Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.323
Filter
1.
J Cardiothorac Surg ; 19(1): 568, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354500

ABSTRACT

BACKGROUND: Numerous diseases-related acute lung injury (ALI) contributed to high mortality. Currently, the therapeutic effect of ALI was still poor. The detailed mechanism of ALI remained elusive and this study aimed to elucidate the mechanism of ALI. METHOD: This study was performed to expose the molecular mechanisms of AMPK/Nrf2 pathway regulating oxidative stress in LPS-induced AMI mice. The mouse ALI model was established via intraperitoneal injection of LPS, then the lung tissue and blood samples were obtained, followed by injection with Dimethyl fumarate (DMF). Finally, Western blot, HE staining, injury score, lung wet/dry ratio, reactive oxygen species (ROS) and ELISA were used to elucidate the mechanism of AMPK/Nrf2 pathway in LPS -induced acute lung injury by mediating oxidative stress. RESULTS: The lung tissue injury score was evaluated, showing higher scores in the model group compared to the AMPK activator and control groups. DCFH-DA indicated that LPS increased ROS production, while AMPK activator DMF reduced it, with the model group exhibiting higher ROS levels than the control and AMPK activator groups. The lung wet/dry ratio was also higher in the model group. Western blot analysis revealed LPS reduced AMPK and Nrf2 protein levels, but DMF reversed this effect. ELISA results showed elevated IL-6 and IL-1ß levels in the model group compared to the AMPK activator and control groups. CONCLUSION: CONCLUSION: Activating the AMPK/Nrf2 pathway can improve LPS-induced acute lung injury by down-regulation of the oxidative stress and corresponding inflammatory factor level.


Subject(s)
AMP-Activated Protein Kinases , Acute Lung Injury , Disease Models, Animal , Inflammation , Lipopolysaccharides , NF-E2-Related Factor 2 , Oxidative Stress , Signal Transduction , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/prevention & control , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Lipopolysaccharides/toxicity , Mice , AMP-Activated Protein Kinases/metabolism , Male , Inflammation/metabolism , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL
2.
Respir Res ; 25(1): 354, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342264

ABSTRACT

BACKGROUND: Exposure to a hypobaric hypoxic environment at high altitudes can lead to lung injury. In this study, we aimed to determine whether curcumin (Cur) could improve lung barrier function and protect against high-altitude-associated acute lung injury. METHODS: Two hundred healthy rats were randomly divided into standard control, high-altitude control (HC), salidroside (40 mg/kg, positive control), and Cur (200 mg/kg) groups. Each group was further divided into five subgroups. Basic vital signs, lung injury histopathology, routine blood parameters, plasma lactate level, and arterial blood gas indicators were evaluated. Protein and inflammatory factor (tumor necrosis factor α (TNF-α), interleukin [IL]-1ß, IL-6, and IL-10) concentrations in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method and enzyme-linked immunosorbent assay, respectively. Inflammation-related and lung barrier function-related proteins were analyzed using immunoblotting. RESULTS: Cur improved blood routine indicators such as hemoglobin and hematocrit and reduced the BALF protein content and TNF-α, IL-1ß, and IL-6 levels compared with those in the HC group. It increased IL-10 levels and reduced pulmonary capillary congestion, alveolar hemorrhage, and the degree of pulmonary interstitial edema. It increased oxygen partial pressure, oxygen saturation, carbonic acid hydrogen radical, and base excess levels, and the expression of zonula occludens 1, occludin, claudin-4, and reduced carbon dioxide partial pressure, plasma lactic acid, and the expression of phospho-nuclear factor kappa. CONCLUSIONS: Exposure to a high-altitude environment for 48 h resulted in severe lung injury in rats. Cur improved lung barrier function and alleviated acute lung injury in rats at high altitudes.


Subject(s)
Acute Lung Injury , Altitude Sickness , Curcumin , Rats, Sprague-Dawley , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Rats , Male , Curcumin/pharmacology , Curcumin/therapeutic use , Altitude Sickness/drug therapy , Altitude Sickness/metabolism , Altitude Sickness/complications , Altitude Sickness/physiopathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Altitude , Inflammation Mediators/metabolism , Bronchoalveolar Lavage Fluid , Cytokines/metabolism
3.
BMC Pulm Med ; 24(1): 456, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285346

ABSTRACT

Acute lung injury (ALI) is the result of damage to the capillary endothelia and the alveolar epithelial cell caused by various direct and indirect factors, leading to significant pulmonary interstitial and alveolar edema and acute hypoxic respiratory insufficiency. A subset of ALI cases progresses to irreversible pulmonary fibrosis, a condition with fatal implications. Zafirlukast is a leukotriene receptor antagonist licensed for asthma prevention and long-term treatment. This study demonstrated a significant improvement in lung tissue pathology and a reduction in inflammatory cell infiltration in models of lipopolysaccharide (LPS)-induced ALI and bleomycin (BLM)-induced lung inflammation following zafirlukast administration, both in vivo and in vitro. Moreover, zafirlukast was found to suppress the inflammatory response of alveolar epithelial cells in vitro and lung inflammation in vivo by reducing the activation of the TLR4/NF-κB/NLRP3 inflammasome pathway. In conclusion, zafirlukast relieved lung injury and the infiltration of inflammatory cells in the lung by regulating the TLR4/NF-κB/NLRP3 pathway.


Subject(s)
Acute Lung Injury , Bleomycin , Indoles , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Phenylcarbamates , Pneumonia , Sulfonamides , Toll-Like Receptor 4 , Tosyl Compounds , Animals , Bleomycin/adverse effects , Tosyl Compounds/pharmacology , Tosyl Compounds/therapeutic use , Mice , Indoles/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sulfonamides/pharmacology , Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Acute Lung Injury/pathology , Pneumonia/chemically induced , Pneumonia/prevention & control , Pneumonia/drug therapy , Toll-Like Receptor 4/metabolism , Disease Models, Animal , Leukotriene Antagonists/pharmacology , Leukotriene Antagonists/therapeutic use , Male , Mice, Inbred C57BL , NF-kappa B/metabolism , Lung/pathology , Lung/drug effects , Lung/metabolism , Signal Transduction/drug effects , Inflammasomes/metabolism , Inflammasomes/drug effects
4.
ACS Infect Dis ; 10(10): 3607-3617, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39303151

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are severe complications that can occur in infections caused by any Plasmodium species. Due to the high lethality rate and the lack of specific treatment for ALI/ARDS, studies aimed at understanding and searching for treatment strategies for such complications have been fundamental. Here, we investigated the protective role of dietary supplementation with DHA-rich fish oil against lung damage induced by Plasmodium berghei ANKA in a murine model. Our results demonstrated that alveolar vascular damage, lung edema, and histopathological alterations were significantly reduced in mice that received dietary supplementation compared to those that did not receive the supplementation. Furthermore, a significant reduction in the number of CD8+ T lymphocytes, in addition to reduced infiltration of inflammatory cells in the bronchoalveolar lavage fluid was also observed. High levels of IL-10, but not of TNF-α and IFN-γ, were also observed in infected mice that received the supplementation, along with a reduction in local oxidative stress. Together, the data suggest that dietary supplementation with DHA-rich fish oil in malarial endemic areas may help reduce lung damage resulting from the infection, thus preventing worsening of the condition.


Subject(s)
Dietary Supplements , Disease Models, Animal , Docosahexaenoic Acids , Malaria , Plasmodium berghei , Animals , Plasmodium berghei/drug effects , Mice , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/administration & dosage , Lung/pathology , Lung/drug effects , Lung/parasitology , Bronchoalveolar Lavage Fluid/chemistry , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/administration & dosage , Oxidative Stress/drug effects , Acute Lung Injury/prevention & control , Acute Lung Injury/drug therapy , CD8-Positive T-Lymphocytes/immunology , Interleukin-10 , Fish Oils/pharmacology , Fish Oils/administration & dosage
6.
PLoS One ; 19(8): e0308557, 2024.
Article in English | MEDLINE | ID: mdl-39178201

ABSTRACT

OBJECTIVES: To investigate the effect of dexamethasone (DXM) on acute lung and kidney injury with sepsis and its possible mechanism. METHODS: Control (NC), lipopolysaccharide (LPS) and lipopolysaccharide + dexamethasone (LPS+DXM) treated groups were established by random assignment of 72 Wistar rats. The NC rats were injected with physiological saline, while the LPS group was injected with LPS (5 mg/kg) and LPS+DXM group was injected with LPS(5 mg/kg) first and followed by DXM (1 mg/kg). Serum tumor necrosis factor-α (TNF-α) and serum macrophage inflammatory protein 1α (MIP-1α) were measured by ELISA. Lung wet/dry weight ratio, serum creatinine(SCR) and blood urea nitrogen(BUN) were determined at various time points. Hematoxylin Eosin staining (HE) for pathological changes in the lung and kidney. Radioimmunoassay was used to detect the levels of angiotensin II (Ang II) in plasma, lung and kidney tissues. Immunohistochemistry and western blot (WB) were used to detect angiotensin II receptor type 1 (AT1R) protein and angiotensin II receptor type 2 (AT2R) protein in lung and kidney tissues. The level of nitric oxide (NO) in serum, lung and kidney were detected using nitrate reductase method. RESULTS: Compared with control group, serum TNF-α, MIP-1α, SCR, BUN, lung W/D, Ang II level in plasma, lung and kidney, lung and kidney AT2R protein, NO level in serum, lung and kidney were significantly elevated(P<0.05) and pathological damage of lung and kidney tissues were showed in LPS group rats (P<0.05), whereas DXM down-regulated the above indexes and alleviate pathological damage of lung and kidney tissues. However, the expression of the lung and kidney AT1R protein was opposite to the above results. CONCLUSIONS: Sepsis can cause acute lung and kidney injury and changes RAAS components in circulating, lung and renal. DXM can improve acute lung and kidney injury in septic rats, and the mechanism may be related to the down-regulation of inflammatory factors, AngII, AT2R, NO and up-regulation of AT1R expression by DXM.


Subject(s)
Angiotensin II , Dexamethasone , Rats, Wistar , Sepsis , Animals , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Dexamethasone/pharmacology , Rats , Male , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Lung/pathology , Lung/metabolism , Lung/drug effects , Lipopolysaccharides , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Acute Lung Injury/prevention & control , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Receptor, Angiotensin, Type 1/metabolism , Nitric Oxide/metabolism , Receptor, Angiotensin, Type 2/metabolism , Blood Urea Nitrogen
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167480, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39209235

ABSTRACT

Electroacupuncture has been demonstrated to mitigate endotoxin-induced acute lung injury by enhancing mitochondrial function. This study investigates whether electroacupuncture confers lung protection through the regulation of mitochondrial quality control mediated by heme oxygenase-1 (HO-1) and the mitochondrial inner membrane protein MIC60. HO-1, an inducible stress protein, is crucial for maintaining mitochondrial homeostasis and protecting against lung injury. MIC60, a key component of the mitochondrial contact site and cristae organizing system, supports mitochondrial integrity. We employed genetic knockout/silencing and cell transfection techniques to model lipopolysaccharide (LPS)-induced lung injury, assessing changes in mitochondrial structure, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and the expression of proteins essential for mitochondrial quality control. Our findings reveal that electroacupuncture alleviates endotoxin-induced acute lung injury and associated mitochondrial dysfunction, as evidenced by reductions in lung injury scores, decreased ROS production, and suppressed expression of proteins involved in mitochondrial fission and mitophagy. Additionally, electroacupuncture enhanced MMP and upregulated proteins that facilitate mitochondrial fusion and biogenesis. Importantly, the protective effects of electroacupuncture were reduced in models with Hmox1 knockout or Mic60 silencing, and in macrophages transfected with Hmox1-siRNA or Mic60-siRNA. Moreover, HO-1 was found to influence MIC60 expression during electroacupuncture preconditioning and LPS challenge, demonstrating that these proteins not only co-localize but also interact directly. In conclusion, electroacupuncture effectively modulates mitochondrial quality control through the HO-1/MIC60 signaling pathway, offering an adjunctive therapeutic strategy to ameliorate endotoxin-induced acute lung injury in both in vivo and in vitro settings.


Subject(s)
Acute Lung Injury , Electroacupuncture , Heme Oxygenase-1 , Mitochondria , Signal Transduction , Electroacupuncture/methods , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Acute Lung Injury/prevention & control , Acute Lung Injury/therapy , Animals , Mitochondria/metabolism , Mice , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Male , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Lipopolysaccharides/toxicity , Membrane Potential, Mitochondrial , Endotoxins , Humans , Mitochondrial Dynamics , Membrane Proteins
8.
J Surg Res ; 301: 324-335, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013279

ABSTRACT

INTRODUCTION: Cardiopulmonary bypass (CPB) leads to severe inflammation and lung injury. Our previous study showed that Ac2-26 (an active n-terminal peptide of Annexin A1) can reduce acute lung injury. The aim of this study was to evaluate the effect of Ac2-26 on lung injury in CPB rats. METHODS: Forty rats were randomly divided into the sham, CPB, Ac, Ac/serine/threonine kinase 1 (AKT1), and Ac/ glycogen synthase kinase (GSK)-3ß groups. The rats in the sham group only received anesthesia, intubation, and cannulation. The rats in the other 4 groups received the standard CPB procedure. The rats in the CPB, Ac, Ac/AKT1, and Ac/GSK3ß groups were immediately injected with saline, Ac2-26 (1 mg/kg), Ac2-26 combined with short hairpin RNA (AKT1), or Ac2-26 combined with a GSK3ß inhibitor after CPB. At 12 h after the end of CPB, the PaO2/ fraction of inspired oxygen ratio, wet/dry weight ratio and protein content in the bronchoalveolar lavage fluid (BALF) were recorded. The numbers of macrophages and neutrophils in the BALF and blood were determined. Cytokine levels in the blood and BALF were investigated. Lung tissue histology and apoptosis were estimated. The expression of nuclear factor kappa- B, AKT1, GSK3ß, endothelial nitric oxide synthase and apoptosis-related proteins was analyzed. The survival of all the rats was recorded. RESULTS: Compared with the rats in the sham group, all the parameters examined worsened in the rats that received CPB. Compared with those in the CPB group, Ac2-26 significantly improved pulmonary capillary permeability, reduced cytokine levels, and decreased histological scores and apoptosis. The protective effect of Ac2-26 on lung injury was significantly reversed by AKT1 short hairpin RNA or a GSK3ß inhibitor. CONCLUSIONS: Ac2-26 significantly reduced lung injury and inflammation after CPB. The protective effect of Ac2-26 mainly depended on the AKT1/GSK3ß/endothelial nitric oxide synthase pathway.


Subject(s)
Acute Lung Injury , Cardiopulmonary Bypass , Glycogen Synthase Kinase 3 beta , Nitric Oxide Synthase Type III , Proto-Oncogene Proteins c-akt , Animals , Male , Rats , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Cardiopulmonary Bypass/adverse effects , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Lung/pathology , Lung/drug effects , Lung/metabolism , Nitric Oxide Synthase Type III/metabolism , Peptide Fragments/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Random Allocation , Rats, Sprague-Dawley , Signal Transduction/drug effects
9.
Respir Res ; 25(1): 263, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956592

ABSTRACT

BACKGROUND: Aberrant activation of macrophages is associated with pathogenesis of acute lung injury (ALI). However, the potential pathogenesis has not been explored. OBJECTIVES: We aimed to identify whether histone deacetylase (HDAC) 10 is involved in lipopolysaccharide (LPS)-exposed ALI and reveal the underlying pathogenesis by which it promotes lung inflammation in LPS-exposed ALI via modifying P62 with deacetylation. METHODS: We constructed an ALI mice model stimulated with LPS to determine the positive effect of Hdac10 deficiency. Moreover, we cultured murine alveolar macrophage cell line (MH-S cells) and primary bone marrow-derived macrophages (BMDMs) to explore the pro-inflammatory activity and mechanism of HDAC10 after LPS challenge. RESULTS: HDAC10 expression was increased both in mice lung tissues and macrophage cell lines and promoted inflammatory cytokines production exposed to LPS. Hdac10 deficiency inhibited autophagy and inflammatory response after LPS stimulation. In vivo, Hdac10fl/fl-LysMCre mice considerably attenuated lung inflammation and inflammatory cytokines release exposed to LPS. Mechanistically, HDAC10 interacts with P62 and mediates P62 deacetylation at lysine 165 (K165), by which it promotes P62 expression and increases inflammatory cytokines production. Importantly, we identified that Salvianolic acid B (SAB), an HDAC10 inhibitor, reduces lung inflammatory response in LPS-stimulated ALI. CONCLUSION: These results uncover a previously unknown role for HDAC10 in regulating P62 deacetylation and aggravating lung inflammation in LPS-induced ALI, implicating that targeting HDAC10 is an effective therapy for LPS-exposed ALI.


Subject(s)
Acute Lung Injury , Histone Deacetylases , Lipopolysaccharides , Lysine , Mice, Inbred C57BL , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Acute Lung Injury/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Lipopolysaccharides/toxicity , Mice , Acetylation , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/deficiency , Lysine/metabolism , Mice, Knockout , Male , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Myeloid Cells/metabolism
10.
Gen Physiol Biophys ; 43(4): 353-366, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953577

ABSTRACT

This study aimed to assess the prophylactic effects of Berberine on experimentally induced lung sepsis and examine its effects on selected cytokines, genes, and protein expression besides the histopathological evaluation. Berberine significantly reduced the wet/dry lung ratio, the broncho-alveolar lavage fluid (BALF) protein, cells, neutrophils percentage, and cytokines levels. In addition, pretreatment with Berberine decreased the myeloperoxidase (MPO) and malondialdehyde (MDA) levels and decreased gene expression of nuclear factor kappa B (NF-κB), monocyte chemoattractant protein-1 (MCP-1), and the intracellular adhesion molecule 1 (ICAM-1) by RT-qPCR analysis, revealing Berberine's antioxidant and anti-inflammatory mode of action. Western blot analysis revealed increased peroxisome proliferator-activated receptor gamma (PPAR-γ) expression in the Berberine pretreated group compared to the cecal ligation and puncture (CLP) group, in which the histopathological examination evidenced this improvement. In conclusion, Berberine improved lung sepsis via its PPAR-γ mediated antioxidant and anti-inflammatory effects.


Subject(s)
Acute Lung Injury , Berberine , PPAR gamma , Sepsis , Signal Transduction , Berberine/pharmacology , Berberine/therapeutic use , Animals , PPAR gamma/metabolism , Sepsis/metabolism , Sepsis/drug therapy , Rats , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , Male , Signal Transduction/drug effects , Up-Regulation/drug effects , Rats, Wistar , Rats, Sprague-Dawley
11.
Pulm Pharmacol Ther ; 86: 102312, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38906321

ABSTRACT

Acute lung injury (ALI) frequently occurs after video-assisted thoracoscopic surgery (VATS). Ferroptosis is implicated in several lung diseases. Therefore, the disparate effects and underlying mechanisms of the two commonly used anesthetics (sevoflurane (Sev) and propofol) on VATS-induced ALI need to be clarified. In the present study, enrolled patients were randomly allocated to receive Sev (group S) or propofol anesthesia (group P). Intraoperative oxygenation, morphology of the lung tissue, expression of ZO-1, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), superoxide dismutase (SOD), glutathione (GSH), Fe2+, glutathione peroxidase 4 (GPX4), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in the lung tissue as well as the expression of TNF-α and IL-6 in plasma were measured. Postoperative complications were recorded. Of the 85 initially screened patients scheduled for VATS, 62 were enrolled in either group S (n = 32) or P (n = 30). Compared with propofol, Sev substantially (1) improved intraoperative oxygenation; (2) relieved histopathological lung injury; (3) increased ZO-1 protein expression; (4) decreased the levels of TNF-α and IL-6 in both the lung tissue and plasma; (5) increased the contents of GSH and SOD but decreased Fe2+ concentration; (6) upregulated the protein expression of p-AKT, Nrf2, HO-1, and GPX4. No significant differences in the occurrence of postoperative outcomes were observed between both groups. In summary, Sev treatment, in comparison to propofol anesthesia, may suppress local lung and systemic inflammatory responses by activating the PI3K/Akt/Nrf2/HO-1 pathway and inhibiting ferroptosis. This cascade of effects contributes to the maintenance of pulmonary epithelial barrier permeability, alleviation of pulmonary injury, and enhancement of intraoperative oxygenation in patients undergoing VATS.


Subject(s)
Acute Lung Injury , Ferroptosis , Propofol , Sevoflurane , Thoracic Surgery, Video-Assisted , Humans , Sevoflurane/pharmacology , Sevoflurane/administration & dosage , Acute Lung Injury/prevention & control , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , Male , Female , Ferroptosis/drug effects , Middle Aged , Thoracic Surgery, Video-Assisted/methods , Propofol/pharmacology , Propofol/administration & dosage , Anesthetics, Inhalation/pharmacology , Aged , Postoperative Complications/prevention & control , Adult , NF-E2-Related Factor 2/metabolism , Anesthetics, Intravenous/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism
12.
Chem Biol Interact ; 398: 111112, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38901789

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): Life-threatening medical conditions characterized by high morbidity and mortality rates, where the inflammatory process plays a crucial role in lung tissue damage, especially in models induced by lipopolysaccharide (LPS). Heat shock protein A12B (HSPA12B) has strong anti-infammatory properties However, it is unknown whether increased HSPA12B is protective against LPS-induced ALI. And Dexmedetomidine (DEX) is a potent α2-adrenergic receptor (α2-AR) agonist that has been shown to protect against sepsis-induced lung injury, however, the underlying mechanisms of this protection are not fully understood. This study utilized bioinformatics analysis and an LPS-induced ALI model to explore how DEX alleviates lung injury by modulating HSPA12B and inhibiting the Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. Results indicate that HSPA12B overexpression and DEX pre-treatment markedly mitigated LPS-induced lung injury, which was evaluated by the deterioration of histopathology, histologic scores, the W/D weight ratio, and total protein expression, tumor necrosis factor-alpha (TNF-α), and interleukin-1ß (IL-1ß) in the BALF, and the levels of NO, MDA,SOD and MPO in the lung. Moreover, HSPA12B overexpression and DEX pre-treatment significantly reduces lung injury and inflammation levels by upregulating HSPA12B and inhibiting the activation of the TLR4/NF-κB signaling pathway. On the contrary, when the expression of HSPA12B is inhibited, the protective effect of DEX pre-treatment on lung tissue is significantly weakened.In summary, our research demonstrated that the increased expression of AAV-mediated HSPA12B in the lungs of mice inhibits acute inflammation and suppresses the activation of TLR4/NF-κB pathway in a murine model of LPS-induced ALI. DEX could enhance HSPA12B and inhibit the initiation and development of inflammation through down-regulating TLR4/NF-κB pathway.These findings highlight the potential of DEX as a therapeutic agent for treating ALI and ARDS, offering new strategies for clinical intervention.


Subject(s)
Acute Lung Injury , Dexmedetomidine , HSP70 Heat-Shock Proteins , Lipopolysaccharides , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/prevention & control , Animals , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , HSP70 Heat-Shock Proteins/metabolism , Mice , Male , Mice, Inbred C57BL , Lung/pathology , Lung/drug effects , Lung/metabolism , Interleukin-1beta/metabolism
13.
Sci Rep ; 14(1): 14231, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902260

ABSTRACT

Butorphanol is widely used as an anesthetic drug, whether butorphanol could reduce organ injury and protecting lung tissue is unknown. This study explored the effects of butorphanol on ALI and investigated its underlying mechanisms. We established a "two-hit" rat model and "two-hit" cell model to prove our hypothesis. Rats were divided into four groups [control, "two-hit" (OA + LPS), "two-hit" + butorphanol (4 mg/kg and 8 mg/kg) (OA + LPS + B1 and OA + LPS + B2)]. RPMVE cells were divided into four groups [control, "two-hit" (OA + LPS), "two-hit" + butorphanol (4 µM and 8 µM) (OA + LPS + 4 µM and OA + LPS + 8 µM)]. Inflammatory injury was assessed by the histopathology and W/D ratio, inflammatory cytokines, and arterial blood gas analysis. Apoptosis was assessed by Western blotting and flow cytometry. The effect of NF-κB p65 was detected by ELISA. Butorphanol could relieve the "two-hit" induced lung injury, the expression of TNF, IL-1ß, IL-6, and improve lung ventilation. In addition, butorphanol decreased Bax and cleaved caspase-3, increased an antiapoptotic protein (Bcl-2), and inhibited the "two-hit" cell apoptosis ratio. Moreover, butorphanol suppressed NF-κB p65 activity in rat lung injury. Our research showed that butorphanol may attenuate "two-hit"-induced lung injury by regulating the activity of NF-κB p65, which may supply more evidence for ALI treatment.


Subject(s)
Acute Lung Injury , Apoptosis , Butorphanol , Inflammation , Animals , Butorphanol/pharmacology , Apoptosis/drug effects , Rats , Male , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Transcription Factor RelA/metabolism , Lipopolysaccharides , Rats, Sprague-Dawley , Lung Injury/chemically induced , Lung Injury/drug therapy , Lung Injury/metabolism , Lung Injury/pathology , Lung Injury/prevention & control , Disease Models, Animal , Cytokines/metabolism , Lung/pathology , Lung/drug effects , Lung/metabolism
14.
Poult Sci ; 103(7): 103866, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833957

ABSTRACT

Avian pathogenic Escherichia coli (APEC) is the causative agent of chicken colibacillosis. Paeoniflorin, a natural ingredient extracted from Paeonia lactiflora, has a variety of pharmacological effects including anti-inflammatory and immunomodulatory. However, its effects and mechanism in APEC-induced acute lung injury (ALI) in chicken is not clear. The aim of this study was to investigate the protective effect of paeoniflorin on APEC-induced ALI and its possible mechanism. Paeoniflorin (25, 50, and 100 mg/kg) was administered by gavage for 5 d starting at 9 d of age and the chicken were infected with APEC by intraperitoneal injection at 12 d of age. The tissues were collected after APEC infection for 36 h for analysis. The results showed that paeoniflorin significantly alleviated the symptoms, increased the survival rate and body weight gain of APEC-infected chicken, and improved the histopathological damages, and reduced APEC loads in lung tissues. In addition, paeoniflorin restored the gene expression of ZO-1, Occludin and Claudin-3 during APEC infection. Moreover, paeoniflorin pretreatment significantly affected the endocannabinoid system (ECs) by increasing DAGL, decreasing MAGL, increasing secretion of 2-AG. Then, paeoniflorin significantly decreased the secretion of IL-1ß, IL-6 and TNF-α in lung tissues, and decreased the mRNA expression of CXCL8, CXCL12, CCL1, CCL5, and CCL17. In addition, paeoniflorin significantly reduced the phosphorylation levels of PI3K, AKT, P65, and IκB. In summary, we found that paeoniflorin inhibited APEC-induced ALI, and its mechanism may be through affecting ECs and inhibiting the activation of PI3K/AKT and NF-κB signaling pathways, which provides a new idea for the prevention and treatment of chicken colibacillosis.


Subject(s)
Acute Lung Injury , Chickens , Escherichia coli Infections , Glucosides , Monoterpenes , NF-kappa B , Phosphatidylinositol 3-Kinases , Poultry Diseases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Acute Lung Injury/prevention & control , Acute Lung Injury/etiology , Acute Lung Injury/veterinary , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Glucosides/pharmacology , Glucosides/administration & dosage , Monoterpenes/pharmacology , Monoterpenes/administration & dosage , Poultry Diseases/prevention & control , Poultry Diseases/drug therapy , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , NF-kappa B/metabolism , NF-kappa B/genetics , Escherichia coli Infections/veterinary , Escherichia coli Infections/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Avian Proteins/metabolism , Avian Proteins/genetics , Dose-Response Relationship, Drug , Escherichia coli/drug effects
15.
Naunyn Schmiedebergs Arch Pharmacol ; 397(10): 8043-8051, 2024 10.
Article in English | MEDLINE | ID: mdl-38775850

ABSTRACT

Radiotherapy (RAD) is a common cancer treatment method, but it can have unintended lung side effects. L-carnitine (LCAR) is an amino acid with antioxidant and anti-inflammatory properties. This study aims to demonstrate the effects of LCAR against radiation-induced acute lung injury and to elucidate its possible protective molecular mechanisms. A total of 32 Wistar albino rats were separated into four groups: control, RAD (10 Gy once on 1st day), RAD + LCAR (intraperitoneally, 200 mg/kg/d, for 10 days), and LCAR. At the end of the experiment, the rats were euthanized, and the lung tissues were collected for histopathological, immunohistochemical, biochemical, and genetic analysis. Emphysema, pronounced hyperemia, increased total oxidant status, and increased caspase-3 and TNF-α immunostainings were all seen in the lung tissues of the RAD group. LCAR treatment reduced these negative effects. In addition, AMPK and SIRT1 gene expressions increased in the RAD + LCAR group compared to the RAD group, while TGF-1ß gene expression decreased. While RAD caused major damage to the lungs of rats, LCAR application reduced this damage through antioxidant, anti-inflammatory, and anti-apoptotic mechanisms. Specifically, LCAR reduced fibrosis while attenuating RAD-induced inflammation and oxidative stress via the AMPK/SIRT1/TGF-1ß pathway. Therefore, LCAR can be considered a supplement to reduce complications associated with RAD.


Subject(s)
Carnitine , Lung , Rats, Wistar , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Carnitine/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism , Lung/radiation effects , Male , Rats , AMP-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/metabolism , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Antioxidants/pharmacology , Acute Lung Injury/prevention & control , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/etiology
16.
BMC Vet Res ; 20(1): 204, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755662

ABSTRACT

Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia (PCP), which is clinically characterized by acute hemorrhagic, necrotizing pneumonia, and chronic fibrinous pneumonia. Although many measures have been taken to prevent the disease, prevention and control of the disease are becoming increasingly difficult due to the abundance of APP sera, weak vaccine cross-protection, and increasing antibiotic resistance in APP. Therefore, there is an urgent need to develop novel drugs against APP infection to prevent the spread of APP. Naringin (NAR) has been reported to have an excellent therapeutic effect on pulmonary diseases, but its therapeutic effect on lung injury caused by APP is not apparent. Our research has shown that NAR was able to alleviate APP-induced weight loss and quantity of food taken and reduce the number of WBCs and NEs in peripheral blood in mice; pathological tissue sections showed that NAR was able to prevent and control APP-induced pathological lung injury effectively; based on the establishment of an in vivo/in vitro model of APP inflammation, it was found that NAR was able to play an anti-inflammatory role through inhibiting the MAPK/NF-κB signaling pathway and exerting anti-inflammatory effects; additionally, NAR activating the Nrf2 signalling pathway, increasing the secretion of antioxidant enzymes Nqo1, CAT, and SOD1, inhibiting the secretion of oxidative damage factors NOS2 and COX2, and enhancing the antioxidant stress ability, thus playing an antioxidant role. In summary, NAR can relieve severe lung injury caused by APP by reducing excessive inflammatory response and improving antioxidant capacity.


Subject(s)
Actinobacillus Infections , Actinobacillus pleuropneumoniae , Acute Lung Injury , Flavanones , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , NF-kappa B , Animals , Mice , Actinobacillus Infections/veterinary , Actinobacillus Infections/drug therapy , Actinobacillus pleuropneumoniae/drug effects , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , Flavanones/therapeutic use , Flavanones/pharmacology , Heme Oxygenase-1 , Kelch-Like ECH-Associated Protein 1/metabolism , Membrane Proteins , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects
17.
Toxicol Appl Pharmacol ; 487: 116958, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735591

ABSTRACT

Acute lung injury (ALI) remains a significant clinical challenge due to the absence of effective treatment alternatives. This study presents a new method that employs a screening platform focusing on MyD88 affinity, anti-inflammatory properties, and toxicity. This platform was used to evaluate a 300-compound library known for its anti-inflammatory potential. Among the screened compounds, Bicyclol emerged as a standout, exhibiting MyD88 binding and a significant reduction in LPS-stimulated pro-inflammatory factors production in mouse primary peritoneal macrophages. By targeting MyD88, Bicyclol disrupts the MyD88/TLR4 complex and MyD88 polymer formation, thereby mitigating the MAPKs and NF-κB signaling pathways. In vivo experiments further confirmed Bicyclol's efficacy, demonstrating alleviated ALI symptoms, decreased inflammatory cytokines level, and reduced inflammatory cells presence in lung tissues. These findings were associated with a decrease in mortality in LPS-challenged mice. Overall, Bicyclol represents a promising treatment option for ALI by specifically targeting MyD88 and limiting inflammatory responses.


Subject(s)
Acute Lung Injury , Biphenyl Compounds , Lipopolysaccharides , Mice, Inbred C57BL , Myeloid Differentiation Factor 88 , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/prevention & control , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Lipopolysaccharides/toxicity , Myeloid Differentiation Factor 88/metabolism , Mice , Male , Biphenyl Compounds/pharmacology , Anti-Inflammatory Agents/pharmacology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Cytokines/metabolism , Lung/drug effects , Lung/pathology , Lung/metabolism
18.
Biomed Pharmacother ; 175: 116674, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703509

ABSTRACT

Numerous cases of lung injury caused by viral infection were reported during the coronavirus disease-19 pandemic. While there have been significant efforts to develop drugs that block viral infection and spread, the development of drugs to reduce or reverse lung injury has been a lower priority. This study aimed to identify compounds from a library of compounds that prevent viral infection that could reduce and prevent lung epithelial cell damage. We investigated the cytotoxicity of the compounds, their activity in inhibiting viral spike protein binding to cells, and their activity in reducing IL-8 production in lung epithelial cells damaged by amodiaquine (AQ). We identified N-(4-(4-methoxyphenoxy)-3-methylphenyl)-N-methylacetamide (MPoMA) as a non-cytotoxic inhibitor against viral infection and AQ-induced cell damage. MPoMA inhibited the expression of IL-8, IL-6, IL-1ß, and fibronectin induced by AQ and protected against AQ-induced morphological changes. However, MPoMA did not affect basal IL-8 expression in lung epithelial cells in the absence of AQ. Further mechanistic analysis confirmed that MPoMA selectively promoted the proteasomal degradation of inflammatory mediator p65, thereby reducing intracellular p65 expression and p65-mediated inflammatory responses. MPoMA exerted potent anti-inflammatory and protective functions in epithelial cells against LPS-induced acute lung injury in vivo. These findings suggest that MPoMA may have beneficial effects in suppressing viral infection and preventing lung epithelial cell damage through the degradation of p65 and inhibition of the production of inflammatory cytokines.


Subject(s)
Epithelial Cells , Animals , Humans , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Mice , Lung/pathology , Lung/drug effects , Lung/metabolism , Transcription Factor RelA/metabolism , COVID-19 Drug Treatment , A549 Cells , SARS-CoV-2/drug effects , COVID-19/prevention & control , Proteolysis/drug effects , Lung Injury/prevention & control , Lung Injury/pathology , Lung Injury/metabolism , Lung Injury/virology , Male , Acute Lung Injury/prevention & control , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Acetamides/pharmacology
19.
Chem Biol Interact ; 395: 111032, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38705442

ABSTRACT

Particulate matter (PM), the main component of air pollutants, emerges as a research hotspot, especially in the area of respiratory diseases. Paeoniflorin (PAE), known as anti-inflammatory and immunomodulatory effects, has been reported to alleviate acute lung injury (ALI). However, the effect of PAE on PM-induced ALI and the underlying mechanisms are still unclear yet. In this study, we established the PM-induced ALI model using C57BL/6J mice and BEAS-2B cells to explore the function of PAE. In vivo, mice were intraperitoneally injected with PAE (100 mg/kg) or saline 1 h before instilled with 4 mg/kg PM intratracheally and were euthanized on the third day. For lung tissues, HE staining and TUNEL staining were used to evaluate the degree of lung injury, ELISA assay was used to assess inflammatory mediators and oxidative stress level, Immunofluorescence staining and western blotting were applied to explore the role of pyroptosis and Nrf2 signaling pathway. In vitro, BEAS-2B cells were pretreated with 100 µM PAE before exposure to 200 µg/ml PM and were collected after 24h for the subsequent experiments. TUNEL staining, ROS staining, and western blotting were conducted to explore the underlying mechanisms of PAE on PM-induced ALI. According to the results, PAE can attenuate the degree of PM-induced ALI in mice and reduce PM-induced cytotoxicity in BEAS-2B cells. PAE can relieve PM-induced excessive oxidative stress and NLRP3 inflammasome-mediated pyroptosis. Additionally, PAE can also activate Nrf2 signaling pathway and inhibition of Nrf2 signaling pathway can impair the protective effect of PAE by aggravating oxidative stress and pyroptosis. Our findings demonstrate that PAE can attenuate PM-induced ALI by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis, which is mediated by Nrf2 signaling pathway.


Subject(s)
Acute Lung Injury , Glucosides , Inflammasomes , Mice, Inbred C57BL , Monoterpenes , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Particulate Matter , Pyroptosis , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/prevention & control , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , Oxidative Stress/drug effects , Particulate Matter/toxicity , Glucosides/pharmacology , Glucosides/therapeutic use , Signal Transduction/drug effects , Mice , Monoterpenes/pharmacology , Inflammasomes/metabolism , Male , Humans , Cell Line
20.
Nutrients ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732622

ABSTRACT

Acute lung injury, a fatal condition characterized by a high mortality rate, necessitates urgent exploration of treatment modalities. Utilizing UHPLS-Q-Exactive Orbitrap/MS, our study scrutinized the active constituents present in Rosa roxburghii-fermented juice (RRFJ) while also assessing its protective efficacy against LPS-induced ALI in mice through lung histopathological analysis, cytokine profiling, and oxidative stress assessment. The protective mechanism of RRFJ against ALI in mice was elucidated utilizing metabolomics, network pharmacology, and molecular docking methodologies. Our experimental findings demonstrate that RRFJ markedly ameliorates pathological injuries in ALI-afflicted mice, mitigates systemic inflammation and oxidative stress, enhances energy metabolism, and restores dysregulated amino acid and arachidonic acid metabolic pathways. This study indicates that RRFJ can serve as a functional food for adjuvant treatment of ALI.


Subject(s)
Acute Lung Injury , Fruit and Vegetable Juices , Lipopolysaccharides , Metabolomics , Oxidative Stress , Rosa , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/prevention & control , Rosa/chemistry , Metabolomics/methods , Mice , Male , Oxidative Stress/drug effects , Network Pharmacology , Fermentation , Lung/drug effects , Lung/pathology , Lung/metabolism , Disease Models, Animal , Molecular Docking Simulation , Plant Extracts/pharmacology , Cytokines/metabolism , Energy Metabolism/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL