR signalling pathway, increased the activity of antioxidant enzymes CAT, SOD, GSH and activated the Keap1/Nrf2/HO-1 signalling pathway during ALI induced by LPS. To further assess the association between the inhibitory effects of PL on ALI and the PI3K/AKT/mTOR and Keap1/Nrf2/HO-1 signalling, we pretreated RAW264.7 cells with 740Y-P and ML385. The results showed that the activation of PI3K/AKT/mTOR signalling reversed the protective effect of PL on inflammatory response induced by LPS. Moreover, the inhibitory effects of PL on the production of inflammatory cytokines induced by LPS also inhibited by downregulating Keap1/Nrf2/HO-1 signalling. In conclusion, the results indicate that the PL ameliorate LPS-induced ALI by regulating the PI3K/AKT/mTOR and Keap1-Nrf2/HO-1 signalling, which may provide a novel therapeutic perspective for PL in inhibiting ALI.


Subject(s)
Acute Lung Injury , Kelch-Like ECH-Associated Protein 1 , Lipopolysaccharides , NF-E2-Related Factor 2 , Naphthoquinones , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , NF-E2-Related Factor 2/metabolism , TOR Serine-Threonine Kinases/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Lipopolysaccharides/adverse effects , Lipopolysaccharides/toxicity , Naphthoquinones/pharmacology , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice , Male , Cytokines/metabolism , Heme Oxygenase-1/metabolism , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Heme Oxygenase (Decyclizing)/metabolism , Membrane Proteins/metabolism
15.
PLoS One ; 19(7): e0305058, 2024.
Article in English | MEDLINE | ID: mdl-38954702

ABSTRACT

OBJECTIVES: Astragaloside IV (AS-IV) is a natural triterpenoid saponin compound with a variety of pharmacological effects, and several studies have clarified its anti-inflammatory effects, which may make it an effective alternative treatment against inflammation. In the study, we aimed to investigate whether AS-IV could attenuate the inflammatory response to acute lung injury and its mechanisms. METHODS: Different doses of AS-IV (20mg·kg-1, 40mg·kg-1, and 80mg·kg-1) were administered to the ALI rat model, followed by collection of serum and broncho alveolar lavage fluid (BALF) for examination of the inflammatory response, and HE staining of the lung and colon tissues, and interpretation of the potential molecular mechanisms by quantitative real-time PCR (qRT-PCR), Western blotting (WB). In addition, fecal samples from ALI rats were collected and analyzed by 16S rRNA sequencing. RESULTS: AS-IV decreased the levels of TNF-α, IL-6, and IL-1ß in serum and BALF of mice with Acute lung injury (ALI). Lung and colon histopathology confirmed that AS-IV alleviated inflammatory infiltration, tissue edema, and structural changes. qRT-PCR and WB showed that AS-IV mainly improved inflammation by inhibiting the expression of PI3K, AKT and mTOR mRNA, and improved the disorder of intestinal microflora by increasing the number of beneficial bacteria and reducing the number of harmful bacteria. CONCLUSION: AS-IV reduces the expression of inflammatory factors by inhibiting the PI3K/AKT/mTOR pathway and optimizes the composition of the gut microflora in AIL rats.


Subject(s)
Acute Lung Injury , Gastrointestinal Microbiome , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Saponins , Signal Transduction , TOR Serine-Threonine Kinases , Triterpenes , Animals , Saponins/pharmacology , Saponins/therapeutic use , Triterpenes/pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/microbiology , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , TOR Serine-Threonine Kinases/metabolism , Gastrointestinal Microbiome/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Rats , Male , Mice , Rats, Sprague-Dawley , Inflammation/drug therapy , Bronchoalveolar Lavage Fluid/chemistry , Lung/pathology , Lung/drug effects , Lung/microbiology , Lung/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
16.
Respir Res ; 25(1): 263, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956592

ABSTRACT

BACKGROUND: Aberrant activation of macrophages is associated with pathogenesis of acute lung injury (ALI). However, the potential pathogenesis has not been explored. OBJECTIVES: We aimed to identify whether histone deacetylase (HDAC) 10 is involved in lipopolysaccharide (LPS)-exposed ALI and reveal the underlying pathogenesis by which it promotes lung inflammation in LPS-exposed ALI via modifying P62 with deacetylation. METHODS: We constructed an ALI mice model stimulated with LPS to determine the positive effect of Hdac10 deficiency. Moreover, we cultured murine alveolar macrophage cell line (MH-S cells) and primary bone marrow-derived macrophages (BMDMs) to explore the pro-inflammatory activity and mechanism of HDAC10 after LPS challenge. RESULTS: HDAC10 expression was increased both in mice lung tissues and macrophage cell lines and promoted inflammatory cytokines production exposed to LPS. Hdac10 deficiency inhibited autophagy and inflammatory response after LPS stimulation. In vivo, Hdac10fl/fl-LysMCre mice considerably attenuated lung inflammation and inflammatory cytokines release exposed to LPS. Mechanistically, HDAC10 interacts with P62 and mediates P62 deacetylation at lysine 165 (K165), by which it promotes P62 expression and increases inflammatory cytokines production. Importantly, we identified that Salvianolic acid B (SAB), an HDAC10 inhibitor, reduces lung inflammatory response in LPS-stimulated ALI. CONCLUSION: These results uncover a previously unknown role for HDAC10 in regulating P62 deacetylation and aggravating lung inflammation in LPS-induced ALI, implicating that targeting HDAC10 is an effective therapy for LPS-exposed ALI.


Subject(s)
Acute Lung Injury , Histone Deacetylases , Lipopolysaccharides , Lysine , Mice, Inbred C57BL , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Acute Lung Injury/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Lipopolysaccharides/toxicity , Mice , Acetylation , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/deficiency , Lysine/metabolism , Mice, Knockout , Male , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Myeloid Cells/metabolism
17.
Immun Inflamm Dis ; 12(7): e1351, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023414

ABSTRACT

BACKGROUND: Severe acute pancreatitis (SAP) is a potentially lethal inflammatory pancreatitis condition that is usually linked to multiple organ failure. When it comes to SAP, the lung is the main organ that is frequently involved. Many SAP patients experience respiratory failure following an acute lung injury (ALI). Clinicians provide insufficient care for compounded ALI since the underlying pathophysiology is unknown. The mortality rate of SAP patients is severely impacted by it. OBJECTIVE: The study aims to provide insight into immune cells, specifically their roles and modifications during SAP and ALI, through a comprehensive literature review. The emphasis is on immune cells as a therapeutic approach for treating SAP and ALI. FINDINGS: Immune cells play an important role in the complicated pathophysiology ofSAP and ALI by maintaining the right balance of pro- and anti-inflammatory responses. Immunomodulatory drugs now in the market have low thepeutic efficacy because they selectively target one immune cell while ignoring immune cell interactions. Accurate management of dysregulated immune responses is necessary. A critical initial step is precisely characterizing the activity of the immune cells during SAP and ALI. CONCLUSION: Given the increasing incidence of SAP, immunotherapy is emerging as a potential treatment option for these patients. Interactions among immune cells improve our understanding of the intricacy of concurrent ALI in SAP patients. Acquiring expertise in these domains will stimulate the development of innovative immunomodulation therapies that will improve the outlook for patients with SAP and ALI.


Subject(s)
Acute Lung Injury , Pancreatitis , Humans , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Acute Lung Injury/etiology , Pancreatitis/immunology , Pancreatitis/therapy , Pancreatitis/pathology , Pancreatitis/complications , Pancreas/immunology , Pancreas/pathology , Lung/immunology , Lung/pathology , Animals , Immunotherapy/methods
18.
Respir Res ; 25(1): 276, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010105

ABSTRACT

BACKGROUND: The pathogenesis of acute lung injury (ALI) involves a severe inflammatory response, leading to significant morbidity and mortality. N6-methylation of adenosine (m6A), an abundant mRNA nucleotide modification, plays a crucial role in regulating mRNA metabolism and function. However, the precise impact of m6A modifications on the progression of ALI remains elusive. METHODS: ALI models were induced by either intraperitoneal injection of lipopolysaccharide (LPS) into C57BL/6 mice or the LPS-treated alveolar type II epithelial cells (AECII) in vitro. The viability and proliferation of AECII were assessed using CCK-8 and EdU assays. The whole-body plethysmography was used to record the general respiratory functions. M6A RNA methylation level of AECII after LPS insults was detected, and then the "writer" of m6A modifications was screened. Afterwards, we successfully identified the targets that underwent m6A methylation mediated by METTL3, a methyltransferase-like enzyme. Last, we evaluated the regulatory role of METTL3-medited m6A methylation at phosphatase and tensin homolog (Pten) in ALI, by assessing the proliferation, viability and inflammation of AECII. RESULTS: LPS induced marked damages in respiratory functions and cellular injuries of AECII. The m6A modification level in mRNA and the expression of METTL3, an m6A methyltransferase, exhibited a notable rise in both lung tissues of ALI mice and cultured AECII cells subjected to LPS treatment. METTL3 knockdown or inhibition improved the viability and proliferation of LPS-treated AECII, and also reduced the m6A modification level. In addition, the stability and translation of Pten mRNA were enhanced by METTL3-mediated m6A modification, and over-expression of PTEN reversed the protective effect of METTL3 knockdown in the LPS-treated AECII. CONCLUSIONS: The progression of ALI can be attributed to the elevated levels of METTL3 in AECII, as it promotes the stability and translation of Pten mRNA through m6A modification. This suggests that targeting METTL3 could offer a novel approach for treating ALI.


Subject(s)
Acute Lung Injury , Alveolar Epithelial Cells , Cell Proliferation , Methyltransferases , Mice, Inbred C57BL , PTEN Phosphohydrolase , RNA, Messenger , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/pathology , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Mice , Cell Proliferation/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Male , RNA, Messenger/metabolism , Cell Survival/physiology , Cell Survival/drug effects , Methylation , Adenosine/analogs & derivatives , Adenosine/metabolism , Lipopolysaccharides/toxicity , RNA Stability , Cells, Cultured
19.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000242

ABSTRACT

Acute lung injury (ALI) is a condition associated with acute respiratory failure, resulting in significant morbidity and mortality. It involves cellular changes such as disruption of the alveolar-capillary membrane, excessive neutrophil migration, and release of inflammatory mediators. Broncho-Vaxom® (BV), a lyophilized product containing cell membrane components derived from eight bacteria commonly found in the respiratory tract, is known for its potential to reduce viral and bacterial lung infections. However, the specific effect of BV on ALI has not been clearly defined. This study explored the preventive effects of BV and its underlying mechanisms in a lipopolysaccharide (LPS)-induced ALI mouse model. Oral BV (1 mg/kg) gavage was administered one hour before the intratracheal injection of LPS to evaluate its preventive effect on the ALI model. The pre-administration of BV significantly mitigates inflammatory parameters, including the production of inflammatory mediators, macrophage infiltration, and NF-κB activation in lung tissue, and the increase in inflammatory cells in bronchoalveolar lavage fluid (BALF). Moreover, BV (3 µg/mL) pretreatment reduced the expression of M1 macrophage markers, interleukins (IL-1ß, IL-6), tumor necrosis factor α, and cyclooxygenase-2, which are activated by LPS, in both mouse alveolar macrophage MH-S cells and human macrophage THP-1 cells. These findings showed that BV exhibits anti-inflammatory effects by suppressing inflammatory mediators through the NF-κB pathway, suggesting its potential to attenuate bronchial and pulmonary inflammation.


Subject(s)
Acute Lung Injury , Disease Models, Animal , Lipopolysaccharides , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/drug therapy , Mice , Humans , Inflammation/pathology , Inflammation/metabolism , Inflammation/drug therapy , Male , Cell Extracts/pharmacology , Cell Extracts/therapeutic use , NF-kappa B/metabolism , Bronchoalveolar Lavage Fluid , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/drug effects , Cytokines/metabolism , Inflammation Mediators/metabolism , Lung/pathology , Lung/metabolism , Lung/drug effects , Bacterial Lysates
20.
Int Immunopharmacol ; 139: 112719, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39032470

ABSTRACT

Autophagy in alveolar macrophages (AMs) is an important mechanism for maintaining immune homeostasis and normal lung tissue function, and insufficient autophagy in AMs may mediate the development of sepsis-induced acute lung injury (SALI). Insufficient autophagy in AMs and the activation of the NLRP3 inflammasome were observed in a mouse model with SALI induced by cecal ligation and puncture (CLP), resulting in the release of a substantial quantity of proinflammatory factors and the formation of SALI. However, after andrographolide (AG) intervention, autophagy in AMs was significantly promoted, the activation of the NLRP3 inflammasome was inhibited, the release of proinflammatory factors and pyroptosis were suppressed, and SALI was then ameliorated. In the MH-S cell model stimulated with LPS, insufficient autophagy was discovered to promote the overactivation of the NLRP3 inflammasome. AG was found to significantly promote autophagy, inhibit the activation of the NLRP3 inflammasome, and attenuate the release of proinflammatory factors. The primary mechanism of AG promoting autophagy was to inhibit the activation of the PI3K/AKT/mTOR pathway by binding RAGE to the membrane. In addition, it inhibited the activation of the NLRP3 inflammasome to ameliorate SALI. Our findings suggest that AG promotes autophagy in AMs through the RAGE/PI3K/AKT/mTOR pathway to inhibit the activation of the NLRP3 inflammasome, remodel the functional homeostasis of AMs in SALI, and exert anti-inflammatory and lung-protective effects. It has also been the first to suggest that RAGE is likely a direct target through which AG regulates autophagy, providing theoretical support for a novel therapeutic strategy in sepsis.


Subject(s)
Acute Lung Injury , Autophagy , Diterpenes , Macrophages, Alveolar , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptor for Advanced Glycation End Products , Sepsis , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , TOR Serine-Threonine Kinases/metabolism , Autophagy/drug effects , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism , Sepsis/immunology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Diterpenes/pharmacology , Diterpenes/therapeutic use , Mice , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Male , Receptor for Advanced Glycation End Products/metabolism , Inflammasomes/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL