Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.546
1.
Int J Mol Sci ; 25(11)2024 May 22.
Article En | MEDLINE | ID: mdl-38891830

The dynamic process of Drosophila spermatogenesis involves asymmetric division, mitosis, and meiosis, which ultimately results in the production of mature spermatozoa. Disorders of spermatogenesis can lead to infertility in males. ADAR (adenosine deaminase acting on RNA) mutations in Drosophila cause male infertility, yet the causative factors remain unclear. In this study, immunofluorescence staining was employed to visualize endogenous ADAR proteins and assess protein levels via fluorescence-intensity analysis. In addition, the early differentiation disorders and homeostatic alterations during early spermatogenesis in the testes were examined through quantification of transit-amplifying region length, counting the number of GSCs (germline stem cells), and fertility experiments. Our findings suggest that deletion of ADAR causes testicular tip transit-amplifying cells to accumulate and become infertile in older male Drosophila. By overexpressing ADAR in early germline cells, male infertility can be partially rescued. Transcriptome analysis showed that ADAR maintained early spermatogenesis homeostasis through the bone-morphogenetic-protein (BMP) signaling pathway. Taken together, these findings have the potential to help explore the role of ADAR in early spermatogenesis.


Adenosine Deaminase , Bone Morphogenetic Proteins , Drosophila Proteins , Drosophila melanogaster , Signal Transduction , Spermatogenesis , Animals , Male , Spermatogenesis/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Infertility, Male/genetics , Infertility, Male/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Testis/metabolism
2.
Int J Mol Sci ; 25(11)2024 May 30.
Article En | MEDLINE | ID: mdl-38892173

A-to-I RNA editing, catalyzed by the ADAR protein family, significantly contributes to the diversity and adaptability of mammalian RNA signatures, aligning with developmental and physiological needs. Yet, the functions of many editing sites are still to be defined. The Unc80 gene stands out in this context due to its brain-specific expression and the evolutionary conservation of its codon-altering editing event. The precise biological functions of Unc80 and its editing, however, are still largely undefined. In this study, we first demonstrated that Unc80 editing occurs in an ADAR2-dependent manner and is exclusive to the brain. By employing the CRISPR/Cas9 system to generate Unc80 knock-in mouse models that replicate the natural editing variations, our findings revealed that mice with the "gain-of-editing" variant (Unc80G/G) exhibit heightened basal neuronal activity in critical olfactory regions, compared to the "loss-of-editing" (Unc80S/S) counterparts. Moreover, an increase in glutamate levels was observed in the olfactory bulbs of Unc80G/G mice, indicating altered neurotransmitter dynamics. Behavioral analysis of odor detection revealed distinctive responses to novel odors-both Unc80 deficient (Unc80+/-) and Unc80S/S mice demonstrated prolonged exploration times and heightened dishabituation responses. Further elucidating the olfactory connection of Unc80 editing, transcriptomic analysis of the olfactory bulb identified significant alterations in gene expression that corroborate the behavioral and physiological findings. Collectively, our research advances the understanding of Unc80's neurophysiological functions and the impact of its editing on the olfactory sensory system, shedding light on the intricate molecular underpinnings of olfactory perception and neuronal activity.


Adenosine Deaminase , Olfactory Perception , RNA Editing , Animals , Mice , Olfactory Perception/physiology , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Olfactory Bulb/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Neurons/metabolism , CRISPR-Cas Systems , Male , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
3.
BMC Biol ; 22(1): 132, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38835016

BACKGROUND: ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is thought to play a significant role both in tumor suppression and tumor initiation, which is highly dependent upon context. Previous studies have suggested that ARID1A deficiency may contribute to cancer development. The specific mechanisms of whether ARID1A loss affects tumorigenesis by RNA editing remain unclear. RESULTS: Our findings indicate that the deficiency of ARID1A leads to an increase in RNA editing levels and alterations in RNA editing categories mediated by adenosine deaminases acting on RNA 1 (ADAR1). ADAR1 edits the CDK13 gene at two previously unidentified sites, namely Q113R and K117R. Given the crucial role of CDK13 as a cyclin-dependent kinase, we further observed that ADAR1 deficiency results in changes in the cell cycle. Importantly, the sensitivity of ARID1A-deficient tumor cells to SR-4835, a CDK12/CDK13 inhibitor, suggests a promising therapeutic approach for individuals with ARID1A-mutant tumors. Knockdown of ADAR1 restored the sensitivity of ARID1A deficient cells to SR-4835 treatment. CONCLUSIONS: ARID1A deficiency promotes RNA editing of CDK13 by regulating ADAR1.


Adenosine Deaminase , Cyclin-Dependent Kinases , DNA-Binding Proteins , RNA Editing , RNA-Binding Proteins , Transcription Factors , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Cell Line, Tumor , CDC2 Protein Kinase
4.
PLoS Pathog ; 20(6): e1012238, 2024 Jun.
Article En | MEDLINE | ID: mdl-38843141

Although lack of ADAR (adenosine deaminase acting on RNA) orthologs, genome-wide A-to-I editing occurs specifically during sexual reproduction in a number of filamentous ascomycetes, including Fusarium graminearum and Neurospora crassa. Unlike ADAR-mediated editing in animals, fungal A-to-I editing has a strong preference for hairpin loops and U at -1 position, which leads to frequent editing of UAG and UAA stop codons. Majority of RNA editing events in fungi are in the coding region and cause amino acid changes. Some of these editing events have been experimentally characterized for providing heterozygote and adaptive advantages in F. graminearum. Recent studies showed that FgTad2 and FgTad3, 2 ADAT (adenosine deaminase acting on tRNA) enzymes that normally catalyze the editing of A34 in the anticodon of tRNA during vegetative growth mediate A-to-I mRNA editing during sexual reproduction. Stage specificity of RNA editing is conferred by stage-specific expression of short transcript isoforms of FgTAD2 and FgTAD3 as well as cofactors such as AME1 and FIP5 that facilitate the editing of mRNA in perithecia. Taken together, fungal A-to-I RNA editing during sexual reproduction is catalyzed by ADATs and it has the same sequence and structural preferences with editing of A34 in tRNA.


Adenosine Deaminase , RNA Editing , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Ascomycota/genetics , RNA, Fungal/genetics , RNA, Fungal/metabolism , Adenosine/metabolism , Adenosine/genetics , Inosine/metabolism , Inosine/genetics , Fusarium/genetics , Neurospora crassa/genetics
5.
J Clin Immunol ; 44(5): 118, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758417

Deficiency of Adenosine Deaminase 2 (DADA2) patients presenting with primary immunodeficiency are at risk of uncontrolled EBV infection and secondary malignancies including EBV-related lymphoproliferative disorders (LPD). This paper describes the first case of EBV related diffuse large B-cell lymphoma in a patient with DADA2 and uncontrolled EBV infection. Consideration should be given to monitoring for EBV viraemia and to preventative EBV specific therapy in DADA2 and patients with at risk primary immunodeficiencies. A type I interferon (IFN) gene signature is associated with DADA2 though its association with immune dysregulation is unclear.


Adenosine Deaminase , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Lymphoma, Large B-Cell, Diffuse , Humans , Lymphoma, Large B-Cell, Diffuse/etiology , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/diagnosis , Adenosine Deaminase/deficiency , Adenosine Deaminase/genetics , Intercellular Signaling Peptides and Proteins/deficiency , Intercellular Signaling Peptides and Proteins/genetics , Male , Female , Hereditary Autoinflammatory Diseases
6.
Commun Biol ; 7(1): 594, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760406

Non-alcoholic fatty liver disease (NAFLD) is a chronic disease caused by hepatic steatosis. Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine RNA editing. However, the functional role of ADAR2 in NAFLD is unclear. ADAR2+/+/GluR-BR/R mice (wild type, WT) and ADAR2-/-/GluR-BR/R mice (ADAR2 KO) mice are fed with standard chow or high-fat diet (HFD) for 12 weeks. ADAR2 KO mice exhibit protection against HFD-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, ADAR2 KO mice display reduced liver lipid droplets in concert with decreased hepatic TG content, improved hepatic insulin signaling, better pyruvate tolerance, and increased glycogen synthesis. Mechanistically, ADAR2 KO effectively mitigates excessive lipid production via AMPK/Sirt1 pathway. ADAR2 KO inhibits hepatic gluconeogenesis via the AMPK/CREB pathway and promotes glycogen synthesis by activating the AMPK/GSK3ß pathway. These results provide evidence that ADAR2 KO protects against NAFLD progression through the activation of AMPK signaling pathways.


Adenosine Deaminase , Diet, High-Fat , Mice, Knockout , Non-alcoholic Fatty Liver Disease , RNA-Binding Proteins , Signal Transduction , Animals , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/deficiency , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/etiology , Diet, High-Fat/adverse effects , Male , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Insulin Resistance , Mice, Obese , Obesity/metabolism , Obesity/genetics , Mice, Inbred C57BL , Liver/metabolism
7.
BMJ Case Rep ; 17(5)2024 May 09.
Article En | MEDLINE | ID: mdl-38724212

A girl in the early adolescent age group presented with multisystem manifestations in the form of periodic fever, recurrent abdominal pain, hypertension, seizure, skin lesions over the chest and gangrene over the left ring and middle fingertips. Her condition had remained undiagnosed for 11 years. On evaluation, she had features of polyarteritis nodosa (PAN) (multiple aneurysms, symmetric sensorimotor peripheral neuropathy, superficial ulcers, digital necrosis, myalgia, hypertension and proteinuria). As childhood PAN is a phenocopy of adenosine deaminase 2 with a different management strategy, whole-exome sequencing was performed, which revealed a pathogenic variant in ADA2 gene. The child was treated with TNF alpha inhibitors and showed improvement in the Paediatric Vasculitis Activity Score. The paper highlights the gratifying consequences of correct diagnosis with disease-specific therapy that ended the diagnostic odyssey, providing relief to the patient from debilitating symptoms and to the family from the financial burden of continued out-of-pocket health expenditure.


Adenosine Deaminase , Polyarteritis Nodosa , Humans , Polyarteritis Nodosa/diagnosis , Polyarteritis Nodosa/drug therapy , Adenosine Deaminase/deficiency , Adenosine Deaminase/genetics , Female , Diagnosis, Differential , Adolescent , Exome Sequencing , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/drug therapy , Tumor Necrosis Factor Inhibitors/therapeutic use , Child , Intercellular Signaling Peptides and Proteins
8.
Int Immunopharmacol ; 136: 112340, 2024 Jul 30.
Article En | MEDLINE | ID: mdl-38820962

BACKGROUND: Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA-editing enzyme that significantly impacts cancer progression and various biological processes. The expression of ADAR1 mRNA has been examined in multiple cancer types using The Cancer Genome Atlas (TCGA) dataset, revealing distinct patterns in kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), and liver hepatocellular carcinoma (LIHC) compared to normal controls. However, the reasons for these differential expressions remain unclear. METHODS: In this study, we performed RT-PCR and western blotting (WB) to validate ADAR1 expression patterns in clinical tissue samples. Survival analysis and immune microenvironment analysis (including immune score and stromal score) were conducted using TCGA data to determine the specific cell types associated with ADAR1, as well as the key genes in those cell types. The relationship between ADAR1 and specific cell types' key genes was verified by immunohistochemistry (IHC), using clinical liver and kidney cancer samples. RESULTS: Our validation analysis revealed that ADAR1 expression was downregulated in KICH, KIRC, and KIRP, while upregulated in LIHC compared to normal tissues. Notably, a significant correlation was found between ADAR1 mRNA expression and patient prognosis, particularly in KIRC, KIRP, and LIHC. Interestingly, we observed a positive correlation between ADAR1 expression and stromal scores in KIRC, whereas a negative correlation was observed in LIHC. Cell type analysis highlighted distinct relationships between ADAR1 expression and the two stromal cell types, blood endothelial cells (BECs) and lymphatic endothelial cells (LECs), and further determined the signature gene claudin-5 (CLDN5), in KIRC and LIHC. Moreover, ADAR1 was inversely related with CLDN5 in KIRC (n = 26) and LIHC (n = 30) samples, verified via IHC. CONCLUSIONS: ADAR1 plays contrasting roles in LIHC and KIRC, associated with the enrichment of BECs and LECs within tumors. This study sheds light on the significant roles of stromal cells within the complex tumor microenvironment (TME) and provides new insights for future research in tumor immunotherapy and precision medicine.


Adenosine Deaminase , Carcinoma, Hepatocellular , Carcinoma, Renal Cell , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , Liver Neoplasms , RNA-Binding Proteins , Tumor Microenvironment , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/mortality , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Prognosis , Female , Male , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Middle Aged
9.
Clin Immunol ; 264: 110237, 2024 Jul.
Article En | MEDLINE | ID: mdl-38723855

Multisystem inflammatory syndrome in children (MIS-C) shares several clinical and immunological features with Kawasaki Disease (KD) and pediatric hyperinflammation, but the immuno-phenotypic overlap among these clinical mimics is still incompletely understood. Here we analyzed serum samples from treatment-naïve patients with MIS-C (n = 31) and KD (n = 11), pediatric hyperinflammation (n = 13) and healthy controls (HC, n = 10) by proximity extension assay (PEA) to profile 184 blood biomarkers. Collectively, immunophenotypic overlap between MIS-C and hyperinflammation exceeds overlap with KD. Overexpression of IL-17A in MIS-C and KD could best separate these conditions from hyperinflammatory conditions, while those were hallmarked by overabundance of adenosin deaminase and IL-18. Depletion in serum TNF-related subfamily member 9 (TNFRSF9) and apoptosis inducing ligand (TRAIL) linked with cardiovascular manifestations and myocarditis in MIS-C. Altogether, our analysis highlights important differences in molecular marker signatures also across different MIS-C and KD cohorts and suggests several previously unidentified molecular associations in context of cardiovascular inflammation.


Biomarkers , Mucocutaneous Lymph Node Syndrome , Proteomics , Systemic Inflammatory Response Syndrome , Humans , Biomarkers/blood , Mucocutaneous Lymph Node Syndrome/blood , Mucocutaneous Lymph Node Syndrome/immunology , Male , Female , Proteomics/methods , Child , Child, Preschool , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/immunology , Inflammation/blood , Infant , Interleukin-17/blood , TNF-Related Apoptosis-Inducing Ligand/blood , Interleukin-18/blood , Adenosine Deaminase/blood , Cardiovascular Diseases/blood , Cardiovascular Diseases/immunology
10.
Fish Shellfish Immunol ; 150: 109620, 2024 Jul.
Article En | MEDLINE | ID: mdl-38740229

Adenosine deaminases acting on RNA 1 (ADAR1) is a dsRNA adenosine (A)-to-inosine (I) editing enzyme that regulates the innate immune response against virus invasion. In the present study, a novel CgADAR1 was identified from the oyster Crassostrea gigas. The open reading frame (ORF) of CgADAR1 was of 3444 bp encoding a peptide of 1147 amino acid residues with two Zα domains, one dsRNA binding motif (DSRM) and one RNA adenosine deaminase domain (ADEAMc). The mRNA transcripts of CgADAR1 were detected in all the examined tissues, with higher expression levels in mantle and gill, which were 7.11-fold and 4.90-fold (p < 0.05) of that in labial palp, respectively. The mRNA transcripts of CgADAR1 in haemocytes were significantly induced at 24 h and 36 h after Poly (A: U) stimulation, which were 6.03-fold (p < 0.01) and 1.37-fold (p < 0.001) of that in control group, respectively. At 48 h after Poly (A:U) stimulation, the mRNA expression of CgRIG-Ⅰ, CgIRF8 and CgIFNLP significantly increased, which were 4.36-fold (p < 0.001), 1.82-fold (p < 0.05) and 1.92-fold (p < 0.05) of that in control group. After CgADAR1 expression was inhibited by RNA interference (RNAi), the mRNA expression levels of CgMDA5, CgRIG-Ⅰ, CgTBK1, CgIRF8 and CgIFNLP were significantly increased, which were 11.88-fold, 11.51-fold, 2.22-fold, 2.85-fold and 2.52-fold of that in control group (p < 0.001), and the phosphorylation level of CgTBK1 was also significantly increased. These results suggested that CgADAR1 played a regulation role in the early stages of viral infection by inhibiting the synthesis of interferon-like protein.


Crassostrea , Gene Expression Regulation , Immunity, Innate , Interferons , Animals , Crassostrea/immunology , Crassostrea/genetics , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Interferons/genetics , Interferons/immunology , Amino Acid Sequence , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Phylogeny , Gene Expression Profiling , Sequence Alignment , Base Sequence
11.
Commun Biol ; 7(1): 615, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777862

Deficiency of adenosine deaminase 2 (DADA2) is an inborn error of immunity caused by loss-of-function mutations in the adenosine deaminase 2 (ADA2) gene. Clinical manifestations of DADA2 include vasculopathy and immuno-hematological abnormalities, culminating in bone marrow failure. A major gap exists in our knowledge of the regulatory functions of ADA2 during inflammation and hematopoiesis, mainly due to the absence of an ADA2 orthologue in rodents. Exploring these mechanisms is essential for understanding disease pathology and developing new treatments. Zebrafish possess two ADA2 orthologues, cecr1a and cecr1b, with the latter showing functional conservation with human ADA2. We establish a cecr1b-loss-of-function zebrafish model that recapitulates the immuno-hematological and vascular manifestations observed in humans. Loss of Cecr1b disrupts hematopoietic stem cell specification, resulting in defective hematopoiesis. This defect is caused by induced inflammation in the vascular endothelium. Blocking inflammation, pharmacological modulation of the A2r pathway, or the administration of the recombinant human ADA2 corrects these defects, providing insights into the mechanistic link between ADA2 deficiency, inflammation and immuno-hematological abnormalities. Our findings open up potential therapeutic avenues for DADA2 patients.


Adenosine Deaminase , Hematopoiesis , Hematopoietic Stem Cells , Inflammation , Zebrafish , Animals , Zebrafish/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Adenosine Deaminase/deficiency , Hematopoietic Stem Cells/metabolism , Inflammation/genetics , Inflammation/metabolism , Hematopoiesis/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Humans , Signal Transduction , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism
12.
Int Immunopharmacol ; 134: 112177, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38696908

BACKGROUND: Ferroptosis, characterized by excessive iron ions and lipid peroxides accumulation, contributes to Nonalcoholic Fatty Liver Disease (NAFLD) development. The role of ADAR1, crucial for lipid metabolism and immune regulation, in ferroptosis-related NAFLD remains unexplored. METHODS: In this study, we analyzed the expression of ADAR1 in NAFLD patients using the GSE66676 database. Subsequently, We investigated the effects of ADAR1 knockdown on mitochondrial membrane potential (MMP), Fe2+ levels, oxidation products, and ferroptosis in NAFLD cells through in vitro and in vivo experiments. Additionally, RNA-seq analysis was performed following ADAR1 depletion in an NAFLD cell model. Overlapping and ferroptosis-related genes were identified using a Venn diagram, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted as well. Furthermore, a protein-protein interaction (PPI) network was constructed to identify hub genes associated with ferroptosis. RESULTS: We found the expression level of ADAR1 was downregulated in NAFLD patients and 22 ferroptosis-associated genes were differentially expressed in a NAFLD cell model upon ADAR1 knockdown. Based on PPI network, we identified NOS2, PTGS2, NOX4, ALB, IL6, and CCL5 as the central genes related to ferroptosis. ADAR1 deletion-related NAFLD was found to be involved in the ferroptosis signaling pathway. NOS2, PTGS2, ALB, and IL6 can serve as potential biomarkers. These findings offer new insights and expanded targets for NAFLD prevention and treatment. CONCLUSION: These findings provide new strategies and potential targets for preventing and treating NAFLD. NOS2, PTGS2, ALB, and IL6 may serve as biomarkers for ADAR1 deletion-related NAFLD, which could help for developing its new diagnostic and therapeutic strategies.


Adenosine Deaminase , Ferroptosis , Non-alcoholic Fatty Liver Disease , RNA-Binding Proteins , Ferroptosis/genetics , Humans , Non-alcoholic Fatty Liver Disease/genetics , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Animals , Mice , RNA-Seq , Male , Mice, Inbred C57BL , Protein Interaction Maps
13.
Artif Intell Med ; 153: 102886, 2024 Jul.
Article En | MEDLINE | ID: mdl-38749310

Tuberculous pleural effusion poses a significant threat to human health due to its potential for severe disease and mortality. Without timely treatment, it may lead to fatal consequences. Therefore, early identification and prompt treatment are crucial for preventing problems such as chronic lung disease, respiratory failure, and death. This study proposes an enhanced differential evolution algorithm based on colony predation and dispersed foraging strategies. A series of experiments conducted on the IEEE CEC 2017 competition dataset validated the global optimization capability of the method. Additionally, a binary version of the algorithm is introduced to assess the algorithm's ability to address feature selection problems. Comprehensive comparisons of the effectiveness of the proposed algorithm with 8 similar algorithms were conducted using public datasets with feature sizes ranging from 10 to 10,000. Experimental results demonstrate that the proposed method is an effective feature selection approach. Furthermore, a predictive model for tuberculous pleural effusion is established by integrating the proposed algorithm with support vector machines. The performance of the proposed model is validated using clinical records collected from 140 tuberculous pleural effusion patients, totaling 10,780 instances. Experimental results indicate that the proposed model can identify key correlated indicators such as pleural effusion adenosine deaminase, temperature, white blood cell count, and pleural effusion color, aiding in the clinical feature analysis of tuberculous pleural effusion and providing early warning for its treatment and prediction.


Algorithms , Pleural Effusion , Support Vector Machine , Tuberculosis, Pleural , Humans , Pleural Effusion/microbiology , Tuberculosis, Pleural/diagnosis , Adenosine Deaminase/metabolism , Leukocyte Count
14.
Neoplasma ; 71(2): 180-192, 2024 Apr.
Article En | MEDLINE | ID: mdl-38766853

It has been demonstrated that calreticulin (CALR) is expressed abnormally in various tumors and is involved in the occurrence and development of tumors. In this study, CALR and EIF2AK2 expression was measured in the clinical specimens of 39 patients with melanoma. Then, we constructed knockdown and overexpression cell models of CALR and EIF2AK2 and used wound healing and Transwell assays to observe cell migration and invasion. Apoptosis, EDU, and ROS assays were used to measure cell apoptosis and proliferation, as well as ROS levels. The effect of CALR on endoplasmic reticulum stress was detected using endoplasmic reticulum fluorescent probes. Western blotting was used to detect protein levels of CALR, EIF2AK2, ADAR1, and MMP14. The results indicated that CALR and EIF2AK2 expression levels were significantly higher in human melanoma tissues than in adjacent non-tumor tissue. In addition, we found a correlation between CALR and the expression of EIF2AK2 and MMP14, and the experimental results indicated that overexpression of CALR significantly upregulated the expression of EIF2AK2, MMP14, and ADAR1, while knockdown of CALR inhibited their expression. Notably, the knockdown of EIF2AK2 in the CALR overexpression group blocked the upregulation of MMP14 and ADAR1 expression by CALR, and the knockdown of both CALR and EIF2AK2 significantly inhibited MMP14 and ADAR1 expression. In conclusion, CALR and EIF2AK2 play a promoting role in melanoma progression, and knockdown of CALR and EIF2AK2 may be an effective anti-tumor target, and its mechanism may be through MMP14, ADAR1 signaling.


Adenosine Deaminase , Calreticulin , Cell Proliferation , Matrix Metalloproteinase 14 , Melanoma , RNA-Binding Proteins , Signal Transduction , eIF-2 Kinase , Humans , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Melanoma/pathology , Melanoma/metabolism , Melanoma/genetics , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Calreticulin/genetics , Calreticulin/metabolism , Cell Line, Tumor , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Cell Movement , Apoptosis , Endoplasmic Reticulum Stress , Female , Disease Progression , Male , Gene Expression Regulation, Neoplastic , Middle Aged
15.
BMC Pulm Med ; 24(1): 241, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750432

BACKGROUND: Pleural fluid is one of the common complications of thoracic diseases, and tuberculous pleural effusion (TPE) is the most common cause of pleural effusion in TB-endemic areas and the most common type of exudative pleural effusion in China. In clinical practice, distinguishing TPE from pleural effusion caused by other reasons remains a relatively challenging issue. The objective of present study was to explore the clinical significance of the pleural fluid lactate dehydrogenase/adenosine deaminase ratio (pfLDH/pfADA) in the diagnosis of TPE. METHODS: The clinical data of 618 patients with pleural effusion were retrospectively collected, and the patients were divided into 3 groups: the TPE group (412 patients), the parapneumonic pleural effusion (PPE) group (106 patients), and the malignant pleural effusion (MPE) group (100 patients). The differences in the ratios of pleural effusion-related and serology-related indicators were compared among the three groups, and receiver operating characteristic curves were drawn to analyze the sensitivity and specificity of the parameter ratios of different indicators for the diagnosis of TPE. RESULTS: The median serum ADA level was higher in the TPE group (13 U/L) than in the PPE group (10 U/L, P < 0.01) and MPE group (10 U/L, P < 0.001). The median pfADA level in the TPE group was 41 (32, 52) U/L; it was lowest in the MPE group at 9 (7, 12) U/L and highest in the PPE group at 43 (23, 145) U/L. The pfLDH level in the PPE group was 2542 (1109, 6219) U/L, which was significantly higher than that in the TPE group 449 (293, 664) U/L. In the differential diagnosis between TPE and non-TPE, the AUC of pfLDH/pfADA for diagnosing TPE was the highest at 0.946 (0.925, 0.966), with an optimal cutoff value of 23.20, sensitivity of 93.9%, specificity of 87.0%, and Youden index of 0.809. In the differential diagnosis of TPE and PPE, the AUC of pfLDH/pfADA was the highest at 0.964 (0.939, 0.989), with an optimal cutoff value of 24.32, sensitivity of 94.6%, and specificity of 94.4%; this indicated significantly better diagnostic efficacy than that of the single index of pfLDH. In the differential diagnosis between TPE and MPE, the AUC of pfLDH/pfADA was 0.926 (0.896, 0.956), with a sensitivity of 93.4% and specificity of 80.0%; this was not significantly different from the diagnostic efficacy of pfADA. CONCLUSIONS: Compared with single biomarkers, pfLDH/pfADA has higher diagnostic value for TPE and can identify patients with TPE early, easily, and economically.


Adenosine Deaminase , L-Lactate Dehydrogenase , Pleural Effusion , ROC Curve , Sensitivity and Specificity , Tuberculosis, Pleural , Humans , Adenosine Deaminase/analysis , Adenosine Deaminase/blood , Adenosine Deaminase/metabolism , Male , Female , Retrospective Studies , Middle Aged , Pleural Effusion/diagnosis , L-Lactate Dehydrogenase/analysis , Tuberculosis, Pleural/diagnosis , Adult , Aged , China , Diagnosis, Differential , Pleural Effusion, Malignant/diagnosis , Biomarkers/analysis , Biomarkers/blood , Clinical Relevance
17.
Medicine (Baltimore) ; 103(19): e38116, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728474

RNA editing, as an epigenetic mechanism, exhibits a strong correlation with the occurrence and development of cancers. Nevertheless, few studies have been conducted to investigate the impact of RNA editing on cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). In order to study the connection between RNA editing and CESC patients' prognoses, we obtained CESC-related information from The Cancer Genome Atlas (TCGA) database and randomly allocated the patients into the training group or testing group. An RNA editing-based risk model for CESC patients was established by Cox regression analysis and least absolute shrinkage and selection operator (LASSO). According to the median score generated by this RNA editing-based risk model, patients were categorized into subgroups with high and low risks. We further constructed the nomogram by risk scores and clinical characteristics and analyzed the impact of RNA editing levels on host gene expression levels and adenosine deaminase acting on RNA. Finally, we also compared the biological functions and pathways of differentially expressed genes (DEGs) between different subgroups by enrichment analysis. In this risk model, we screened out 6 RNA editing sites with significant prognostic value. The constructed nomogram performed well in forecasting patients' prognoses. Furthermore, the level of RNA editing at the prognostic site exhibited a strong correlation with host gene expression. In the high-risk subgroup, we observed multiple biological functions and pathways associated with immune response, cell proliferation, and tumor progression. This study establishes an RNA editing-based risk model that helps forecast patients' prognoses and offers a new understanding of the underlying mechanism of RNA editing in CESC.


Nomograms , RNA Editing , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Female , RNA Editing/genetics , Prognosis , Risk Assessment/methods , Middle Aged , Carcinoma, Squamous Cell/genetics , Adenocarcinoma/genetics , Adenosine Deaminase/genetics
18.
Cell Rep Med ; 5(5): 101530, 2024 May 21.
Article En | MEDLINE | ID: mdl-38688275

Chimeric antigen receptor (CAR) T cell therapy is hindered in solid tumor treatment due to the immunosuppressive tumor microenvironment and suboptimal T cell persistence. Current strategies do not address nutrient competition in the microenvironment. Hence, we present a metabolic refueling approach using inosine as an alternative fuel. CAR T cells were engineered to express membrane-bound CD26 and cytoplasmic adenosine deaminase 1 (ADA1), converting adenosine to inosine. Autocrine secretion of ADA1 upon CD3/CD26 stimulation activates CAR T cells, improving migration and resistance to transforming growth factor ß1 suppression. Fusion of ADA1 with anti-CD3 scFv further boosts inosine production and minimizes tumor cell feeding. In mouse models of hepatocellular carcinoma and non-small cell lung cancer, metabolically refueled CAR T cells exhibit superior tumor reduction compared to unmodified CAR T cells. Overall, our study highlights the potential of selective inosine refueling to enhance CAR T therapy efficacy against solid tumors.


Adenosine Deaminase , Dipeptidyl Peptidase 4 , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Animals , Adenosine Deaminase/metabolism , Humans , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Mice , Immunotherapy, Adoptive/methods , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/immunology , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Inosine , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology
19.
Curr Opin Genet Dev ; 86: 102195, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643591

Adenosine-to-inosine RNA editing, catalyzed by the enzymes ADAR1 and ADAR2, stands as a pervasive RNA modification. A primary function of ADAR1-mediated RNA editing lies in labeling endogenous double-stranded RNAs (dsRNAs) as 'self', thereby averting their potential to activate innate immune responses. Recent findings have highlighted additional roles of ADAR1, independent of RNA editing, that are crucial for immune control. Here, we focus on recent progress in understanding ADAR1's RNA editing-dependent and -independent roles in immune control. We describe how ADAR1 regulates various dsRNA innate immune receptors through distinct mechanisms. Furthermore, we discuss the implications of ADAR1 and RNA editing in diseases, including autoimmune diseases and cancers.


Adenosine Deaminase , Immunity, Innate , RNA Editing , RNA-Binding Proteins , Humans , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Immunity, Innate/genetics , RNA, Double-Stranded/genetics , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy
20.
BMC Neurol ; 24(1): 130, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632524

BACKGROUND: Monogenic autoinflammatory disorders result in a diverse range of neurological symptoms in adults, often leading to diagnostic delays. Despite the significance of early detection for effective treatment, the neurological manifestations of these disorders remain inadequately recognized. METHODS: We conducted a systematic review searching Pubmed, Embase and Scopus for case reports and case series related to neurological manifestations in adult-onset monogenic autoinflammatory diseases. Selection criteria focused on the four most relevant adult-onset autoinflammatory diseases-deficiency of deaminase 2 (DADA2), tumor necrosis factor receptor associated periodic fever syndrome (TRAPS), cryopyrin associated periodic fever syndrome (CAPS), and familial mediterranean fever (FMF). We extracted clinical, laboratory and radiological features to propose the most common neurological phenotypes. RESULTS: From 276 records, 28 articles were included. The median patient age was 38, with neurological symptoms appearing after a median disease duration of 5 years. Headaches, cranial nerve dysfunction, seizures, and focal neurological deficits were prevalent. Predominant phenotypes included stroke for DADA2 patients, demyelinating lesions and meningitis for FMF, and meningitis for CAPS. TRAPS had insufficient data for adequate phenotype characterization. CONCLUSION: Neurologists should be proactive in diagnosing monogenic autoinflammatory diseases in young adults showcasing clinical and laboratory indications of inflammation, especially when symptoms align with recurrent or chronic meningitis, small vessel disease strokes, and demyelinating lesions.


Cryopyrin-Associated Periodic Syndromes , Familial Mediterranean Fever , Hereditary Autoinflammatory Diseases , Meningitis , Young Adult , Humans , Adult , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , Neurologists , Adenosine Deaminase/genetics , Intercellular Signaling Peptides and Proteins/genetics , Familial Mediterranean Fever/genetics , Cryopyrin-Associated Periodic Syndromes/genetics , Fever , Phenotype
...