Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Microb Pathog ; 120: 198-203, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29702210

ABSTRACT

BACKGROUND: In the current healthcare environment, an alarming rise in multi-drug resistant bacterial infections has led to a global health threat. The lack of new antibiotics has created a need for developing alternative strategies. OBJECTIVE: Understanding the antibacterial mechanisms of cinnamon and its constituents is crucial to enhance it as a potential new source of antibiotic. The objective of this review is to provide a compilation of all described mechanisms of antibacterial action of cinnamon and its constituents and synergism with commercial antibiotics in order to better understand how cinnamon and its constituents can collaborate as alternative treatment to multi-drug resistant bacterial infections. METHODS: The relevant references on antibacterial activities of cinnamon and its constituents were searched. Meanwhile, the references were classified according to the type of mechanism of action against bacteria. Relationships of cinnamon or its constituents and antibiotics were also analyzed and summarized. RESULTS: Cinnamon extracts, essential oils, and their compounds have been reported to inhibit bacteria by damaging cell membrane; altering the lipid profile; inhibiting ATPases, cell division, membrane porins, motility, and biofilm formation; and via anti-quorum sensing effects. CONCLUSION: This review describes the antibacterial effects of cinnamon and its constituents, such as cinnamaldehyde and cinnamic acid, against pathogenic Gram-positive and Gram-negative bacteria. The review also provides an overview of the current knowledge of the primary modes of action of these compounds as well as the synergistic interactions between cinnamon or its constituents with known antibacterial agents. This information will be useful in improving the effectiveness of therapeutics based on these compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Cinnamomum zeylanicum/chemistry , Plant Extracts/pharmacology , Acrolein/analogs & derivatives , Acrolein/pharmacology , Adenosine Triphosphatases/drug effects , Biofilms/drug effects , Biofilms/growth & development , Cell Division/drug effects , Cell Membrane/drug effects , Cinnamates/pharmacology , Databases, Factual , Drug Combinations , Drug Resistance, Multiple, Bacterial/drug effects , Drug Synergism , Oils, Volatile/pharmacology , Porins/drug effects , Quorum Sensing/drug effects
2.
Food Sci Technol Int ; 23(3): 277-288, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28068841

ABSTRACT

The effects of the addition of nitrite at 200 ppm (N), sodium lactate 1.5% (L) and thyme essential oil at 100 ppm (T1) on Listeria monocytogenes behaviour and ATPase activity inhibition were evaluated, as well as lipid oxidation through the quantification of malonaldehydes, in sausage stored at 8 ℃ for 41 days and at 30 ℃ for 14 days. The changes in the colour profile were performed during storage time at 8 ℃. Quantitative descriptive sensory analyses were performed after two days at 4 ℃. At 8 ℃, the treatments with the highest inhibition on L. monocytogenes were L and N, without significant differences. In turn, at 30 ℃, the bacterium was most inhibited with treatment L, followed by T1 and N, without significant differences. A 44.1% and 19% inhibition of ATPase activity was detected in L and T1 treatments, respectively. At 8 ℃ and 30 ℃, malonaldehydes content was not different between the treatments. N presented the highest values of a* and concentration of metmyoglobin after 41 days at 8 ℃. The panel detected differences between T1 and N for the aroma in the descriptors spices and herbal.


Subject(s)
Food Preservation/methods , Food Preservatives/pharmacology , Listeria monocytogenes/physiology , Meat Products/microbiology , Oils, Volatile/pharmacology , Sodium Lactate/pharmacology , Sodium Nitrite/pharmacology , Thymus Plant/chemistry , Adenosine Triphosphatases/drug effects , Animals , Cattle , Food Microbiology , Food Packaging , Food Quality , Lipids , Listeria monocytogenes/drug effects , Listeria monocytogenes/enzymology , Meat Products/analysis , Swine , Taste
3.
Biol Res ; 47: 74, 2014 Dec 22.
Article in English | MEDLINE | ID: mdl-25723052

ABSTRACT

BACKGROUND: Nitrosative and oxidative stress play a key role in obesity and diabetes-related mitochondrial dysfunction. The objective was to investigate the effect of curcumin treatment on state 3 and 4 oxygen consumption, nitric oxide (NO) synthesis, ATPase activity and lipid oxidation in mitochondria isolated from liver and kidneys of diabetic db/db mice. RESULTS: Hyperglycaemia increased oxygen consumption and decreased NO synthesis in liver mitochondria isolated from diabetic mice relative to the control mice. In kidney mitochondria, hyperglycaemia increased state 3 oxygen consumption and thiobarbituric acid-reactive substances (TBARS) levels in diabetic mice relative to control mice. Interestingly, treating db/db mice with curcumin improved or restored these parameters to normal levels; also curcumin increased liver mitochondrial ATPase activity in db/db mice relative to untreated db/db mice. CONCLUSIONS: These findings suggest that hyperglycaemia modifies oxygen consumption rate, NO synthesis and increases TBARS levels in mitochondria from the liver and kidneys of diabetic mice, whereas curcumin may have a protective role against these alterations.


Subject(s)
Curcumin/pharmacology , Diabetes Mellitus, Type 2/diet therapy , Kidney/drug effects , Lipid Peroxidation/drug effects , Liver/drug effects , Mitochondria/drug effects , Adenosine Triphosphatases/drug effects , Animals , Body Weight/drug effects , Cell Respiration/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Dietary Supplements , Disease Models, Animal , Genotype , Hyperglycemia/diet therapy , Hyperglycemia/etiology , Male , Mice , Mitochondria/enzymology , Mitochondria, Liver/drug effects , Mitochondria, Liver/enzymology , Nitric Oxide/analysis , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Oxygen Consumption/drug effects , Selective Breeding
4.
Biol. Res ; 47: 1-8, 2014. graf
Article in English | LILACS | ID: biblio-950770

ABSTRACT

BACKGROUND: Nitrosative and oxidative stress play a key role in obesity and diabetes-related mitochondrial dysfunction. The objective was to investigate the effect of curcumin treatment on state 3 and 4 oxygen consumption, nitric oxide (NO) synthesis, ATPase activity and lipid oxidation in mitochondria isolated from liver and kidneys of diabetic db/db mice. RESULTS: Hyperglycaemia increased oxygen consumption and decreased NO synthesis in liver mitochondria isolated from diabetic mice relative to the control mice. In kidney mitochondria, hyperglycaemia increased state 3 oxygen consumption and thiobarbituric acid-reactive substances (TBARS) levels in diabetic mice relative to control mice. Interestingly, treating db/db mice with curcumin improved or restored these parameters to normal levels; also curcumin increased liver mitochondrial ATPase activity in db/db mice relative to untreated db/db mice. CONCLUSIONS: These findings suggest that hyperglycaemia modifies oxygen consumption rate, NO synthesis and increases TBARS levels in mitochondria from the liver and kidneys of diabetic mice, whereas curcumin may have a protective role against these alterations.


Subject(s)
Animals , Male , Mice , Lipid Peroxidation/drug effects , Curcumin/pharmacology , Diabetes Mellitus, Type 2/diet therapy , Kidney/drug effects , Liver/drug effects , Mitochondria/drug effects , Oxygen Consumption/drug effects , Body Weight/drug effects , Mitochondria, Liver/drug effects , Mitochondria, Liver/enzymology , Adenosine Triphosphatases/drug effects , Oxidative Stress/drug effects , Cell Respiration/drug effects , Dietary Supplements , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Selective Breeding , Genotype , Hyperglycemia/diet therapy , Hyperglycemia/etiology , Mitochondria/enzymology , Nitric Oxide/analysis , Nitric Oxide/metabolism
5.
Braz J Med Biol Res ; 46(2): 178-85, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23369976

ABSTRACT

We studied the effects of the acute administration of small doses of lead over time on hemodynamic parameters in anesthetized rats to determine if myocardial contractility changes are dependent or not on the development of hypertension. Male Wistar rats received 320 µg/kg lead acetate iv once, and their hemodynamic parameters were measured for 2 h. Cardiac contractility was evaluated in vitro using left ventricular papillary muscles as were Na+,K+-ATPase and myosin Ca2+-ATPase activities. Lead increased left- (control: 112 ± 3.7 vs lead: 129 ± 3.2 mmHg) and right-ventricular systolic pressures (control: 28 ± 1.2 vs lead: 34 ± 1.2 mmHg) significantly without modifying heart rate. Papillary muscles were exposed to 8 µM lead acetate and evaluated 60 min later. Isometric contractions increased (control: 0.546 ± 0.07 vs lead: 0.608 ± 0.06 g/mg) and time to peak tension decreased (control: 268 ± 13 vs lead: 227 ± 5.58 ms), but relaxation time was unchanged. Post-pause potentiation was similar between groups (n = 6 per group), suggesting no change in sarcoplasmic reticulum activity, evaluated indirectly by this protocol. After 1-h exposure to lead acetate, the papillary muscles became hyperactive in response to a ß-adrenergic agonist (10 µM isoproterenol). In addition, post-rest contractions decreased, suggesting a reduction in sarcolemmal calcium influx. The heart samples treated with 8 µM lead acetate presented increased Na+,K+-ATPase (approximately 140%, P < 0.05 for control vs lead) and myosin ATPase (approximately 30%, P < 0.05 for control vs lead) activity. Our results indicated that acute exposure to low lead concentrations produces direct positive inotropic and lusitropic effects on myocardial contractility and increases the right and left ventricular systolic pressure, thus potentially contributing to the early development of hypertension.


Subject(s)
Hypertension/physiopathology , Myocardial Contraction/drug effects , Myosins/drug effects , Organometallic Compounds/pharmacology , Adenosine Triphosphatases/drug effects , Animals , Enzyme Activation , Hypertension/enzymology , Male , Myocardial Contraction/physiology , Myosins/physiology , Rats, Wistar
6.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;46(2): 178-185, 01/fev. 2013. tab, graf
Article in English | LILACS | ID: lil-668775

ABSTRACT

We studied the effects of the acute administration of small doses of lead over time on hemodynamic parameters in anesthetized rats to determine if myocardial contractility changes are dependent or not on the development of hypertension. Male Wistar rats received 320 µg/kg lead acetate iv once, and their hemodynamic parameters were measured for 2 h. Cardiac contractility was evaluated in vitro using left ventricular papillary muscles as were Na+,K+-ATPase and myosin Ca2+-ATPase activities. Lead increased left- (control: 112 ± 3.7 vs lead: 129 ± 3.2 mmHg) and right-ventricular systolic pressures (control: 28 ± 1.2 vs lead: 34 ± 1.2 mmHg) significantly without modifying heart rate. Papillary muscles were exposed to 8 µM lead acetate and evaluated 60 min later. Isometric contractions increased (control: 0.546 ± 0.07 vs lead: 0.608 ± 0.06 g/mg) and time to peak tension decreased (control: 268 ± 13 vs lead: 227 ± 5.58 ms), but relaxation time was unchanged. Post-pause potentiation was similar between groups (n = 6 per group), suggesting no change in sarcoplasmic reticulum activity, evaluated indirectly by this protocol. After 1-h exposure to lead acetate, the papillary muscles became hyperactive in response to a β-adrenergic agonist (10 µM isoproterenol). In addition, post-rest contractions decreased, suggesting a reduction in sarcolemmal calcium influx. The heart samples treated with 8 µM lead acetate presented increased Na+,K+-ATPase (approximately 140%, P < 0.05 for control vs lead) and myosin ATPase (approximately 30%, P < 0.05 for control vs lead) activity. Our results indicated that acute exposure to low lead concentrations produces direct positive inotropic and lusitropic effects on myocardial contractility and increases the right and left ventricular systolic pressure, thus potentially contributing to the early development of hypertension.


Subject(s)
Animals , Male , Hypertension/physiopathology , Myocardial Contraction/drug effects , Myosins/drug effects , Organometallic Compounds/pharmacology , Adenosine Triphosphatases/drug effects , Enzyme Activation , Hypertension/enzymology , Myocardial Contraction/physiology , Myosins/physiology , Rats, Wistar
7.
Parasitology ; 138(8): 960-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21679488

ABSTRACT

Recent have shown the relationship between Ecto-Nucleoside-Triphosphate-Diphosphohydrolases (Ecto-NTPDases or ecto-nucleotidases) and virulence and infectivity in trypanosomatids. In this work, the inhibition of the ecto-ATPase activities and promastigote growth of Leishmania amazonensis by CrATP was characterized. Furthermore, this compound was used to investigate the role of ecto-nucleotidase in the interaction of L. amazonensis with resident peritoneal macrophages obtained from BALB/c mice. CrATP partially inhibits the ecto-ATPase activity, presenting Ki values of 575·7±199·1 and 383·5±79·0 µm, in the presence or absence of 5 mm MgCl2, respectively. The apparent Kms for ATP (2·9±0·5 mm to Mg2+-dependent ecto-ATPase and 0·4±0·2 mm to Mg2+-independent ecto-ATPase activities) are not significantly altered by CrATP, suggesting a reversible non-competitive inhibition of both enzymes. When CrATP was added to the cultivation medium at 500 µm, it drastically inhibited the cellular growth. The interaction of promastigote forms of L. amazonensis with BALB/c peritoneal macrophages is strongly affected by CrATP. When the parasites were treated with 500 µm CrATP before interacting with macrophages, the adhesion and endocytic indices were strongly reduced to 53·0±14·8% and 39·8±1·1%, respectively. These results indicate that ecto-nucleotidase plays an important role in the infection process caused by Leishmania amazonensis.


Subject(s)
Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/pharmacology , Leishmania mexicana/drug effects , Leishmania mexicana/enzymology , Leishmaniasis/parasitology , Macrophages, Peritoneal/drug effects , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/drug effects , Adenosine Triphosphate/chemical synthesis , Animals , Dose-Response Relationship, Drug , Host-Parasite Interactions , Leishmania mexicana/growth & development , Leishmania mexicana/pathogenicity , Macrophages, Peritoneal/parasitology , Mice , Mice, Inbred BALB C , Virulence/drug effects
8.
Planta Med ; 77(15): 1702-6, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21567360

ABSTRACT

Valepotriates are iridoids found in variable amounts in Valerianaceae and might be among the bioactive compounds which confer anxiolytic properties to the Valeriana species. On the other hand, unspecific cytotoxicity has also been described. Presently, however, no particular molecular target has been defined for these compounds. Here we studied the effect of valtrate, acevaltrate, and 1- ß-acevaltrate isolated from Valeriana glechomifolia on the enzymatic activity of rat P-type ATPases. Valepotriates did not affect rat skeletal muscle sarco/endoplasmic reticulum Ca²âº-ATPase (SERCA) activity at the highest concentration used (100 µM). In contrast, the same concentration inhibited roughly half of the total H⁺/K⁺-ATPase activity from rat gastric epithelium (valtrate 54.6 ± 3.2 %, acevaltrate 60.7 ± 7.3 %, 1- ß-acevaltrate 50.2 ± 3.1 %; mean ± SEM, n = 3-5). Finally, these substances showed the highest inhibitory potency toward Na⁺/K⁺-ATPase, and the inhibition curves obtained provided a similar IC50 (in µM) for rat kidney α1 isoform (valtrate 21.2, acevaltrate 22.8, 1- ß-acevaltrate 24.4) and brain hemispheres α2/ α3 isoforms (valtrate 19.4, acevaltrate 42.3, 1- ß-acevaltrate 38.3). Our results suggest that P-type ATPases are differentially inhibited by valepotriates and that Na⁺/K⁺-ATPase might be one of their molecular targets in vivo.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Iridoids/pharmacology , Valerian/chemistry , Adenosine Triphosphatases/drug effects , Adenosine Triphosphatases/metabolism , Animals , Brain/enzymology , Epithelium/enzymology , H(+)-K(+)-Exchanging ATPase/drug effects , H(+)-K(+)-Exchanging ATPase/metabolism , Inhibitory Concentration 50 , Iridoids/chemistry , Iridoids/isolation & purification , Kidney/enzymology , Male , Rats , Rats, Wistar , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases/drug effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Stomach/enzymology
9.
Brain Res ; 1221: 134-40, 2008 Jul 24.
Article in English | MEDLINE | ID: mdl-18554575

ABSTRACT

Glutamate is the main excitatory neurotransmitter in brain involved in pathophysiology of several brain injuries. In this context, glutamate showed to stimulate ecto-nucleotidase activities in cerebellar granule cells increasing extracellular adenosine levels, an important neuromodulator in the CNS able to prevent cell damage. The organoselenium compounds, such as ebselen and diphenyl diselenide [(PhSe)(2)], display neuroprotective activities mediated at least in part by their antioxidant and anti-inflammatory properties. Ebselen was described to prevent glutamate-induced lipid peroxidation and cell death in cerebellar granule cells and (PhSe)(2) modify glutamatergic synapse parameters in vitro and in vivo. In the present study, we investigated the effects of ebselen or (PhSe)(2) on glutamate-induced stimulation of ecto-nucleotidase activities in rat cultured cerebellar granule cells. Glutamate increased nucleotide hydrolysis at lower concentrations (10 and 100 microM) than described in the literature and this effect was counteracted by both organoselenium compounds tested. Based on these results, we investigated the association of organoselenium effects with their antioxidant properties searching for redox site modulation by using the alkylant agent N-ethylmaleimide (NEM). Our results suggest that selenium compounds, as well as the well-known antioxidant trolox, can avoid the increase on glutamate-induced stimulation of ecto-nucleotidase activities probably due to their antioxidant properties.


Subject(s)
Adenosine Triphosphatases/drug effects , Brain Damage, Chronic/drug therapy , Nerve Degeneration/drug therapy , Neurons/drug effects , Neuroprotective Agents/pharmacology , Selenium/pharmacology , Adenosine Triphosphatases/metabolism , Animals , Antioxidants/pharmacology , Azoles/pharmacology , Brain Damage, Chronic/enzymology , Brain Damage, Chronic/physiopathology , Cells, Cultured , Cerebellum/cytology , Cerebellum/drug effects , Cerebellum/metabolism , Chromans/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Ethylmaleimide/pharmacology , Glutamic Acid/metabolism , Isoindoles , Nerve Degeneration/enzymology , Nerve Degeneration/physiopathology , Neurons/enzymology , Neuroprotective Agents/metabolism , Nucleotides/metabolism , Organoselenium Compounds/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Selenium/metabolism
10.
Blood Cells Mol Dis ; 41(2): 223-9, 2008.
Article in English | MEDLINE | ID: mdl-18559295

ABSTRACT

It is well known that hypertension is closely associated to the development of vascular diseases and that the inhibition of nitric oxide biosynthesis by administration of Nomega-Nitro-L-arginine methyl ester hydrochloride(L-NAME) leads to arterial hypertension. In the vascular system, extracellular purines mediate several effects;thus, ADP is the most important platelet agonist and recruiting ag ent, while adenosine, an end product of nucleotide metabolism, is a vasodilator and inhibitor of platelet activation and recruitment. Members of several families of enzymes, known as ectonucleotidases, including E-NTPDases (ecto-nucleoside triphosphate diphosphohydrolase), E-NPP (ecto-nucleotide pyrophosphatase/phosphodiesterase) and 5'-nucleotidase are able to hydrolyze extracellular nucleotides until their respective nucleosides. We investigated the ectonucleotidase activities of serum and platelets from rats made hypertensive by oral administration of L-NAME (30 mg/kg/day for 14 days or 30 mg/kg/day for 14 days plus 7 days of L-NAME washout, in the drinking water) in comparison to normotensive control rats. L-NAME promoted a significant rise in systolic blood pressure from 112 +/- 9.8 to 158 +/- 23 mmHg. The left ventricle weight index (LVWI) was increased in rats treated with L-NAME for 14 days when compared to control animals. In serum samples, ATP, ADP and AMP hydrolysis were reduced by about 27%, 36% and 27%, respectively. In platelets, the decrease in ATP, ADP and AMP hydrolysis was approximately 27%, 24% and 32%, respectively. All parameters recovered after 7 days of L-NAME washout. HPLC demonstrated a reduction in ADP, AMP and hypoxanthine levels by about 64%, 69% and 87%,respectively. In this study, we showed that ectonucleotidase activities are decreased in serum and platelets from L-NAME-treated rats, which should represent an additional risk for the development of hypertension. The modulation of ectonucleotidase activities may represent an approach to antihypertensive therapy via inhibition of spontaneous platelet activation and recruitment, as well as thrombus formation.


Subject(s)
Adenosine Triphosphatases/metabolism , Hypertension/etiology , NG-Nitroarginine Methyl Ester/pharmacology , Adenine Nucleotides/analysis , Adenine Nucleotides/metabolism , Adenosine Triphosphatases/drug effects , Animals , Blood Platelets/enzymology , Hypertension/chemically induced , Hypertrophy, Left Ventricular , NG-Nitroarginine Methyl Ester/administration & dosage , Rats , Serum/enzymology
11.
Exp Parasitol ; 118(2): 165-71, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17825292

ABSTRACT

We characterized ouabain-insensitive Na+-ATPase activity present in the plasma membrane of Leishmania amazonensis and investigated its possible role in the growth of the parasite. An increase in Na+ concentration in the presence of 1mM ouabain, increased the ATPase activity with a V(max) of 154.1+/-13.5nmol Pi x h(-1) x mg(-1) and a K0.5 of 28.9+/-7.7mM. Furosemide and sodium orthovanadate inhibited the Na+-stimulated ATPase activity with an IC(50) of 270microM and 0.10microM, respectively. Furosemide inhibited the growth of L. amazonensis after 48h incubation, with maximal effect after 96h. The IC50 for furosemide was 840. On the other hand, ouabain (1mM) did not change the growth of the parasite. Taken together, these results show that L. amazonensis expresses a P-type, ouabain-insensitive Na+-ATPase that could be involved with the growth of the parasite.


Subject(s)
Adenosine Triphosphatases/metabolism , Cation Transport Proteins/metabolism , Enzyme Inhibitors/pharmacology , Leishmania mexicana/enzymology , Leishmania mexicana/growth & development , Ouabain/pharmacology , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/drug effects , Animals , Cation Transport Proteins/antagonists & inhibitors , Cation Transport Proteins/drug effects , Dose-Response Relationship, Drug , Furosemide/pharmacology , Humans , Hydrogen-Ion Concentration , Leishmania mexicana/drug effects , Leishmaniasis, Diffuse Cutaneous/parasitology , Sodium/metabolism , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Vanadates/pharmacology
12.
Bioorg Med Chem ; 16(2): 854-61, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-17977731

ABSTRACT

This study evaluated the effects of flavone eupafolin (6-methoxy 5,7,3',4'-tetrahydroxyflavone), extracted from dry leaves of Eupatorium litoralle. Eupafolin (25-200microM) promoted inhibition of the respiratory rate in state 3, in the presence of glutamate or succinate. During succinate oxidation, it was found that only state 4 respiratory rate was stimulated approximately 30% by eupafolin (100microM) and ADP/O ratio and RCC were reduced with all doses. When glutamate was used as substrate, RCC was similarly reduced. Eupafolin caused a reduction of enzymatic activities between complexes I and III of the respiratory chain. Cytochrome c oxidase and ATPase activities were not affected. Using voltammetry cyclic analysis, eupafolin give rise to irreversible oxidation with an anodic peak potential at +0.08V (SHE). We also observed that eupafolin can undergo oxidation catalyzed by EDTA-Fe, promoting cytochrome c reduction in the presence of NADH, resulting in the production of the superoxide radical and hydrogen peroxide. All together, the results could explain the cytotoxic effects observed previously with the eupafolin.


Subject(s)
Cell Respiration/drug effects , Flavones/pharmacology , Mitochondria/drug effects , Adenosine Triphosphatases/drug effects , Electron Transport Complex IV/drug effects , Flavones/chemistry , Flavones/isolation & purification , Flavones/toxicity , Glutamic Acid/metabolism , Mitochondria/metabolism , Molecular Structure , Oxidation-Reduction , Structure-Activity Relationship
13.
Br J Pharmacol ; 153(6): 1331-40, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18157164

ABSTRACT

BACKGROUND AND PURPOSE: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. EXPERIMENTAL APPROACH: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. KEY RESULTS: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5'-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5'-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. CONCLUSIONS AND IMPLICATIONS: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine.


Subject(s)
Adenosine/metabolism , Adenylyl Cyclases/metabolism , Cyclic AMP/metabolism , Muscle, Skeletal/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphatases/drug effects , Adenosine Triphosphatases/metabolism , Animals , Chromatography, High Pressure Liquid , Extracellular Space/metabolism , Ligands , Male , Radioligand Assay , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Tissue Culture Techniques
14.
Exp Parasitol ; 117(2): 195-200, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17574551

ABSTRACT

Our aim was to determine the presence of sodium pumps in Entamoeba histolytica. It is shown through the measurement of ouabain-sensitive ATPase activity and immunoblotting that E. histolytica does not express (Na(+)+K(+))ATPase. On the other hand, we observed a Na(+)-ATPase with the following characteristics: (1) stimulated by Na(+) or K(+), but these effects are not addictive; (2) the apparent affinity is similar for Na(+) and K(+) (K(0.5) = 13.3 +/- 3.7 and 15.4 +/- 3.1mM, respectively), as well as the V(max) (24.9 +/- 1.5 or 27.5 +/- 1.6 nmol Pi mg(-1)min(-1), respectively); (3) insensitive up to 2mM ouabain; and (4) inhibited by furosemide with an IC(50) of 0.12 +/- 0.004 mM. Furthermore, this enzyme forms a Na(+)- or K(+)-stimulated, furosemide- and hydroxylamine-sensitive ATP-driven acylphosphate phosphorylated intermediate.


Subject(s)
Adenosine Triphosphatases/metabolism , Cation Transport Proteins/metabolism , Entamoeba histolytica/enzymology , Enzyme Inhibitors/pharmacology , Ouabain/pharmacology , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/drug effects , Animals , Cation Transport Proteins/antagonists & inhibitors , Cation Transport Proteins/drug effects , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Entamoeba histolytica/drug effects , Furosemide/pharmacology , Immunoblotting , Kidney Cortex/enzymology , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism , Swine
15.
Exp Parasitol ; 115(4): 315-23, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17141762

ABSTRACT

In this work we describe the ability of living cells of Trypanosoma brucei brucei to hydrolyze extracellular ATP. In these intact parasites there was a low level of ATP hydrolysis in the absence of any divalent metal (4.72+/-0.51 nmol Pi x 10(-7) cells x h(-1)). The ATP hydrolysis was stimulated by MgCl(2) and the Mg-dependent ecto-ATPase activity was 27.15+/-2.91 nmol Pi x 10(-7) cells x h(-1). This stimulatory activity was also observed when MgCl(2) was replaced by MnCl(2). CaCl(2) and ZnCl(2) were also able to stimulate the ATPase activity, although less than MgCl(2). The apparent K(m) for ATP was 0.61 mM. This ecto-ATPase activity was insensitive to inhibitors of other ATPase and phosphatase activities. To confirm that this Mg-dependent ATPase activity is an ecto-ATPase activity, we used an impermeable inhibitor, DIDS (4, 4'-diisothiocyanostylbene 2'-2'-disulfonic acid), as well as suramin, an antagonist of P(2) purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg(2+)-dependent ATPase activity in a dose-dependent manner. Living cells sequentially hydrolyzed the ATP molecule generating ADP, AMP and adenosine, and supplementation of the culture medium with ATP was able to sustain the proliferation of T. brucei brucei as well as adenosine supplementation. Furthermore, the E-NTPDase activity of T. brucei brucei is modulated by the availability of purines in the medium. These results indicate that this surface enzyme may play a role in the salvage of purines from the extracellular medium in T. brucei brucei.


Subject(s)
Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Trypanosoma brucei brucei/enzymology , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/drug effects , Animals , Calcium Chloride/pharmacology , Chlorides/pharmacology , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Hydrolysis , Magnesium Chloride/pharmacology , Manganese Compounds/pharmacology , Suramin/pharmacology , Time Factors , Trypanocidal Agents/pharmacology , Zinc Compounds/pharmacology
16.
Parasitol Int ; 55(4): 285-90, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17010660

ABSTRACT

The presence of iron in the extracellular medium is essential for both in vivo and in vitro survival of pathogenic microorganisms, including Trichomonas vaginalis and Tritrichomonas foetus. In these parasites, iron is directly involved in the proliferation, protein expression and activation of critical enzymes. The purpose of this study was to investigate the role of iron in ecto-ATPase, ecto-phophatase and secreted phosphatase activities of these trichomonads. We observed that trichomonads grown in iron-depleted medium exhibited a remarkable decrease in both ecto-ATPase and ecto-phosphatase activities, when compared to those cultivated under control conditions (iron-rich medium). Furthermore, parasites grown in iron-depleted medium restored their enzyme activities when they were re-inoculated into fresh iron-rich medium. We demonstrated that modulation of ecto-phosphohydrolase activities is due neither to enzyme-iron nor to substrate-iron complex formation, since iron addition directly to the medium where the enzymatic reactions occurred did not alter their activities. Previously, we had reported that a fresh clinical isolate of T. vaginalis was much more cytotoxic to epithelial cell monolayers than a long-term cultured one. In this study we witnessed that the fresh isolate of T. vaginalis presented higher activities to all herein investigated enzymes than the long-term cultured one. Altogether, our data clearly point out that iron has a pivotal role in the expression of phosphohydrolases in both trichomonads.


Subject(s)
Adenosine Triphosphatases/drug effects , Iron/pharmacology , Phosphoric Monoester Hydrolases/drug effects , Trichomonas/enzymology , Adenosine Triphosphatases/analysis , Animals , Culture Media , Phosphoric Monoester Hydrolases/analysis , Trichomonas/drug effects , Trichomonas vaginalis/enzymology
17.
Blood Coagul Fibrinolysis ; 17(6): 437-44, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16905946

ABSTRACT

Despite the extensive research on the pharmacology of L-arginine, there are only few data on its antithrombotic properties. We studied the effect of oral L-arginine administration in a model of arterial thrombosis in rabbits divided into three groups: group 1, group without intervention; group 2, control group, treated with normal diet and submitted to the thrombosis-triggering protocol; group 3, treated for 2 weeks with L-arginine (2.25%) prior the protocol. L-Arginine did not alter platelet aggregation nor coagulation parameters but reduced vascular activities of both ADPase (49.1 +/- 8.5 versus 28.9 +/- 8.3 versus 18.8 +/- 10.3 nmoles inorganic phosphate/min per mg protein; mean +/- SD; group 1 versus group 2 versus group 3, respectively; ANOVA F = 19.21; P < 0.0001) and ATPase (97.8 +/- 15.8 versus 52.1 +/- 11.6 versus 31.9 +/- 16.3 nmoles inorganic phosphate/min per mg protein; mean +/- SD; group 1 versus group 2 versus group 3, respectively; ANOVA, F = 34.65; P < 0.0001). L-Arginine did not reduce the thrombi area (17.1 mm, 9.02 and 48.07, versus 27.04 mm, 25.4 and 70.39, median, percentile 25 and 75 respectively, P = 0.079; group 2 versus group 3, respectively). In conclusion, oral L-arginine administration did not inhibit thrombosis, and, conversely, it significantly reduced the arterial wall ADPase and ATPase activities. This effect may limit its antithrombotic properties.


Subject(s)
Adenosine Triphosphatases/drug effects , Apyrase/drug effects , Arginine/pharmacology , Platelet Aggregation/drug effects , Thrombosis/prevention & control , Adenosine Triphosphatases/metabolism , Administration, Oral , Analysis of Variance , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/enzymology , Apyrase/metabolism , Arginine/administration & dosage , Blood Coagulation/drug effects , Chi-Square Distribution , Femoral Artery/drug effects , Femoral Artery/enzymology , Male , Models, Animal , Rabbits , Statistics, Nonparametric , Thrombosis/etiology , Thrombosis/pathology
18.
Arch Insect Biochem Physiol ; 61(1): 1-9, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16380977

ABSTRACT

In this study, we describe the ability of intact fat body of an insect, Rhodnius prolixus, to hydrolyze extracellular ATP. In these fat bodies, the ATP hydrolysis was low in the absence of any divalent metal, and was stimulated by MgCl(2). Both activities (in the absence or presence of MgCl(2)) were linear with time for at least 30 min. In order to confirm the observed nucleotidase activities as ecto-nucleotidases, we used an impermeant inhibitor, DIDS (4, 4'-diisothiocyanostylbene 2'-2'-disulfonic acid). This reagent inhibited both nucleotidase activities and its inhibitory effect was suppressed by ATP. Both ecto-nucleotidase activities were insensitive to inhibitors of other ATPase and phosphatase activities, such as oligomycin, sodium azide, bafilomycin, ouabain, vanadate, molybdate, sodium fluoride, levamizole, tartrate, p-NPP, sodium phosphate, and suramin. Concanavalin A, activator of some ecto-ATPases, was able to stimulate the Mg(2+)-independent nucleotidase activity, but not the Mg(2+)-dependent one. The Mg(2+)-independent nucleotidase activity was enhanced with increases in the pH in the range between 6.4-8.0, but the Mg(2+)-dependent nucleotidase activity was not affected. Besides MgCl(2) , the ecto-ATPase activity was also stimulated by CaCl(2),() MnCl(2), and SrCl(2), but not by ZnCl(2). ATP, ADP, and AMP were the best substrates for the Mg(2+)-dependent ecto-nucleotidase activity, and CTP, GTP, and UTP produced very low reaction rates. However, the Mg(2+)-independent nucleotidase activity recognized all these nucleotides producing similar reaction rates, but GTP was a less efficient substrate. The possible role of the two ecto-nucleotidase activities present on the cell surface of fat body of Rhodnius prolixus, which are distinguished by their substrate specificity and their response to Mg(2+), is discussed.


Subject(s)
Fat Body/enzymology , Nucleotidases/metabolism , Rhodnius/enzymology , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Adenosine Triphosphatases/drug effects , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Animals , Fat Body/metabolism , Female , Hydrogen-Ion Concentration , Hydrolysis , Magnesium Chloride/pharmacology , Nucleotidases/antagonists & inhibitors , Nucleotidases/chemistry , Nucleotides/metabolism , Rhodnius/metabolism , Substrate Specificity
19.
Parasitol Res ; 88(10): 905-11, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12209331

ABSTRACT

In this work we describe the ability of living Crithidia deanei to hydrolyze extracellular ATP. In intact cells at pH 7.2, a low level of ATP hydrolysis was observed in the absence of any divalent metal (0.41+/-0.13 nmol P(i) h(-1) 10(7) cells(-1)). The ATP hydrolysis was stimulated by MgCl(2) and the Mg(2+)-dependent ecto-ATPase activity was 4.05+/-0.17 nmol P(i) h(-1) 10(7) cells(-1). Mg(2+)-dependent ecto-ATPase activity increased linearly with cell density and with time for at least 60 min. The addition of MgCl(2) to extracellular medium increased the ecto-ATPase activity in a dose-dependent manner. At 5 mM ATP, half-maximal stimulation of ATP hydrolysis was obtained with 0.93+/-0.26 mM MgCl(2). This stimulatory activity was also observed when MgCl(2) was replaced by MnCl(2), but not CaCl(2) or SrCl(2). The apparent K(m) for Mg-ATP(2-) was 0.26+/-0.03 mM. ATP was the best substrate for this enzyme; other nucleotides, such as ITP, GTP, UTP and CTP, produced lower reaction rates. In the pH range from 6.6 to 8.4, in which the cells were viable, the acid phosphatase activity also present in this cell decreased, while the Mg(2+)-dependent ATPase activity did not change. This ecto-ATPase activity was insensitive to inhibitors of other ATPase and phosphatase activities, such as oligomycin, sodium azide, bafilomycin A(1), ouabain, vanadate, molybdate, sodium fluoride and tartrate. To confirm that this Mg(2+)-dependent ATPase was an ecto-ATPase, we used the impermeant inhibitor 4, 4'-diisothiocyanostylbene 2'-2'-disulfonic acid as well as suramin, an antagonist of P(2) purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg(2+)-dependent ATPase activity in a dose-dependent manner. The cell surface location of the ATP-hydrolyzing site was also confirmed by cytochemical analysis.


Subject(s)
Adenosine Triphosphatases/metabolism , Crithidia/enzymology , Pyrophosphatases/metabolism , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Adenosine/pharmacology , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/drug effects , Adenosine Triphosphate/metabolism , Animals , Cations/classification , Cations/metabolism , Cells, Cultured , Crithidia/metabolism , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Membrane Proteins/analysis , Membrane Proteins/metabolism , Pyrophosphatases/analysis , Substrate Specificity , Suramin/antagonists & inhibitors , Suramin/metabolism , Time Factors
20.
Vet Parasitol ; 103(1-2): 29-42, 2002 Jan 03.
Article in English | MEDLINE | ID: mdl-11750998

ABSTRACT

In this work, we describe the ability of living Tritrichomonas foetus to hydrolyze extracellular ATP. The addition of MgCl(2) to the assay medium increased the ecto-ATPase activity in a dose-dependent manner. At 5mM ATP, half maximal stimulation of ATP hydrolysis was obtained with 0.46mM MgCl(2). The ecto-ATPase activity was also stimulated by MnCl(2) and CaCl(2), but not by SrCl(2). The Mg(2+)-dependent ATPase presents two apparent K(m) values for Mg-ATP(2-) (K(m1)=0.03 mM and K(m2)=2.01 mM). ATP was the best substrate for this enzyme, although other nucleotides such as ITP, CTP, UTP also produced high reaction rates. GTP produced a low reaction rate and ADP was not a substrate for this enzyme. The Mg(2+)-dependent ecto-ATPase activity was insensitive to inhibitors of other ATPase and phosphatase activities, such as oligomycin, sodium azide, bafilomycin A(1), ouabain, furosemide, vanadate, molybdate, sodium fluoride and levamizole. The acid phosphatase inhibitors (vanadate and molybdate) inhibited about 60-70% of the Mg(2+)-independent ecto-ATPase activity, suggesting that the ATP hydrolysis measured in the absence of any metal divalent could, at least in part, also be catalyzed by an ecto-phosphatase present in this cell. In order to confirm the observed Mg(2+)-dependent activity as an ecto-ATPase, we used an impermeant inhibitor, 4,4'-diisothiocyanostylbene-2',2'-disulfonic acid (DIDS) as well as suramin, an antagonist of P(2) purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg(2+)-dependent ATPase activity in a dose-dependent manner. This ecto-ATPase was stimulated by more than 90% by 50mM D-galactose. Since previous results showed that D-galactose exposed on the surface of host cells is involved with T. foetus adhesion, the Mg(2+)-dependent ecto-ATPase may be involved with cellular adhesion and possible pathogenicity.


Subject(s)
Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Magnesium Chloride/pharmacology , Tritrichomonas foetus/enzymology , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Acid Phosphatase/antagonists & inhibitors , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/drug effects , Animals , Dose-Response Relationship, Drug , Galactose/pharmacology , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Substrate Specificity , Suramin/pharmacology , Tritrichomonas foetus/drug effects , Tritrichomonas foetus/pathogenicity , Trypanocidal Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL