Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Cells ; 10(7)2021 07 20.
Article in English | MEDLINE | ID: mdl-34359994

ABSTRACT

Mitochondria are key players of aerobic respiration and the production of adenosine triphosphate and constitute the energetic core of eukaryotic cells. Furthermore, cells rely upon mitochondria homeostasis, the disruption of which is reported in pathological processes such as liver hepatotoxicity, cancer, muscular dystrophy, chronic inflammation, as well as in neurological conditions including Alzheimer's disease, schizophrenia, depression, ischemia and glaucoma. In addition to the well-known spontaneous cell-to-cell transfer of mitochondria, a therapeutic potential of the transplant of isolated, metabolically active mitochondria has been demonstrated in several in vitro and in vivo experimental models of disease. This review explores the striking outcomes achieved by mitotherapy thus far, and the most relevant underlying data regarding isolated mitochondria transplantation, including mechanisms of mitochondria intake, the balance between administration and therapy effectiveness, the relevance of mitochondrial source and purity and the mechanisms by which mitotherapy is gaining ground as a promising therapeutic approach.


Subject(s)
Alzheimer Disease/therapy , Depression/therapy , Glaucoma/therapy , Hepatitis/therapy , Ischemia/therapy , Mitochondria/transplantation , Muscular Dystrophies/therapy , Neoplasms/therapy , Schizophrenia/therapy , Adenosine Triphosphate/biosynthesis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Central Nervous System/metabolism , Central Nervous System/pathology , Depression/genetics , Depression/metabolism , Depression/pathology , Disease Models, Animal , Glaucoma/genetics , Glaucoma/metabolism , Glaucoma/pathology , Hepatitis/genetics , Hepatitis/metabolism , Hepatitis/pathology , Humans , Ischemia/genetics , Ischemia/metabolism , Ischemia/pathology , Liver/metabolism , Liver/pathology , Mitochondria/genetics , Mitochondria/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Oxidative Phosphorylation , Schizophrenia/genetics , Schizophrenia/metabolism , Schizophrenia/pathology , Treatment Outcome
2.
Brain Res Bull ; 175: 90-98, 2021 10.
Article in English | MEDLINE | ID: mdl-34271120

ABSTRACT

Quinolinic acid (QUIN) is an agonist of the neurotransmitter glutamate (Glu) capable of binding to N-methyl-D-aspartate receptors (NMDAR) increasing glutamatergic signaling. QUIN is known for being an endogenous neurotoxin, able to induce neurodegeneration. In Caenorhabditis elegans, the mechanism by which QUIN induces behavioral and metabolic toxicity has not been fully elucidated. The effects of QUIN on behavioral and metabolic parameters in nmr-1 and nmr-2 NMDA receptors in transgenic and wild-type (WT) worms were performed to decipher the pathway by which QUIN exerts its toxicity. QUIN increased locomotion parameters such as wavelength and movement amplitude medium, as well as speed and displacement, without modifying the number of body bends in an NMDAR-dependent-manner. QUIN increased the response time to the chemical stimulant 1-octanol, which is modulated by glutamatergic neurotransmission in the ASH neuron. Brood size increased after exposure to QUIN, dependent upon nmr-2/NMDA-receptor, with no change in lifespan. Oxygen consumption, mitochondrial membrane potential, and the flow of coupled and unbound electrons to ATP production were reduced by QUIN in wild-type animals, but did not alter citrate synthase activity, altering the functionality but the mitochondrial viability. Notably, QUIN modified fine locomotor and chemosensory behavioral parameters, as well as metabolic parameters, analogous to previously reported effects in mammals. Our results indicate that QUIN can be used as a neurotoxin to elicit glutamatergic dysfunction in C. elegans in a way analogous to other animal models.


Subject(s)
Amino Acid Metabolism, Inborn Errors/chemically induced , Caenorhabditis elegans/physiology , Quinolinic Acid , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/genetics , 1-Octanol/pharmacology , Adenosine Triphosphate/biosynthesis , Animals , Animals, Genetically Modified , Citrate (si)-Synthase/metabolism , Disease Models, Animal , Glutamic Acid/metabolism , Humans , Kynurenine/metabolism , Motor Activity/drug effects , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/genetics , Signal Transduction/drug effects , Synaptic Transmission
3.
Oxid Med Cell Longev ; 2021: 4593496, 2021.
Article in English | MEDLINE | ID: mdl-33603946

ABSTRACT

Physical exercise is characterized by an increase in physical and metabolic demand in face of physical stress. It is reported that a single exercise session induces physiological responses through redox signaling to increase cellular function and energy support in diverse organs. However, little is known about the effect of a single bout of exercise on the redox homeostasis and cytoprotective gene expression of white adipose tissue (WAT). Thus, we aimed at evaluating the effects of acute aerobic exercise on WAT redox homeostasis, mitochondrial metabolism, and cytoprotective genic response. Male Wistar rats were submitted to a single moderate-high running session (treadmill) and were divided into five groups: control (CTRL, without exercise), and euthanized immediately (0 h), 30 min, 1 hour, or 2 hours after the end of the exercise session. NADPH oxidase activity was higher in 0 h and 30 min groups when compared to CTRL group. Extramitochondrial ROS production was higher in 0 h group in comparison to CTRL and 2 h groups. Mitochondrial respiration in phosphorylative state increased in 0 h group when compared to CTRL, 30 min, 1, and 2 h groups. On the other hand, mitochondrial ATP production was lower in 0 h in comparison to 30 min group, increasing in 1 and 2 h groups when compared to CTRL and 0 h groups. CAT activity was lower in all exercised groups when compared to CTRL. Regarding oxidative stress biomarkers, we observed a decrease in reduced thiol content in 0 h group compared to CTRL and 2 h groups, and higher levels of protein carbonylation in 0 and 30 min groups in comparison to the other groups. The levels returned to basal condition in 2 h group. Furthermore, aerobic exercise increased NRF2, GPX2, HMOX1, SOD1, and CAT mRNA levels. Taken together, our results suggest that one session of aerobic exercise can induce a transient prooxidative state in WAT, followed by an increase in antioxidant and cytoprotective gene expression.


Subject(s)
Adipose Tissue, White/metabolism , Homeostasis , Mitochondria/metabolism , Physical Conditioning, Animal , Adenosine Triphosphate/biosynthesis , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Cell Respiration/genetics , Gene Expression Regulation , Lactic Acid/blood , Male , NADPH Oxidases/metabolism , Oxidation-Reduction , Oxidative Stress/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Reactive Oxygen Species/metabolism , Retroperitoneal Space/physiology
4.
Environ Toxicol Chem ; 39(8): 1558-1565, 2020 08.
Article in English | MEDLINE | ID: mdl-32367555

ABSTRACT

Basidiomycetes (phylum Basidiomycota) are filamentous fungi characterized by the exogenous formation of spores on a club-shaped cell called a basidium that are often formed on complex fruiting bodies (mushrooms). Many basidiomycetes serve an important role in recycling lignocellulosic material to higher trophic levels, and some show symbiotic relationships with plants. All known bioluminescent fungi are mushroom-forming basidiomycetes in the order Agaricales. Hence, the disruption of the basidiomycete community can entirely compromise the carbon cycle in nature from fungi to higher trophic levels. The fungus Gerronema viridilucens was used in the present study to investigate the toxicity of a phenolic compound series based on the inhibition of its bioluminescence. The median effect concentration (EC50) obtained from curves of bioluminescence inhibition versus log [phenolic compound] showed that 2,4,6-trichlorophenol was the most toxic compound in the series. The log EC50 values of all phenolic compounds were then used for the prediction of their toxicity. The univariate correlation of log EC50 values obtained from 6 different phenolic compounds was stronger with the dissociation constant (pKa ) than with 1-octanol/water partition coefficient (KOW ). Nevertheless, the toxicity can be better predicted by using both parameters, suggesting that the phenol-driven uncoupling of fungus mitochondrial adenosine triphosphate synthesis is the origin of phenolic compound toxicity to the test fungus. Environ Toxicol Chem 2020;39:1558-1565. © 2020 SETAC.


Subject(s)
Agaricales/metabolism , Luminescent Measurements , Phenols/toxicity , Adenosine Triphosphate/biosynthesis , Agaricales/drug effects , Linear Models , Mitochondria/drug effects , Mitochondria/metabolism , Toxicity Tests , Water/metabolism
5.
Methods Mol Biol ; 2116: 655-671, 2020.
Article in English | MEDLINE | ID: mdl-32221948

ABSTRACT

The evaluation of mitochondrial functionality is critical to interpret most biological data at the (eukaryotic) cellular level. For example, metabolism, cell cycle, epigenetic regulation, cell death mechanisms, autophagy, differentiation, and response redox imbalance are dependent on the mitochondrial state. In case of parasitic organisms, such as trypanosomatids, it is very often important to have information on mitochondrial functionality in order to assess the mechanisms of actions of drugs being proposed for therapy. In this chapter we present a set of methods that together allow to evaluate with some precision the mitochondrial functionality in Trypanosoma cruzi and Trypanosoma brucei. We discuss how to determine O2 consumption, mitochondrial inner membrane potential, ATP production, and the endogenous production of reactive oxygen species.


Subject(s)
Mitochondria/metabolism , Parasitology/methods , Trypanosoma brucei brucei/cytology , Trypanosoma cruzi/cytology , Adenosine Triphosphate/analysis , Adenosine Triphosphate/biosynthesis , Energy Metabolism , Membrane Potential, Mitochondrial , Oxygen/analysis , Oxygen/metabolism , Reactive Oxygen Species , Trypanosoma brucei brucei/metabolism , Trypanosoma cruzi/metabolism
6.
Sci Rep ; 9(1): 12651, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477743

ABSTRACT

Ethylmalonic encephalopathy protein 1 (ETHE1) and molybdenum cofactor (MoCo) deficiencies are hereditary disorders that affect the catabolism of sulfur-containing amino acids. ETHE1 deficiency is caused by mutations in the ETHE1 gene, while MoCo deficiency is due to mutations in one of three genes involved in MoCo biosynthesis (MOCS1, MOCS2 and GPHN). Patients with both disorders exhibit abnormalities of the mitochondrial respiratory chain, among other biochemical findings. However, the pathophysiology of the defects has not been elucidated. To characterize cellular derangements, mitochondrial bioenergetics, dynamics, endoplasmic reticulum (ER)-mitochondria communication, superoxide production and apoptosis were evaluated in fibroblasts from four patients with ETHE1 deficiency and one with MOCS1 deficiency. The effect of JP4-039, a promising mitochondrial-targeted antioxidant, was also tested on cells. Our data show that mitochondrial respiration was decreased in all patient cell lines. ATP depletion and increased mitochondrial mass was identified in the same cells, while variable alterations in mitochondrial fusion and fission were seen. High superoxide levels were found in all cells and were decreased by treatment with JP4-039, while the respiratory chain activity was increased by this antioxidant in cells in which it was impaired. The content of VDAC1 and IP3R, proteins involved in ER-mitochondria communication, was decreased, while DDIT3, a marker of ER stress, and apoptosis were increased in all cell lines. These data demonstrate that previously unrecognized broad disturbances of cellular function are involved in the pathophysiology of ETHE1 and MOCS1 deficiencies, and that reduction of mitochondrial superoxide by JP4-039 is a promising strategy for adjuvant therapy of these disorders.


Subject(s)
Carbon-Carbon Lyases/deficiency , Endoplasmic Reticulum/metabolism , Energy Metabolism , Fibroblasts/pathology , Homeostasis , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins/deficiency , Nucleocytoplasmic Transport Proteins/deficiency , Adenosine Triphosphate/biosynthesis , Apoptosis , Carbon-Carbon Lyases/metabolism , Cell Line , Cell Respiration , DNA Mutational Analysis , Fibroblasts/metabolism , Humans , Mitochondrial Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Oxidation-Reduction , Oxygen Consumption , Superoxides/metabolism
7.
Biotechnol Prog ; 35(6): e2891, 2019 11.
Article in English | MEDLINE | ID: mdl-31374159

ABSTRACT

pH variations influence the delivery of essential nutrients and CO2 solubility, which impact algae metabolism. In this study the microalgal growth and chlorophyll, lipid, and fatty acids content; along with the expression of some genes implicated in the biosynthesis of lipids were examined in Chlamydomonas reinhardtii subjected to pH values of 7.0, 7.8, and 8.5. At pH 7.8 an increase in cell growth was observed with a significant accumulation of chlorophyll (1.75-fold) when compared with growth at pH 7, while at pH 8.5 a sharp decrease in both parameters was observed when compared with the other pH values tested. Lipid content increased 3.0 (14.81% of dry cell weight, dcw) and 2.3 times (11.43% dcw) at pH 7.8 and 8.5, respectively, when compared with the experiment at pH 7 (4.97% dcw). The compositions of major fatty acids in the strains growing at pH 7.0, 7.8, or 8.5 were 25.7, 28.0, and 32.1% for palmitic acid; 17.3, 14.7, and 25.7% for oleic acid; and 9.8, 12.1, and 4.6% for linoleic acid; respectively. qRT-PCR analysis showed that the transcripts of ß-carboxyltransferase, Acyl carrier protein 1, acyl-ACP thiolase 1, acyl-sn-glycerol-3-phosphate acyltransferase, and diacylglycerol acyl transferase isoform 3 were significantly induced at pH 7.8 when compared with the other two pH conditions. These results indicate that the induction of genes implicated in the early and final steps of lipid biosynthesis contributes to their accumulation in the stationary phase. Our research suggests that a pH of 7.8 might be ideal to maximize growth and lipid accumulation.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Fatty Acids/metabolism , Lipid Metabolism , Adenosine Triphosphate/biosynthesis , Chlamydomonas reinhardtii/growth & development , Chlorophyll/analysis , Fatty Acids/analysis , Hydrogen-Ion Concentration
8.
Microb Pathog ; 130: 131-136, 2019 May.
Article in English | MEDLINE | ID: mdl-30858007

ABSTRACT

The objective of this study was to evaluate the productive impact of colibacillosis on laying hens and to investigate whether energetic metabolism and oxidative stress were involved in the pathogenesis of the disease. An experimental shed containing 270 laying hens of the Hy-Line lineage (32 weeks old) presented approximately 40% daily laying, and many birds presented with diarrhea and apathy followed by death. Necropsy revealed macroscopic lesions compatible with colibacillosis and infectious agent Escherichia coli was isolated from fecal samples of all birds in the infected group, as well as from tissue (ovary, liver and peritoneum). Sixteen chickens were selected for this study, divided into two groups: Control (animals without clinical alterations) and infected (with diarrhea and apathetic). E. coli isolates were subjected to the antimicrobial susceptibility testing according to the methodology approved by CLSI, 2018. This testing showed sensitivity to gentamicin, amoxicillin, norfloxacin and colistin. It was then determined that laying hens would be treated with norfloxacin (15 mg/kg) diluted in water offered at will to the birds for three days. Blood collections were performed via brachial vein after the diagnosis of E. coli (before starting treatment) and seven days after treatment. Three debilitated chickens died on the second day after initiating therapy. Before treatment, birds with clinical signs had higher levels of lipoperoxidation (LPO) and activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) than in the control group (asymptomatic animals). After treatment, LPO levels remained higher in birds that had clinical disease (infected group), whereas the activity of SOD and GPx enzymes did not differ between groups. Activity levels of creatine kinase (CK) and pyruvate kinase (PK) were higher in the group of chickens with clinical disease before treatment. Post-treatment, no differences were observed between groups in terms of CK; however, PK activity remained high in these animals. In the hens that died, there were lesions characteristic of avian colibacillosis, with ovary involvement, explaining the low laying activity of the birds at their peak of production. For 10 days after starting treatment, the percentage of laying increased to 90%. Therefore, we conclude that colibacillosis interferes with the phosphotransfer network by stimulating ATP production, in addition to causing oxidative stress of the birds during laying, that negatively affects health and productive efficiency.


Subject(s)
Diarrhea/veterinary , Escherichia coli Infections/veterinary , Escherichia coli/isolation & purification , Ovary/microbiology , Oxidative Stress , Phosphotransferases/metabolism , Poultry Diseases/physiopathology , Adenosine Triphosphate/biosynthesis , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Diarrhea/physiopathology , Energy Metabolism , Escherichia coli/drug effects , Escherichia coli Infections/physiopathology , Feces/microbiology , Female , Microbial Sensitivity Tests , Oxidative Phosphorylation , Peritoneum/microbiology
9.
Sci Rep ; 9(1): 1986, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30760802

ABSTRACT

Mitochondria play an important role in providing ATP for muscle contraction. Muscle physiology is compromised in Duchenne muscular dystrophy (DMD) and several studies have shown the involvement of bioenergetics. In this work we investigated the mitochondrial physiology in fibers from fast-twitch muscle (EDL) and slow-twitch muscle (soleus) in the mdx mouse model for DMD and in control C57BL/10J mice. In our study, multiple mitochondrial respiratory parameters were investigated in permeabilized muscle fibers from 12-week-old animals, a critical age where muscle regeneration is observed in the mdx mouse. Using substrates of complex I and complex II from the electron transport chain, ADP and mitochondrial inhibitors, we found in the mdx EDL, but not in the mdx soleus, a reduction in coupled respiration suggesting that ATP synthesis is affected. In addition, the oxygen consumption after addition of complex II substrate is reduced in mdx EDL; the maximal consumption rate (measured in the presence of uncoupler) also seems to be reduced. Mitochondria are involved in calcium regulation and we observed, using alizarin stain, calcium deposits in mdx muscles but not in control muscles. Interestingly, more calcium deposits were found in mdx EDL than in mdx soleus. These data provide evidence that in 12-week-old mdx mice, calcium is accumulated and mitochondrial function is disturbed in the fast-twitch muscle EDL, but not in the slow-twitch muscle soleus.


Subject(s)
Calcium/metabolism , Mitochondria/metabolism , Muscle Contraction/physiology , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscular Dystrophy, Animal/pathology , Adenosine Triphosphate/biosynthesis , Animals , Electron Transport Complex I/metabolism , Electron Transport Complex II/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/pathology , Oxygen Consumption/physiology , Regeneration/physiology
10.
Am J Physiol Heart Circ Physiol ; 316(3): H743-H750, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30681368

ABSTRACT

Adenosine is involved in classic preconditioning in most species and acts especially through adenosine A1 and A3 receptors. The aim of the present study was to evaluate whether remote ischemic preconditioning (rIPC) activates adenosine A1 receptors and improves mitochondrial function, thereby reducing myocardial infarct size. Isolated rat hearts were subjected to 30 min of global ischemia and 60 min of reperfusion [ischemia-reperfusion (I/R)]. In a second group, before isolation of the heart, a rIPC protocol (3 cycles of hindlimb I/R) was performed. Infarct size was measured with tetrazolium staining, and Akt/endothelial nitric oxide (NO) synthase (eNOS) expression/phosphorylation and mitochondrial function were evaluated after ischemia at 10 and 60 min of reperfusion. As expected, rIPC significantly decreased infarct size. This beneficial effect was abolished only when 8-cyclopentyl-1,3-dipropylxanthine (adenosine A1 receptor blocker) and NG-nitro-l-arginine methyl ester (NO synthesis inhibitor) were administered during the reperfusion phase. At the early reperfusion phase, rIPC induced significant Akt and eNOS phosphorylation, which was abolished by the perfusion with an adenosine A1 receptor blocker. I/R led to impaired mitochondrial function, which was attenuated by rIPC and mediated by adenosine A1 receptors. In conclusion, we demonstrated that rIPC limits myocardial infarct by activation of adenosine A1 receptors at early reperfusion in the isolated rat heart. Interestingly, rIPC appears to reduce myocardial infarct size by the Akt/eNOS pathway and improves mitochondrial function during myocardial reperfusion. NEW & NOTEWORTHY Adenosine is involved in classic preconditioning and acts especially through adenosine A1 and A3 receptors. However, its role in the mechanism of remote ischemic preconditioning is controversial. In this study, we demonstrated that remote ischemic preconditioning activates adenosine A1 receptors during early reperfusion, inducing Akt/endothelial nitric oxide synthase phosphorylation and improving mitochondrial function, thereby reducing myocardial infarct size.


Subject(s)
Ischemic Preconditioning, Myocardial , Mitochondria, Heart , Receptor, Adenosine A1 , Adenosine A1 Receptor Antagonists/therapeutic use , Adenosine Triphosphate/biosynthesis , Animals , Enzyme Inhibitors/therapeutic use , Male , Membrane Potential, Mitochondrial , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/diagnostic imaging , Myocardial Reperfusion Injury/physiopathology , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Nitroarginine/therapeutic use , Oxygen Consumption , Rats , Rats, Sprague-Dawley , Xanthines/therapeutic use
11.
Am J Physiol Regul Integr Comp Physiol ; 316(3): R243-R254, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30517024

ABSTRACT

The Wistar audiogenic rat (WAR) is an animal model of tonic-clonic epileptic seizures, developed after genetic selection by sister × brother inbreeding of Wistar rats susceptible to sound stimuli. Although metabolic changes have been described in this strain, nothing is known about its mitochondrial metabolism. Here, we addressed mitochondrial aspects of oxidative phosphorylation, oxidative stress, biogenesis, and dynamics in liver, skeletal muscle, and heart of male WARs and correlating them with physiological aspects of body metabolism. The results showed higher mitochondrial content, respiration rates in phosphorylation and noncoupled states, and H2O2 production in WARs. Liver presented higher content of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) and mammalian target of rapamycin, proteins related to mitochondrial biogenesis. In agreement, isolated liver mitochondria from WARs showed higher respiration rates in phosphorylation state and ADP-to-O ratio, as well as higher content of proteins related to electron transport chain ATP synthase, TCA cycle, and mitochondrial fusion and fission compared with their Wistar counterparts. Mitochondria with higher area and perimeter and more variable shapes were found in liver and soleus from WARs in addition to lower reduced-to-oxidized glutathione ratio. In vivo, WARs demonstrated lower body mass and energy expenditure but higher food and water intake and amino acid oxidation. When exposed to a running test, WARs reached higher speed and resisted for a longer time and distance than their Wistar controls. In conclusion, the WAR strain has mitochondrial changes in liver, skeletal muscle, and heart that improve its mitochondrial capacity of ATP production, making it an excellent rat model to study PGC1α overexpression and mitochondrial function in different physiological conditions or facing pathological challenges.


Subject(s)
Epilepsy, Reflex/metabolism , Adenosine Triphosphate/biosynthesis , Animals , Body Weight , Energy Metabolism , Hydrogen Peroxide/metabolism , Liver/metabolism , Male , Mitochondria, Liver/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism , Oxidative Phosphorylation , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/biosynthesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats , Rats, Wistar , Running
12.
mSphere ; 3(4)2018 07 18.
Article in English | MEDLINE | ID: mdl-30021880

ABSTRACT

Amino acids participate in several critical processes in the biology of trypanosomatids, such as osmoregulation, cell differentiation, and host cell invasion. Some of them provide reducing power for mitochondrial ATP synthesis. It was previously shown that alanine, which is formed mainly by the amination of pyruvate, is a metabolic end product formed when parasites are replicating in a medium rich in glucose and amino acids. It was shown as well that this amino acid can also be used for the regulation of cell volume and resistance to osmotic stress. In this work, we demonstrate that, despite it being an end product of its metabolism, Trypanosoma cruzi can take up and metabolize l-Ala through a low-specificity nonstereoselective active transport system. The uptake was dependent on the temperature in the range between 10 and 40°C, which allowed us to calculate an activation energy of 66.4 kJ/mol and estimate the number of transporters per cell at ~436,000. We show as well that, once taken up by the cells, l-Ala can be completely oxidized to CO2, supplying electrons to the electron transport chain, maintaining the electrochemical proton gradient across the mitochondrial inner membrane, and supporting ATP synthesis in T. cruzi epimastigotes. Our data demonstrate a dual role for Ala in the parasite's bioenergetics, by being a secreted end product of glucose catabolism and taken up as nutrient for oxidative mitochondrial metabolism.IMPORTANCE It is well known that trypanosomatids such as the etiological agent of Chagas' disease, Trypanosoma cruzi, produce alanine as a main end product of their energy metabolism when they grow in a medium containing glucose and amino acids. In this work, we investigated if under starvation conditions (which happen during the parasite life cycle) the secreted alanine could be recovered from the extracellular medium and used as an energy source. Herein we show that indeed, in parasites submitted to metabolic stress, this metabolite can be taken up and used as an energy source for ATP synthesis, allowing the parasite to extend its survival under starvation conditions. The obtained results point to a dual role for Ala in the parasite's bioenergetics, by being a secreted end product of glucose catabolism and taken up as nutrient for oxidative mitochondrial metabolism.


Subject(s)
Alanine/metabolism , Energy Metabolism , Trypanosoma cruzi/metabolism , Adenosine Triphosphate/biosynthesis , Biological Transport, Active , Carbon Dioxide/metabolism , Electron Transport , Oxidation-Reduction , Temperature
13.
Mol Neurobiol ; 55(5): 4473-4491, 2018 May.
Article in English | MEDLINE | ID: mdl-28674997

ABSTRACT

In the young population, binge drinking is a pattern of problematic alcohol consumption, characterized by a short period of heavy drinking followed by abstinence which is frequently repeated over time. This drinking pattern is associated with mental problems, use of other drugs, and an increased risk of excessive alcohol intake during adulthood. However, little is known about the effects of binge drinking on brain function in adolescents and its neurobiological impact during the adulthood. In the present study, we evaluated the effects of alcohol on hippocampal memory, synaptic plasticity, and mitochondrial function in adolescent rats after a binge drinking episode in vivo. These effects were analyzed at 1, 3, or 7 weeks post alcohol exposure. Our results showed that binge-like ethanol pre-treated (BEP) rats exhibited early alterations in learning and memory tests accompanied by an impairment of synaptic plasticity that was total and partially compensated, respectively. These changes could be attributed to a rapid increase in oxidative damage and a late inflammatory response induced by post ethanol exposure. Additionally, BEP alters the regulation of mitochondrial dynamics and modifies the expression of mitochondrial permeability transition pore (mPTP) components, such as cyclophilin D (Cyp-D) and the voltage-dependent anion channel (VDAC). These mitochondrial structural changes result in the impairment of mitochondrial bioenergetics, decreasing ATP production progressively until adulthood. These results strongly suggest that teenage alcohol binge drinking impairs the function of the adult hippocampus including memory and synaptic plasticity as a consequence of the mitochondrial damage induced by alcohol and that the recovery of hippocampal function could implicate the activation of alternative pathways that fail to reestablish mitochondrial function.


Subject(s)
Binge Drinking/physiopathology , Brain/physiopathology , Mitochondria/pathology , Adenosine Triphosphate/biosynthesis , Adolescent , Animals , Binge Drinking/pathology , Brain/pathology , Cognition , GA-Binding Protein Transcription Factor/metabolism , Hippocampus/pathology , Hippocampus/physiopathology , Humans , Inflammation/pathology , Inflammation/physiopathology , Male , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Oxidative Stress , Rats , Rats, Sprague-Dawley , Synaptic Transmission , Task Performance and Analysis
14.
Free Radic Biol Med ; 113: 255-266, 2017 12.
Article in English | MEDLINE | ID: mdl-28993269

ABSTRACT

Reactive oxygen species (ROS) are toxic molecules involved in several biological processes such as cellular signaling, proliferation, differentiation and cell death. Adaptations to oxidative environments are crucial for the success of the colonization of insects by protozoa. Strigomonas culicis is a monoxenic trypanosomatid found in the midgut of mosquitoes and presenting a life cycle restricted to the epimastigote form. Among S. culicis peculiarities, there is an endosymbiotic bacterium in the cytoplasm, which completes essential biosynthetic routes of the host cell and may represent an intermediary evolutive step in organelle origin, thus constituting an interesting model for evolutive researches. In this work, we induced ROS resistance in wild type S. culicis epimastigotes by the incubation with increasing concentrations of hydrogen peroxide (H2O2), and compared the oxidative and energetic metabolisms among wild type, wild type-H2O2 resistant and aposymbiotic strains. Resistant protozoa were less sensitive to the oxidative challenge and more dependent on oxidative phosphorylation, which was demonstrated by higher oxygen consumption and mitochondrial membrane potential, increased activity of complexes II-III and IV, increased complex II gene expression and higher ATP production. Furthermore, the wild type-H2O2 resistant strain produced reduced ROS levels and showed lower lipid peroxidation, as well as an increase in gene expression of antioxidant enzymes and thiol-dependent peroxidase activity. On the other hand, the aposymbiotic strain showed impaired mitochondrial function, higher H2O2 production and deficient antioxidant response. The induction of H2O2 resistance also led to a remarkable increase in Aedes aegypti midgut binding in vitro and colonization in vivo, indicating that both the pro-oxidant environment in the mosquito gut and the oxidative stress susceptibility regulate S. culicis population in invertebrates.


Subject(s)
Aedes/parasitology , Electron Transport Chain Complex Proteins/genetics , Energy Metabolism/genetics , Host-Parasite Interactions , Hydrogen Peroxide/pharmacology , Protozoan Proteins/genetics , Trypanosomatina/metabolism , Adenosine Triphosphate/biosynthesis , Animals , Antioxidants/metabolism , Betaproteobacteria/metabolism , Biological Evolution , Drug Resistance , Electron Transport Chain Complex Proteins/metabolism , Gastrointestinal Tract/parasitology , Gene Expression Regulation , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress , Protozoan Proteins/metabolism , Signal Transduction , Symbiosis/physiology , Trypanosomatina/drug effects , Trypanosomatina/genetics , Trypanosomatina/microbiology
15.
BMC Syst Biol ; 11(1): 58, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28571567

ABSTRACT

BACKGROUND: The increase in glycerol obtained as a byproduct of biodiesel has encouraged the production of new industrial products, such as 1,3-propanediol (PDO), using biotechnological transformation via bacteria like Clostridium butyricum. However, despite the increasing role of Clostridium butyricum as a bio-production platform, its metabolism remains poorly modeled. RESULTS: We reconstructed iCbu641, the first genome-scale metabolic (GSM) model of a PDO producer Clostridium strain, which included 641 genes, 365 enzymes, 891 reactions, and 701 metabolites. We found an enzyme expression prediction of nearly 84% after comparison of proteomic data with flux distribution estimation using flux balance analysis (FBA). The remaining 16% corresponded to enzymes directionally coupled to growth, according to flux coupling findings (FCF). The fermentation data validation also revealed different phenotype states that depended on culture media conditions; for example, Clostridium maximizes its biomass yield per enzyme usage under glycerol limitation. By contrast, under glycerol excess conditions, Clostridium grows sub-optimally, maximizing biomass yield while minimizing both enzyme usage and ATP production. We further evaluated perturbations in the GSM model through enzyme deletions and variations in biomass composition. The GSM predictions showed no significant increase in PDO production, suggesting a robustness to perturbations in the GSM model. We used the experimental results to predict that co-fermentation was a better alternative than iCbu641 perturbations for improving PDO yields. CONCLUSIONS: The agreement between the predicted and experimental values allows the use of the GSM model constructed for the PDO-producing Clostridium strain to propose new scenarios for PDO production, such as dynamic simulations, thereby reducing the time and costs associated with experimentation.


Subject(s)
Adenosine Triphosphate/biosynthesis , Clostridium butyricum/growth & development , Clostridium butyricum/metabolism , Glycerol/pharmacology , Metabolic Flux Analysis , Clostridium butyricum/drug effects , Clostridium butyricum/enzymology , Culture Techniques , Models, Biological , Propylene Glycols/metabolism
16.
Microb Cell Fact ; 16(1): 79, 2017 May 08.
Article in English | MEDLINE | ID: mdl-28482838

ABSTRACT

The aim of this review is to summarize the effect in host energy metabolism of the production of B group vitamins and short chain fatty acids (SCFA) by commensal, food-grade and probiotic bacteria, which are also actors of the mammalian nutrition. The mechanisms of how these microbial end products, produced by these bacterial strains, act on energy metabolism will be discussed. We will show that these vitamins and SCFA producing bacteria could be used as tools to recover energy intakes by either optimizing ATP production from foods or by the fermentation of certain fibers in the gastrointestinal tract (GIT). Original data are also presented in this work where SCFA (acetate, butyrate and propionate) and B group vitamins (riboflavin, folate and thiamine) production was determined for selected probiotic bacteria.


Subject(s)
Energy Metabolism , Fatty Acids, Volatile/metabolism , Probiotics/metabolism , Symbiosis , Vitamins/metabolism , Adenosine Triphosphate/biosynthesis , Adenosine Triphosphate/metabolism , Animals , Butyrates/metabolism , Dietary Fiber/metabolism , Fatty Acids, Volatile/biosynthesis , Fermentation , Food , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Humans , Mice , Vitamins/biosynthesis
17.
Dev Biol ; 426(1): 1-7, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28457864

ABSTRACT

Mitochondria is not only a dynamic organelle that produces ATP, but is also an important contributor to cell functions in both development and cell death processes. These paradoxical functions of mitochondria are partially regulated by the mitochondrial permeability transition pore (mPTP), a high-conductance channel that can induce loss of mitochondrial membrane potential, impairment of cellular calcium homeostasis, oxidative stress, and a decrease in ATP production upon pathological activation. Interestingly, despite their different etiologies, several neurodegenerative diseases and heart ischemic injuries share mitochondrial dysfunction as a common element. Generally, mitochondrial impairment is triggered by calcium deregulation that could lead to mPTP opening and cell death. Several studies have shown that opening of the mPTP not only induces mitochondrial damage and cell death, but is also a physiological mechanism involved in different cellular functions. The mPTP participates in regular calcium-release mechanisms that are required for proper metabolic regulation; it is hypothesized that the transient opening of this structure could be the principal mediator of cardiac and brain development. The mPTP also plays a role in protecting against different brain and cardiac disorders in the elderly population. Therefore, the aim of this work was to discuss different studies that show this controversial characteristic of the mPTP; although mPTP is normally associated with several pathological events, new critical findings suggest its importance in mitochondrial function and cell development.


Subject(s)
Cardiomyopathies/pathology , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Neurodegenerative Diseases/pathology , Adenosine Triphosphate/biosynthesis , Animals , Calcium/metabolism , Heart/embryology , Heart/growth & development , Humans , Membrane Potential, Mitochondrial , Mice , Mitochondrial Permeability Transition Pore , Myocytes, Cardiac/cytology , Oxidative Stress/physiology
18.
Reprod Fertil Dev ; 29(7): 1435-1446, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27363428

ABSTRACT

Male infertility is a disorder of the reproductive system defined by the failure to achieve a clinical pregnancy after 12 months or more of regular unprotected sexual intercourse. The presence of low-motile or immotile spermatozoa is one of many causes of infertility; however, this observation provides little or no information regarding the pathogenesis of the malfunction. Good sperm motility depends on correct assembly of the sperm tail in the testis and efficient maturation during epididymal transit. Thiols of flagellar proteins, such as outer dense fibre protein 1 (ODF1), are oxidised to form disulfides during epididymal transit and the spermatozoa become motile. This study was designed to determine how oxidative changes in protein thiol status affect progressive motility in human spermatozoa. Monobromobimane (mBBr) was used as a specific thiol marker and disruptor of sperm progressive motility. When mBBr was blocked by dithiothreitol it did not promote motility changes. The analysis of mBBr-treated spermatozoa revealed a reduction of progressive motility and an increased number of spermatozoa with non-progressive motility without affecting ATP production. Laser confocal microscopy and western blot analysis showed that one of the mBBr-positive proteins reacted with an antibody to ODF1. Monobromobimane fluorescence intensity of the sperm tail was lower in normozoospermic than asthenozoospermic men, suggesting that thiol oxidation in spermatozoa of asthenozoospermic men is incomplete. Our findings indicate that mBBr affects the thiol status of ODF1 in human spermatozoa and interferes with progressive motility.


Subject(s)
Heat-Shock Proteins/physiology , Sperm Motility/physiology , Adenosine Triphosphate/biosynthesis , Asthenozoospermia/physiopathology , Bridged Bicyclo Compounds/pharmacology , Dithiothreitol/pharmacology , Heat-Shock Proteins/chemistry , Humans , In Vitro Techniques , Infertility, Male/etiology , Infertility, Male/physiopathology , Male , Sperm Motility/drug effects , Sperm Tail/physiology , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism
19.
Oncol Rep ; 36(6): 3673-3681, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27748844

ABSTRACT

Acceleration of glycolysis is a characteristic of neoplasia. Previous studies have shown that a metabolic shift occurs in many tumors and correlates with a negative prognosis. The present study aimed to investigate the glycolytic profile of thyroid carcinoma cell lines. We investigated glycolytic and oxidative parameters of two thyroid carcinoma papillary cell lines (BCPAP and TPC1) and the non-tumor cell line NTHY-ori. All carcinoma cell lines showed higher rates of glycolysis efficiency, when compared to NTHY-ori, as assessed by a higher rate of glucose consumption and lactate production. The BCPAP cell line presented higher rates of growth, as well as elevated intracellular ATP levels, compared to the TPC1 and NTHY-ori cells. We found that glycolysis and activities of pentose phosphate pathway (PPP) regulatory enzymes were significantly different among the carcinoma cell lines, particularly in the mitochondrial hexokinase (HK) activity which was higher in the BCPAP cells than that in the TPC1 cell line which showed a balanced distribution of HK activity between cytoplasmic and mitochondrial subcellular localizations. However, TPC1 had higher levels of glucose­6-phosphate dehydrogenase activity, suggesting that the PPP is elevated in this cell type. Using high resolution respirometry, we observed that the Warburg effect was present in the BCPAP and TPC1 cells, characterized by low oxygen consumption and high reactive oxygen species production. Overall, these results indicate that both thyroid papillary carcinoma cell lines showed a glycolytic profile. Of note, BCPAP cells presented some relevant differences in cell metabolism compared to TPC1 cells, mainly related to higher mitochondrial-associated HK activity.


Subject(s)
Carcinoma, Papillary/metabolism , Glycolysis , Thyroid Neoplasms/metabolism , Adenosine Triphosphate/biosynthesis , Cell Line, Tumor , Cell Proliferation , Hexokinase/metabolism , Humans , Mitochondria/metabolism , Oxidation-Reduction , Oxygen Consumption
20.
J Bioenerg Biomembr ; 48(4): 437-49, 2016 08.
Article in English | MEDLINE | ID: mdl-27222029

ABSTRACT

Trypanosoma cruzi, the aetiological agent of Chagas's disease, metabolizes glucose, and after its exhaustion, degrades amino acids as energy source. Here, we investigate histidine uptake and its participation in energy metabolism. No putative genes for the histidine biosynthetic pathway have been identified in genome databases of T. cruzi, suggesting that its uptake from extracellular medium is a requirement for the viability of the parasite. From this assumption, we characterized the uptake of histidine in T. cruzi, showing that this amino acid is incorporated through a single and saturable active system. We also show that histidine can be completely oxidised to CO2. This finding, together with the fact that genes encoding the putative enzymes for the histidine - glutamate degradation pathway were annotated, led us to infer its participation in the energy metabolism of the parasite. Here, we show that His is capable of restoring cell viability after long-term starvation. We confirm that as an energy source, His provides electrons to the electron transport chain, maintaining mitochondrial inner membrane potential and O2 consumption in a very efficient manner. Additionally, ATP biosynthesis from oxidative phosphorylation was found when His was the only oxidisable metabolite present, showing that this amino acid is involved in bioenergetics and parasite persistence within its invertebrate host.


Subject(s)
Adenosine Triphosphate/biosynthesis , Histidine/metabolism , Trypanosoma cruzi/metabolism , Biological Transport, Active , Electron Transport , Energy Metabolism , Histidine/physiology , Oxidative Phosphorylation , Protozoan Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL