Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.218
Filter
1.
BMC Endocr Disord ; 24(1): 143, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107738

ABSTRACT

BACKGROUND: Arginine vasopressin deficiency (AVP-D) can occur due to various conditions, so clarifying its cause is important for deciding treatment strategy. Although several cases of AVP-D following coronavirus disease 2019(COVID-19) infection or COVID-19 vaccination have been reported, the diagnosis of the underlying disease has not been reported in most cases. CASE PRESENTATION: A 75-year-old woman who presented with polydipsia and polyuria 9 weeks after contracting COVID-19 and 5 weeks after receiving the SARS-CoV-2 vaccination, leading to the final diagnosis of AVP-D 8 months after the first appearance of symptoms. Interestingly, pituitary magnetic resonance imaging (MRI) still revealed stalk enlargement frequently observed in patients with SARS-CoV-2 vaccination-induced AVP-D. Although this finding could not rule out any malignancies, we additionally measured anti-rabphilin-3A antibodies, a known marker for lymphocytic infundibulo-neurohypophysitis (LINH), and found that the results were positive, strongly suggesting LINH as the cause of this disease. Thus, we avoided pituitary biopsy. At the follow-up MRI conducted 12 months after the initial consultation, enlargement of the pituitary stalk was still observed. CONCLUSION: We experienced a case with LINH probably induced by SARS-CoV-2 vaccination. In SARS-CoV-2 vaccination-related LINH, unlike typical LINH, there is a possibility of persistent pituitary stalk enlargement on MRI images for an extended period, posing challenges in differential diagnosis from other conditions. Pituitary stalk enlargement and positive anti-rabphilin-3A antibodies may help in the diagnosis of AVP-D induced by SARS-CoV-2 vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Female , Aged , COVID-19/prevention & control , COVID-19/immunology , COVID-19/complications , COVID-19 Vaccines/adverse effects , Adaptor Proteins, Signal Transducing/immunology , Arginine Vasopressin , SARS-CoV-2/immunology , Vaccination/adverse effects , Autoantibodies/blood , Autoantibodies/immunology , Magnetic Resonance Imaging
2.
Signal Transduct Target Ther ; 9(1): 199, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39117617

ABSTRACT

High frequencies of stem-like memory T cells in infusion products correlate with superior patient outcomes across multiple T cell therapy trials. Herein, we analyzed a published CRISPR activation screening to identify transcriptional regulators that could be harnessed to augment stem-like behavior in CD8+ T cells. Using IFN-γ production as a proxy for CD8+ T cell terminal differentiation, LMO4 emerged among the top hits inhibiting the development of effectors cells. Consistently, we found that Lmo4 was downregulated upon CD8+ T cell activation but maintained under culture conditions facilitating the formation of stem-like T cells. By employing a synthetic biology approach to ectopically express LMO4 in antitumor CD8+ T cells, we enabled selective expansion and enhanced persistence of transduced cells, while limiting their terminal differentiation and senescence. LMO4 overexpression promoted transcriptional programs regulating stemness, increasing the numbers of stem-like CD8+ memory T cells and enhancing their polyfunctionality and recall capacity. When tested in syngeneic and xenograft tumor models, LMO4 overexpression boosted CD8+ T cell antitumor immunity, resulting in enhanced tumor regression. Rather than directly modulating gene transcription, LMO4 bound to JAK1 and potentiated STAT3 signaling in response to IL-21, inducing the expression of target genes (Tcf7, Socs3, Junb, and Zfp36) crucial for memory responses. CRISPR/Cas9-deletion of Stat3 nullified the enhanced memory signature conferred by LMO4, thereby abrogating the therapeutic benefit of LMO4 overexpression. These results establish LMO4 overexpression as an effective strategy to boost CD8+ T cell stemness, providing a new synthetic biology tool to bolster the efficacy of T cell-based immunotherapies.


Subject(s)
Adaptor Proteins, Signal Transducing , CD8-Positive T-Lymphocytes , LIM Domain Proteins , STAT3 Transcription Factor , Signal Transduction , LIM Domain Proteins/genetics , LIM Domain Proteins/immunology , CD8-Positive T-Lymphocytes/immunology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , STAT3 Transcription Factor/metabolism , Mice , Animals , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Humans , Signal Transduction/immunology , Signal Transduction/genetics , Interleukins/genetics , Interleukins/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology
3.
Cell Chem Biol ; 31(7): 1239-1241, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029453

ABSTRACT

In a study published in the July issue of Immunity, Li et al.1 demonstrate that expression of the E3 ubiquitin ligases CBL and CBL-B is downregulated in Tfh cells in SLE with Tfh cell expansion and autoimmunity. This leads to reduced ubiquitination of the T cell costimulator ICOS which regulates proteostasis of the Tfh cell transcription factor BCL6 via chaperone-mediated autophagy.


Subject(s)
Autoimmunity , Down-Regulation , Proto-Oncogene Proteins c-cbl , Ubiquitination , Proto-Oncogene Proteins c-cbl/metabolism , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology
4.
PLoS Pathog ; 20(7): e1012379, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39037956

ABSTRACT

RNA helicases are involved in the innate immune response against pathogens, including bacteria and viruses; however, their mechanism in the human airway epithelial cells is still not fully understood. Here, we demonstrated that DEAH (Asp-Glu-Ala-His) box polypeptide 35 (DHX35), a member of the DExD/H (Asp-Glu-x-Asp/His)-box helicase family, boosts antiviral innate immunity in human airway epithelial cells. DHX35 knockdown attenuated the production of interferon-ß (IFN-ß), IL6, and CXCL10, whereas DHX35 overexpression increased their production. Upon stimulation, DHX35 was constitutively expressed, but it translocated from the nucleus into the cytosol, where it recognized cytosolic poly(I:C) and poly(dA:dT) via its HELICc domain. Mitochondrial antiviral signaling protein (MAVS) acted as an adaptor for DHX35 and interacted with the HELICc domain of DHX35 using amino acids 360-510. Interestingly, DHX35 interacted with retinoic acid-inducible gene 1 (RIG-I), enhanced the binding affinity of RIG-I with poly(I:C) and poly(dA:dT), and formed a signalsome with MAVS to activate interferon regulatory factor 3 (IRF3), NF-κB-p65, and MAPK signaling pathways. These results indicate that DHX35 not only acted as a cytosolic nucleic acid sensor but also synergized with RIG-I to enhance antiviral immunity in human airway epithelial cells. Our results demonstrate a novel molecular mechanism for DHX35 in RIG-I-mediated innate immunity and provide a novel candidate for drug and vaccine design to control viral infections in the human airway.


Subject(s)
DEAD Box Protein 58 , DEAD-box RNA Helicases , Immunity, Innate , Receptors, Immunologic , Humans , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/immunology , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/immunology , Receptors, Immunologic/metabolism , Poly I-C/immunology , Poly I-C/pharmacology , RNA Helicases/metabolism , RNA Helicases/immunology , Signal Transduction/immunology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/virology , HEK293 Cells
5.
Virus Res ; 347: 199431, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969013

ABSTRACT

Usutu virus (USUV) is an emerging flavivirus that can infect birds and mammals. In humans, in severe cases, it may cause neuroinvasive disease. The innate immune system, and in particular the interferon response, functions as the important first line of defense against invading pathogens such as USUV. Many, if not all, viruses have developed mechanisms to suppress and/or evade the interferon response in order to facilitate their replication. The ability of USUV to antagonize the interferon response has so far remained largely unexplored. Using dual-luciferase reporter assays we observed that multiple of the USUV nonstructural (NS) proteins were involved in suppressing IFN-ß production and signaling. In particular NS4A was very effective at suppressing IFN-ß production. We found that NS4A interacted with the mitochondrial antiviral signaling protein (MAVS) and thereby blocked its interaction with melanoma differentiation-associated protein 5 (MDA5), resulting in reduced IFN-ß production. The TM1 domain of NS4A was found to be essential for binding to MAVS. By screening a panel of flavivirus NS4A proteins we found that the interaction of NS4A with MAVS is conserved among flaviviruses. The increased understanding of the role of NS4A in flavivirus immune evasion could aid the development of vaccines and therapeutic strategies.


Subject(s)
Adaptor Proteins, Signal Transducing , Flavivirus , Interferon-Induced Helicase, IFIH1 , Interferon-beta , Signal Transduction , Viral Nonstructural Proteins , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Flavivirus/immunology , Flavivirus/genetics , Flavivirus/physiology , Interferon-beta/genetics , Interferon-beta/immunology , Interferon-beta/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/immunology , HEK293 Cells , Immune Evasion , Flavivirus Infections/immunology , Flavivirus Infections/virology , Host-Pathogen Interactions/immunology , Protein Binding , Immunity, Innate , Animals
6.
Proc Natl Acad Sci U S A ; 121(29): e2404349121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985764

ABSTRACT

Intron-containing RNA expressed from the HIV-1 provirus activates type 1 interferon in primary human blood cells, including CD4+ T cells, macrophages, and dendritic cells. To identify the innate immune receptor required for detection of intron-containing RNA expressed from the HIV-1 provirus, a loss-of-function screen was performed with short hairpin RNA-expressing lentivectors targeting twenty-one candidate genes in human monocyte-derived dendritic cells. Among the candidate genes tested, only knockdown of XPO1 (CRM1), IFIH1 (MDA5), or MAVS prevented activation of the interferon-stimulated gene ISG15. The importance of IFIH1 protein was demonstrated by rescue of the knockdown with nontargetable IFIH1 coding sequence. Inhibition of HIV-1-induced ISG15 by the IFIH1-specific Nipah virus V protein, and by IFIH1-transdominant 2-CARD domain-deletion or phosphomimetic point mutations, indicates that IFIH1 (MDA5) filament formation, dephosphorylation, and association with MAVS are all required for innate immune activation in response to HIV-1 transduction. Since both IFIH1 (MDA5) and DDX58 (RIG-I) signal via MAVS, the specificity of HIV-1 RNA detection by IFIH1 was demonstrated by the fact that DDX58 knockdown had no effect on activation. RNA-Seq showed that IFIH1 knockdown in dendritic cells globally disrupted the induction of IFN-stimulated genes by HIV-1. Finally, specific enrichment of unspliced HIV-1 RNA by IFIH1 (MDA5), over two orders of magnitude, was revealed by formaldehyde cross-linking immunoprecipitation (f-CLIP). These results demonstrate that IFIH1 is the innate immune receptor for intron-containing RNA from the HIV-1 provirus and that IFIH1 potentially contributes to chronic inflammation in people living with HIV-1, even in the presence of effective antiretroviral therapy.


Subject(s)
Dendritic Cells , HIV-1 , Immunity, Innate , Interferon-Induced Helicase, IFIH1 , Introns , Proviruses , RNA, Viral , Humans , HIV-1/genetics , HIV-1/immunology , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Proviruses/genetics , Dendritic Cells/immunology , Dendritic Cells/virology , Dendritic Cells/metabolism , Introns/genetics , RNA, Viral/genetics , RNA, Viral/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , HIV Infections/immunology , HIV Infections/virology , HIV Infections/genetics , Karyopherins/genetics , Karyopherins/metabolism
7.
Fish Shellfish Immunol ; 151: 109684, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852788

ABSTRACT

Singapore grouper iridovirus (SGIV) is a large double-stranded DNA virus that has caused significant economic losses to the grouper aquaculture industry. So far, the structure and function of SGIV proteins have been successively reported. In the present paper, the protein of SGIV VP146 was cloned and identified. VP146 was whole-cell distributed in GS cells. VP146 promoted SGIV replication and inhibited the transcription of interferon-related genes as well as pro-inflammatory cytokines in GS cells. In addition, VP146 was involved in the regulation of the cGAS-STING signaling pathway, and decreased cGAS-STING induced the promoter of ISRE and NF-κB. VP146 interacted with the proteins of cGAS, STING, TBK1, and IRF3 from grouper, but did not affect the binding of grouper STING to grouper TBK1 and grouper IRF3. Interestingly, grouper STING was able to affect the intracellular localization of VP146. Four segment structural domains of grouper STING were constructed, and grouper STING-CTT could affect the intracellular localization of VP146. VP146 had no effect on the self-binding of EcSITNG, nor on the binding of EcSTING to EcTBK1 and EcIRF3. Together, the results demonstrated that SGIV VP146 modulated the cGAS-STING signaling pathway to escape the interferon immune response.


Subject(s)
Adaptor Proteins, Signal Transducing , Bass , Iridovirus , Nucleotidyltransferases , Signal Transduction , Iridovirus/immunology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Signal Transduction/immunology , Bass/genetics , Bass/immunology , Bass/virology , Cell Line , Spleen/cytology , Gene Expression Regulation/immunology , Virus Replication/immunology , Interferons/genetics , Interferons/immunology , Fish Proteins/immunology , Animals
8.
Dokl Biochem Biophys ; 517(1): 207-213, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861147

ABSTRACT

The relevance of the problem of immunoinflammatory rheumatic diseases (IIRD) for modern medicine is determined by their high prevalence in the population, the difficulty of early diagnosis, the rapid development of disability and poor life prognosis. Recent data on the significance of anti-DFS70 have opened up new possibilities for optimizing the step-by-step diagnosis of IIRD. The detection of these antibodies can help in the interpretation of a positive result for antinuclear antibodies (ANA) by indirect immunofluorescence assay on HEp-2 cells (IIFA-HEp-2) in the absence of autoantibodies specific for IIRD. Detection of anti-DFS70 in antinuclear factor (ANF) seropositive patients without clinical and/or serological markers characteristic of a certain disease from the IIRD group can be considered as a potential marker that excludes this group of diseases.


Subject(s)
Adaptor Proteins, Signal Transducing , Antibodies, Antinuclear , Rheumatic Diseases , Humans , Rheumatic Diseases/immunology , Antibodies, Antinuclear/immunology , Antibodies, Antinuclear/blood , Adaptor Proteins, Signal Transducing/immunology , Transcription Factors/immunology , Biomarkers/blood , Male , Female , Middle Aged , Adult , Clinical Relevance
9.
Front Immunol ; 15: 1401086, 2024.
Article in English | MEDLINE | ID: mdl-38903507

ABSTRACT

The mitochondrial anti-viral signaling (MAVS) protein is an intermediary adaptor protein of retinoic acid-inducible gene-1 (RIG-I) like receptor (RLR) signaling, which activates the transcription factor interferon (IFN) regulatory factor 3 (IRF3) and NF-kB to produce type I IFNs. MAVS expression has been reported in different fish species, but few studies have shown its functional role in anti-viral responses to fish viruses. In this study, we used the transcription activator-like effector nuclease (TALEN) as a gene editing tool to disrupt the function of MAVS in Chinook salmon (Oncorhynchus tshawytscha) embryonic cells (CHSE) to understand its role in induction of interferon I responses to infections with the (+) RNA virus salmonid alphavirus subtype 3 (SAV-3), and the dsRNA virus infectious pancreatic necrosis virus (IPNV) infection. A MAVS-disrupted CHSE clone with a 7-aa polypeptide (GVFVSRV) deletion mutation at the N-terminal of the CARD domain infected with SAV-3 resulted in significantly lower expression of IRF3, IFNa, and ISGs and increased viral titer (1.5 log10) compared to wild-type. In contrast, the IPNV titer in MAVS-disrupted cells was not different from the wild-type. Furthermore, overexpression of salmon MAVS in MAVS-disrupted CHSE cells rescued the impaired type I IFN-mediated anti-viral effect against SAV-3.


Subject(s)
Adaptor Proteins, Signal Transducing , Alphavirus Infections , Alphavirus , Fish Diseases , Infectious pancreatic necrosis virus , Signal Transduction , Virus Replication , Animals , Infectious pancreatic necrosis virus/physiology , Infectious pancreatic necrosis virus/immunology , Alphavirus/immunology , Alphavirus/physiology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Fish Diseases/immunology , Fish Diseases/virology , Alphavirus Infections/immunology , Alphavirus Infections/virology , Salmon/virology , Salmon/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Birnaviridae Infections/immunology , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology
10.
Nat Commun ; 15(1): 4153, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755212

ABSTRACT

Viral myocarditis, an inflammatory disease of the heart, causes significant morbidity and mortality. Type I interferon (IFN)-mediated antiviral responses protect against myocarditis, but the mechanisms are poorly understood. We previously identified A Disintegrin And Metalloproteinase domain 9 (ADAM9) as an important factor in viral pathogenesis. ADAM9 is implicated in a range of human diseases, including inflammatory diseases; however, its role in viral infection is unknown. Here, we demonstrate that mice lacking ADAM9 are more susceptible to encephalomyocarditis virus (EMCV)-induced death and fail to mount a characteristic type I IFN response. This defect in type I IFN induction is specific to positive-sense, single-stranded RNA (+ ssRNA) viruses and involves melanoma differentiation-associated protein 5 (MDA5)-a key receptor for +ssRNA viruses. Mechanistically, ADAM9 binds to MDA5 and promotes its oligomerization and thereby downstream mitochondrial antiviral-signaling protein (MAVS) activation in response to EMCV RNA stimulation. Our findings identify a role for ADAM9 in the innate antiviral response, specifically MDA5-mediated IFN production, which protects against virus-induced cardiac damage, and provide a potential therapeutic target for treatment of viral myocarditis.


Subject(s)
ADAM Proteins , Cardiovirus Infections , Encephalomyocarditis virus , Immunity, Innate , Interferon Type I , Interferon-Induced Helicase, IFIH1 , Membrane Proteins , Myocarditis , Animals , Mice , ADAM Proteins/metabolism , ADAM Proteins/genetics , ADAM Proteins/immunology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Cardiovirus Infections/immunology , Cardiovirus Infections/virology , Encephalomyocarditis virus/immunology , HEK293 Cells , Interferon Type I/metabolism , Interferon Type I/immunology , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice, Inbred C57BL , Mice, Knockout , Myocarditis/immunology , Myocarditis/virology , Signal Transduction/immunology
11.
Pharmacol Res ; 205: 107223, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797359

ABSTRACT

Sepsis is a life-threatening syndrome caused by a dysregulated immune response. A large number of adaptor proteins have been found to play a pivotal role in sepsis via protein-protein interactions, thus participating in inflammatory cascades, leading to the generation of numerous inflammatory cytokines, as well as oxidative stress and regulated cell death. Although available strategies for the diagnosis and management of sepsis have improved, effective and specific treatments are lacking. This review focuses on the emerging role of adaptor proteins in regulating the innate immunity of sepsis and evaluates the potential value of adaptor protein-associated therapeutic strategy for sepsis.


Subject(s)
Adaptor Proteins, Signal Transducing , Immunity, Innate , Sepsis , Humans , Sepsis/immunology , Sepsis/metabolism , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Signal Transduction
12.
Mol Biomed ; 5(1): 14, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38644450

ABSTRACT

NLRP inflammasomes are a group of cytosolic multiprotein oligomer pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) produced by infected cells. They regulate innate immunity by triggering a protective inflammatory response. However, despite their protective role, aberrant NLPR inflammasome activation and gain-of-function mutations in NLRP sensor proteins are involved in occurrence and enhancement of non-communicating autoimmune, auto-inflammatory, and neurodegenerative diseases. In the last few years, significant advances have been achieved in the understanding of the NLRP inflammasome physiological functions and their molecular mechanisms of activation, as well as therapeutics that target NLRP inflammasome activity in inflammatory diseases. Here, we provide the latest research progress on NLRP inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRP7, NLRP2, NLRP9, NLRP10, and NLRP12 regarding their structural and assembling features, signaling transduction and molecular activation mechanisms. Importantly, we highlight the mechanisms associated with NLRP inflammasome dysregulation involved in numerous human auto-inflammatory, autoimmune, and neurodegenerative diseases. Overall, we summarize the latest discoveries in NLRP biology, their forming inflammasomes, and their role in health and diseases, and provide therapeutic strategies and perspectives for future studies about NLRP inflammasomes.


Subject(s)
Inflammasomes , NLR Proteins , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , NLR Proteins/metabolism , Animals , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/metabolism , Signal Transduction/immunology , Immunity, Innate , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Inflammation/immunology , Inflammation/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/genetics
13.
Int Immunol ; 36(9): 429-438, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38573198

ABSTRACT

Efficient induction of humoral immune responses depends on the orchestrated migration of B cells within lymphoid organs, which is governed by G protein-coupled receptors (GPCRs) responding to chemoattractants, represented by chemokines. After ligand binding, GPCRs are phosphorylated by different GPCR kinases (GRKs) at distinct sites on the receptor C termini, which dictates functional outcomes of ß-arrestin-mediated signaling, ranging from receptor inactivation to effector molecule activation. However, the molecular mechanisms by which individual GRKs are selectively targeted to GPCRs have been poorly understood. Our recent study revealed that a protein complex consisting of copper metabolism MURR1 domain-containing (COMMD) 3 and 8 (the COMMD3/8 complex) functions as an adaptor that recruits a specific GRK to chemoattractant receptors and plays an important role in the control of B-cell migration during humoral immune responses. In this review, we summarize the current understanding of chemoattractant receptor signaling in the context of humoral immunity and discuss the potential of the COMMD3/8 complex as a therapeutic target for autoimmune diseases.


Subject(s)
Immunity, Humoral , Signal Transduction , Humans , Immunity, Humoral/immunology , Signal Transduction/immunology , Animals , B-Lymphocytes/immunology , Receptors, G-Protein-Coupled/immunology , Receptors, G-Protein-Coupled/metabolism , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/metabolism
14.
Fish Shellfish Immunol ; 149: 109550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593891

ABSTRACT

Signal transducing adapter molecule 2 (STAM2), a member of the Signal Transducing Adapter Molecule (STAM) family, is a protein with significant implications in diverse signaling pathways and endocytic membrane trafficking. However, the role of the STAM2, especially in fish, remains largely unknown. In this study, we discovered that STAM2 negatively regulates the NF-κB signaling pathway, and its inhibitory effect is enhanced upon LPS induction. Our study confirmed that STAM2 can enhance the degradation of myeloid differentiation primary-response protein 88 (MyD88), an upstream regulator of NF-κB pathway. Furthermore, the UIM domain of STAM2 is important for the inhibition of MyD88. Mechanistically, STAM2 inhibits the NF-κB signaling pathway by targeting the MyD88 autophagy pathway. In addition, we showed that STAM2 promotes the proliferation of Vibrio harveyi. In summary, our study reveals that STAM2 inhibits NF-κB signaling activation and mediates innate immunity in teleost via the autophagy pathway.


Subject(s)
Fish Diseases , Fish Proteins , Immunity, Innate , Myeloid Differentiation Factor 88 , NF-kappa B , Perciformes , Vibrio Infections , Vibrio , Animals , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Lipopolysaccharides/pharmacology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/immunology , NF-kappa B/metabolism , NF-kappa B/immunology , NF-kappa B/genetics , Perciformes/immunology , Perciformes/genetics , Signal Transduction/immunology , Vibrio/physiology , Vibrio Infections/immunology , Vibrio Infections/veterinary
15.
J Clin Invest ; 134(11)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652549

ABSTRACT

CD8+ T cell dysfunction impedes antitumor immunity in solid cancers, but the underlying mechanisms are diverse and poorly understood. Extracellular matrix (ECM) composition has been linked to impaired T cell migration and enhanced tumor progression; however, impacts of individual ECM molecules on T cell function in the tumor microenvironment (TME) are only beginning to be elucidated. Upstream regulators of aberrant ECM deposition and organization in solid tumors are equally ill-defined. Therefore, we investigated how ECM composition modulates CD8+ T cell function in undifferentiated pleomorphic sarcoma (UPS), an immunologically active desmoplastic tumor. Using an autochthonous murine model of UPS and data from multiple human patient cohorts, we discovered a multifaceted mechanism wherein the transcriptional coactivator YAP1 promotes collagen VI (COLVI) deposition in the UPS TME. In turn, COLVI induces CD8+ T cell dysfunction and immune evasion by remodeling fibrillar collagen and inhibiting T cell autophagic flux. Unexpectedly, collagen I (COLI) opposed COLVI in this setting, promoting CD8+ T cell function and acting as a tumor suppressor. Thus, CD8+ T cell responses in sarcoma depend on oncogene-mediated ECM composition and remodeling.


Subject(s)
CD8-Positive T-Lymphocytes , Extracellular Matrix , Sarcoma , Tumor Microenvironment , YAP-Signaling Proteins , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Animals , Tumor Microenvironment/immunology , Mice , YAP-Signaling Proteins/immunology , YAP-Signaling Proteins/genetics , Humans , Extracellular Matrix/immunology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Sarcoma/immunology , Sarcoma/pathology , Sarcoma/genetics , Sarcoma/metabolism , Collagen Type VI/genetics , Collagen Type VI/immunology , Collagen Type VI/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/immunology , Oncogenes , Neoplasm Proteins/immunology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type I/immunology
16.
Immunology ; 172(3): 362-374, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38469682

ABSTRACT

Small cell lung cancer (SCLC), recognized as the most aggressive subtype of lung cancer, presents an extremely poor prognosis. Currently, patients with small cell lung cancer face a significant dearth of effective alternative treatment options once they experience recurrence and progression after first-line therapy. Despite the promising efficacy of immunotherapy, particularly immune checkpoint inhibitors in non-small cell lung cancer (NSCLC) and various other tumours, its impact on significantly enhancing the prognosis of SCLC patients remains elusive. DLL3 has emerged as a compelling target for targeted therapy in SCLC due to its high expression on the membranes of SCLC and other neuroendocrine carcinoma cells, with minimal to no expression in normal cells. Our previous work led to the development of a novel multiple chain chimeric antigen receptor (CAR) leveraging the TREM1 receptor and DAP12, which efficiently activated T cells and conferred potent cell cytotoxicity. In this study, we have developed a DLL3-TREM1/DAP12 CAR-T (DLL3-DT CAR-T) therapy, demonstrating comparable anti-tumour efficacy against SCLC cells in vitro. In murine xenograft and patient-derived xenograft models, DLL3-DT CAR-T cells exhibited a more robust tumour eradication efficiency than second-generation DLL3-BBZ CAR-T cells. Furthermore, we observed elevated memory phenotypes, induced durable responses, and activation under antigen-presenting cells in DLL3-DT CAR-T cells. Collectively, these findings suggest that DLL3-DT CAR-T cells may offer a novel and potentially effective therapeutic strategy for treating DLL3-expressing SCLC and other solid tumours.


Subject(s)
Adaptor Proteins, Signal Transducing , Immunotherapy, Adoptive , Lung Neoplasms , Membrane Proteins , Receptors, Chimeric Antigen , Small Cell Lung Carcinoma , Triggering Receptor Expressed on Myeloid Cells-1 , Xenograft Model Antitumor Assays , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/therapy , Humans , Animals , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Line, Tumor , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice, SCID , Female
17.
J Virol ; 98(2): e0165223, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38299866

ABSTRACT

CCR5-tropic simian/human immunodeficiency viruses (SHIV) with clade C transmitted/founder envelopes represent a critical tool for the investigation of HIV experimental vaccines and microbicides in nonhuman primates, although many such isolates lead to spontaneous viral control post infection. Here, we generated a high-titer stock of pathogenic SHIV-C109p5 by serial passage in two rhesus macaques (RM) and tested its virulence in aged monkeys. The co-receptor usage was confirmed before infecting five geriatric rhesus macaques (four female and one male). Plasma viral loads were monitored by reverse transcriptase-quantitative PCR (RT-qPCR), cytokines by multiplex analysis, and biomarkers of gastrointestinal damage by enzyme-linked immunosorbent assay. Antibodies and cell-mediated responses were also measured. Viral dissemination into tissues was determined by RNAscope. Intravenous SHIV-C109p5 infection of aged RMs leads to high plasma viremia and rapid disease progression; rapid decrease in CD4+ T cells, CD4+CD8+ T cells, and plasmacytoid dendritic cells; and wasting necessitating euthanasia between 3 and 12 weeks post infection. Virus-specific cellular immune responses were detected only in the two monkeys that survived 4 weeks post infection. These were Gag-specific TNFα+CD8+, MIP1ß+CD4+, Env-specific IFN-γ+CD4+, and CD107a+ T cell responses. Four out of five monkeys had elevated intestinal fatty acid binding protein levels at the viral peak, while regenerating islet-derived protein 3α showed marked increases at later time points in the three animals surviving the longest, suggesting gut antimicrobial peptide production in response to microbial translocation post infection. Plasma levels of monocyte chemoattractant protein-1, interleukin-15, and interleukin-12/23 were also elevated. Viral replication in gut and secondary lymphoid tissues was extensive.IMPORTANCESimian/human immunodeficiency viruses (SHIV) are important reagents to study prevention of virus acquisition in nonhuman primate models of HIV infection, especially those representing transmitted/founder (T/F) viruses. However, many R5-tropic SHIV have limited fitness in vivo leading to many monkeys spontaneously controlling the virus post acute infection. Here, we report the generation of a pathogenic SHIV clade C T/F stock by in vivo passage leading to sustained viral load set points, a necessity to study pathogenicity. Unexpectedly, administration of this SHIV to elderly rhesus macaques led to extensive viral replication and fast disease progression, despite maintenance of a strict R5 tropism. Such age-dependent rapid disease progression had previously been reported for simian immunodeficiency virus but not for R5-tropic SHIV infections.


Subject(s)
HIV Infections , HIV , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Virus Replication , Animals , Female , Male , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/metabolism , Aging , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Chemokine CCL2/immunology , Chemokine CCL2/metabolism , Dendritic Cells/immunology , Dendritic Cells/pathology , Disease Progression , HIV/classification , HIV/growth & development , HIV/pathogenicity , HIV/physiology , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukins/immunology , Interleukins/metabolism , Intestines/virology , Lymphoid Tissue/virology , Macaca mulatta/immunology , Macaca mulatta/metabolism , Serial Passage , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/classification , Simian Immunodeficiency Virus/growth & development , Simian Immunodeficiency Virus/pathogenicity , Simian Immunodeficiency Virus/physiology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , Viral Load , Viral Tropism , Virulence , Receptors, CCR5/metabolism
18.
Adv Healthc Mater ; 13(18): e2303549, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38333940

ABSTRACT

Periodontitis is a common oral disease accompanied by inflammatory bone loss. The pathological characteristics of periodontitis usually accompany an imbalance in the periodontal immune microenvironment, leading to difficulty in bone regeneration. Therefore, effective treatment strategies are needed to modulate the immune environment in order to treat periodontitis. Here, highly-oriented periodic lamellae poly(ε-caprolactone) electrospun nanofibers (PLN) are developed by surface-directed epitaxial crystallization. The in vitro result shows that the PLN can precisely modulate macrophage polarization toward the M2 phenotype. Macrophages polarized by PLN significantly enhance the migration and osteogenic differentiation of Bone marrow stromal cells. Notably, results suggest that the topographical cues presented by PLN can modulate macrophage polarization by activating YAP, which reciprocally inhibits the NF-κB signaling pathway. The in vivo results indicate that PLN can inhibit inflammatory bone loss and facilitate bone regeneration in periodontitis. The authors' findings suggest that topographical nanofibers with periodic lamellae is a promising strategy for modulating immune environment to treat inflammatory bone loss in periodontitis.


Subject(s)
Nanofibers , Osteogenesis , Periodontitis , Polyesters , Nanofibers/chemistry , Periodontitis/therapy , Periodontitis/pathology , Periodontitis/immunology , Periodontitis/drug therapy , Animals , Mice , Polyesters/chemistry , Osteogenesis/drug effects , RAW 264.7 Cells , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Bone Regeneration/drug effects , Cell Differentiation/drug effects , NF-kappa B/metabolism , Mesenchymal Stem Cells/immunology , Immunomodulation/drug effects , Signal Transduction/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Mice, Inbred C57BL , Male , Inflammation/pathology , YAP-Signaling Proteins
19.
Int Immunopharmacol ; 113(Pt A): 109375, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36461592

ABSTRACT

BACKGROUND: Recent studies have uncovered that hyperuricemia (HUA) leads to cognitive deficits, which are accompanied by neuronal damage and neuroinflammation. Here, we aim to explore the role of methyltransferase-like 3 (METTL3) in HUA-mediated neuronal apoptosis and microglial inflammation. METHODS: A HUA mouse model was constructed. The spatial memory ability of the mice was assessed by the Morris water maze experiment (MWM), and neuronal apoptosis was analyzed by the TdT-mediated dUTP nick end labeling (TUNEL) assay. Besides, enzyme-linked immunosorbent assay (ELISA) was utilized to measure the contents of inflammatory factors (IL-1ß, IL-6, and TNF-α) and oxidative stress markers (MDA, SOD, and CAT) in the serum of mice. In vitro, the mouse hippocampal neuron (HT22) and microglia (BV2) were treated with uric acid (UA). Flow cytometry was applied to analyze HT22 and BV2 cell apoptosis, and ELISA was conducted to observe neuroinflammation and oxidative stress. In addition, the expression of MyD88, p-NF-κB, NF-κB, NLRP3, ASC and Caspase1 was determined by Western blot. RESULTS: METTL3 and miR-124-3p were down-regulated, while the MyD88-NF-κB pathway was activated in the HUA mouse model. UA treatment induced neuronal apoptosis in HT22 and stimulated microglial activation in BV2. Overexpressing METTL3 alleviated HT22 neuronal apoptosis and resisted the release of inflammatory cytokines and oxidative stress mediators in BV2 cells. METTL3 repressed MyD88-NF-κB and NLRP3-ASC-Caspase1 inflammasome. In addition, METTL3 overexpression enhanced miR-124-3p expression, while METTL3 knockdown aggravated HT22 cell apoptosis and BV2 cell overactivation. CONCLUSION: METTL3 improves neuronal apoptosis and microglial activation in the HUA model by choking the MyD88/NF-κB pathway and up-regulating miR-124-3p.


Subject(s)
Cognitive Dysfunction , Hyperuricemia , Inflammasomes , Methyltransferases , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/immunology , Caspase 1/genetics , Caspase 1/immunology , Cells, Cultured , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/immunology , Disease Models, Animal , Hyperuricemia/complications , Hyperuricemia/genetics , Hyperuricemia/immunology , Inflammasomes/genetics , Inflammasomes/immunology , Methyltransferases/genetics , Methyltransferases/immunology , MicroRNAs/genetics , MicroRNAs/immunology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Nervous System/drug effects , Nervous System/immunology , Nervous System/physiopathology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/immunology , NF-kappa B , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Uric Acid/administration & dosage , Uric Acid/adverse effects , Uric Acid/pharmacology
20.
J Virol ; 96(17): e0077422, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35972291

ABSTRACT

XIAP-associated factor 1 (XAF1) is an interferon (IFN)-stimulated gene (ISG) that enhances IFN-induced apoptosis. However, it is unexplored whether XAF1 is essential for the host fighting against invaded viruses. Here, we find that XAF1 is significantly upregulated in the host cells infected with emerging RNA viruses, including influenza, Zika virus (ZIKV), and SARS-CoV-2. IFN regulatory factor 1 (IRF1), a key transcription factor in immune cells, determines the induction of XAF1 during antiviral immunity. Ectopic expression of XAF1 protects host cells against various RNA viruses independent of apoptosis. Knockout of XAF1 attenuates host antiviral innate immunity in vitro and in vivo, which leads to more severe lung injuries and higher mortality in the influenza infection mouse model. XAF1 stabilizes IRF1 protein by antagonizing the CHIP-mediated degradation of IRF1, thus inducing more antiviral IRF1 target genes, including DDX58, DDX60, MX1, and OAS2. Our study has described a protective role of XAF1 in the host antiviral innate immunity against RNA viruses. We have also elucidated the molecular mechanism that IRF1 and XAF1 form a positive feedback loop to induce rapid and robust antiviral immunity. IMPORTANCE Rapid and robust induction of antiviral genes is essential for the host to clear the invaded viruses. In addition to the IRF3/7-IFN-I-STAT1 signaling axis, the XAF1-IRF1 positive feedback loop synergistically or independently drives the transcription of antiviral genes. Moreover, XAF1 is a sensitive and reliable gene that positively correlates with the viral infection, suggesting that XAF1 is a potential diagnostic marker for viral infectious diseases. In addition to the antitumor role, our study has shown that XAF1 is essential for antiviral immunity. XAF1 is not only a proapoptotic ISG, but it also stabilizes the master transcription factor IRF1 to induce antiviral genes. IRF1 directly binds to the IRF-Es of its target gene promoters and drives their transcriptions, which suggests a unique role of the XAF1-IRF1 loop in antiviral innate immunity, particularly in the host defect of IFN-I signaling such as invertebrates.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Interferon Regulatory Factor-1 , RNA Virus Infections , RNA Viruses , Adaptor Proteins, Signal Transducing/immunology , Animals , Apoptosis Regulatory Proteins/immunology , Humans , Immunity, Innate , Interferon Regulatory Factor-1/immunology , Mice , Mice, Knockout , RNA Virus Infections/immunology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL