Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Acquir Immune Defic Syndr ; 96(4): 350-360, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38916429

ABSTRACT

BACKGROUND: An effective vaccine is required to end the HIV pandemic. We evaluated the safety and immunogenicity of a DNA (DNA-HIV-PT123) vaccine with low- or high-dose bivalent (TV1.C and 1086.C glycoprotein 120) subtype C envelope protein combinations, adjuvanted with MF59 or AS01B. METHODS: HIV Vaccine Trials Network (HVTN)108 was a randomized, placebo-controlled, double-blind, phase 1/2a trial conducted in the United States and South Africa. HIV-negative adults were randomly assigned to 1 of 7 intervention arms or placebo to assess DNA prime with DNA/protein/adjuvant boosts, DNA/protein/adjuvant co-administration, and low-dose protein/adjuvant regimens. HVTN111 trial participants who received an identical regimen were also included. Outcomes included safety and immunogenicity 2 weeks and 6 months after final vaccination. RESULTS: From June 2016 to July 2018, 400 participants were enrolled (N = 334 HVTN108, N = 66 HVTN111); 370 received vaccine and 30 received placebo. There were 48 grade 3 and 3 grade 4 reactogenicity events among 39/400 (9.8%) participants, and 32 mild/moderate-related adverse events in 23/400 (5.8%) participants. All intervention groups demonstrated high IgG response rates (>89%) and high magnitudes to HIV-1 Env gp120 and gp140 proteins; response rates for AS01B-adjuvanted groups approached 100%. V1V2 IgG magnitude, Fc-mediated functions, IgG3 Env response rates, and CD4+ T-cell response magnitudes and rates were higher in the AS01B-adjuvanted groups. The AS01B-adjuvanted low-dose protein elicited greater IgG responses than the higher protein dose. CONCLUSIONS: The vaccine regimens were generally well tolerated. Co-administration of DNA with AS01B-adjuvanted bivalent Env gp120 elicited the strongest humoral responses; AS01B-adjuvanted regimens elicited stronger CD4+ T-cell responses, justifying further evaluation.ClinicalTrials.gov registration: NCT02915016, registered 26 September 2016.


Subject(s)
AIDS Vaccines , Adjuvants, Immunologic , HIV Antibodies , HIV Envelope Protein gp120 , HIV Infections , HIV-1 , Polysorbates , Squalene , Vaccines, DNA , Humans , AIDS Vaccines/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/adverse effects , Vaccines, DNA/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/adverse effects , Female , Male , Adult , Squalene/administration & dosage , Polysorbates/administration & dosage , HIV Envelope Protein gp120/immunology , Adjuvants, Immunologic/administration & dosage , HIV-1/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Antibodies/blood , Double-Blind Method , Middle Aged , Young Adult , Adjuvants, Vaccine/administration & dosage , South Africa , Immunogenicity, Vaccine , Adolescent , United States
2.
Hum Vaccin Immunother ; 20(1): 2364519, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38880868

ABSTRACT

Mucosal immunity plays a crucial role in combating and controlling the spread of highly mutated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recombinant subunit vaccines have shown safety and efficacy in clinical trials, but further investigation is necessary to evaluate their feasibility as mucosal vaccines. This study developed a SARS-CoV-2 mucosal vaccine using spike (S) proteins from a prototype strain and the omicron variant, along with a cationic chitosan adjuvant, and systematically evaluated its immunogenicity after both primary and booster immunization in mice. Primary immunization through intraperitoneal and intranasal administration of the S protein elicited cross-reactive antibodies against prototype strains, as well as delta and omicron variants, with particularly strong effects observed after mucosal vaccination. In the context of booster immunization following primary immunization with inactivated vaccines, the omicron-based S protein mucosal vaccine resulted in a broader and more robust neutralizing antibody response in both serum and respiratory mucosa compared to the prototype vaccine, enhancing protection against different variants. These findings indicate that mucosal vaccination with the S protein has the potential to trigger a broader and stronger antibody response during primary and booster immunization, making it a promising strategy against respiratory pathogens.


Subject(s)
Administration, Intranasal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Mice , Immunization, Secondary/methods , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Female , Immunity, Mucosal , Immunogenicity, Vaccine , Cross Reactions/immunology , Chitosan/immunology , Chitosan/administration & dosage , Adjuvants, Vaccine/administration & dosage , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage
3.
Sci Rep ; 14(1): 13800, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877101

ABSTRACT

Adjuvants enhance, prolong, and modulate immune responses by vaccine antigens to maximize protective immunity and enable more effective immunization in the young and elderly. Most adjuvants are formulated with injectable vaccines. However, an intranasal route of vaccination may induce mucosal and systemic immune responses for enhancing protective immunity in individuals and be easier to administer compared to injectable vaccines. In this study, a next generation of broadly-reactive influenza hemagglutinin (HA) vaccines were developed using the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology. These HA vaccines were formulated with Mastoparan 7 (M7-NH2) mast cell degranulating peptide adjuvant and administered intranasally to determine vaccine-induced seroconversion of antibodies against a panel of influenza viruses and protection following infection with H1N1 and H3N2 viruses in mice. Mice vaccinated intranasally with M7-NH2-adjuvanted COBRA HA vaccines had high HAIs against a panel of H1N1 and H3N2 influenza viruses and were protected against both morbidity and mortality, with reduced viral lung titers, following challenge with an H1N1 influenza virus. Additionally, M7-NH2 adjuvanted COBRA HA vaccines induced Th2 skewed immune responses with robust IgG and isotype antibodies in the serum and mucosal lung lavages. Overall, this intranasally delivered M7-NH2 -adjuvanted COBRA HA vaccine provides effective protection against drifted H1N1 and H3N2 viruses.


Subject(s)
Adjuvants, Immunologic , Administration, Intranasal , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Animals , Mice , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Adjuvants, Immunologic/administration & dosage , Antibodies, Viral/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Mice, Inbred BALB C , Intercellular Signaling Peptides and Proteins/immunology , Adjuvants, Vaccine/administration & dosage
4.
Hum Vaccin Immunother ; 20(1): 2363016, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38839044

ABSTRACT

Recombinant protein vaccines represent a well-established, reliable and safe approach for pandemic vaccination. SpikoGen® is a recombinant spike protein trimer manufactured in insect cells and formulated with Advax-CpG55.2 adjuvant. In murine, hamster, ferret and non-human primate studies, SpikoGen® consistently provided protection against a range of SARS-CoV-2 variants. A pivotal Phase 3 placebo-controlled efficacy trial involving 16,876 participants confirmed the ability of SpikoGen® to prevent infection and severe disease caused by the virulent Delta strain. SpikoGen® subsequently received a marketing authorization from the Iranian FDA in early October 2021 for prevention of COVID-19 in adults. Following a successful pediatric study, its approval was extended to children 5 years and older. Eight million doses of SpikoGen® have been delivered, and a next-generation booster version is currently in development. This highlights the benefits of adjuvanted protein-based approaches which should not overlook when vaccine platforms are being selected for future pandemics.


SpikoGen is a more traditional COVID-19 vaccine comprising SARS-CoV-2 spike protein extracellular domain formulated with Advax-CpG adjuvantSpikoGen differs from the Novavax vaccine in major ways including its use of the soluble secreted spike protein ECD rather than nanoparticle formulation and the use of a different adjuvantSpikoGen demonstrates robust protection against homologous and heterologous SARS-CoV-2 strains in hamster, ferret and non-human primate challenge modelsSpikoGen induces broadly cross-neutralizing antibodies, but still protects even after these antibody levels waneIn a pivotal Phase 3 clinical trial, SpikoGen reduced the risk of severe infection by 77.5% and was not associated with myocarditis, thrombosis or any other adverse safety signalsSpikoGen received an Emergency Use Authorization in the Middle East on 6 October 2021, making it the first recombinant spike protein vaccine to achieve this milestoneEight million doses of SpikoGen vaccine have been safely delivered to dateProtein-based vaccines have a long history of reliability and safety.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Animals , Spike Glycoprotein, Coronavirus/immunology , Humans , COVID-19/prevention & control , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , SARS-CoV-2/immunology , Adjuvants, Vaccine/administration & dosage , Adjuvants, Immunologic/administration & dosage , Vaccine Development
5.
Viruses ; 16(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38932158

ABSTRACT

Humans continue to be at risk from the Zika virus. Although there have been significant research advancements regarding Zika, the absence of a vaccine or approved treatment poses further challenges for healthcare providers. In this study, we developed a microparticulate Zika vaccine using an inactivated whole Zika virus as the antigen that can be administered pain-free via intranasal (IN) immunization. These microparticles (MP) were formulated using a double emulsion method developed by our lab. We explored a prime dose and two-booster-dose vaccination strategy using MPL-A® and Alhydrogel® as adjuvants to further stimulate the immune response. MPL-A® induces a Th1-mediated immune response and Alhydrogel® (alum) induces a Th2-mediated immune response. There was a high recovery yield of MPs, less than 5 µm in size, and particle charge of -19.42 ± 0.66 mV. IN immunization of Zika MP vaccine and the adjuvanted Zika MP vaccine showed a robust humoral response as indicated by several antibodies (IgA, IgM, and IgG) and several IgG subtypes (IgG1, IgG2a, and IgG3). Vaccine MP elicited a balance Th1- and Th2-mediated immune response. Immune organs, such as the spleen and lymph nodes, exhibited a significant increase in CD4+ helper and CD8+ cytotoxic T-cell cellular response in both vaccine groups. Zika MP vaccine and adjuvanted Zika MP vaccine displayed a robust memory response (CD27 and CD45R) in the spleen and lymph nodes. Adjuvanted vaccine-induced higher Zika-specific intracellular cytokines than the unadjuvanted vaccine. Our results suggest that more than one dose or multiple doses may be necessary to achieve necessary immunological responses. Compared to unvaccinated mice, the Zika vaccine MP and adjuvanted MP vaccine when administered via intranasal route demonstrated robust humoral, cellular, and memory responses. In this pre-clinical study, we established a pain-free microparticulate Zika vaccine that produced a significant immune response when administered intranasally.


Subject(s)
Administration, Intranasal , Antibodies, Viral , Viral Vaccines , Zika Virus Infection , Zika Virus , Animals , Zika Virus Infection/prevention & control , Zika Virus Infection/immunology , Zika Virus/immunology , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Female , Immunization/methods , Adjuvants, Immunologic/administration & dosage , Disease Models, Animal , Adjuvants, Vaccine/administration & dosage , Vaccination/methods , Cytokines/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology
6.
Lancet Microbe ; 5(6): e581-e593, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761816

ABSTRACT

BACKGROUND: A self-assembling SARS-CoV-2 WA-1 recombinant spike ferritin nanoparticle (SpFN) vaccine co-formulated with Army Liposomal Formulation (ALFQ) adjuvant containing monophosphoryl lipid A and QS-21 (SpFN/ALFQ) has shown protective efficacy in animal challenge models. This trial aims to assess the safety and immunogenicity of SpFN/ALFQ in a first-in-human clinical trial. METHODS: In this phase 1, randomised, double-blind, placebo-controlled, first-in-human clinical trial, adults were randomly assigned (5:5:2) to receive 25 µg or 50 µg of SpFN/ALFQ or saline placebo intramuscularly at day 1 and day 29, with an optional open-label third vaccination at day 181. Enrolment and randomisation occurred sequentially by group; randomisation was done by an interactive web-based randomisation system and only designated unmasked study personnel had access to the randomisation code. Adults were required to be seronegative and unvaccinated for inclusion. Local and systemic reactogenicity, adverse events, binding and neutralising antibodies, and antigen-specific T-cell responses were quantified. For safety analyses, exact 95% Clopper-Pearson CIs for the probability of any incidence of an unsolicited adverse event was computed for each group. For immunogenicity results, CIs for binary variables were computed using the exact Clopper-Pearson methodology, while CIs for geometric mean titres were based on 10 000 empirical bootstrap samples. Post-hoc, paired one-sample t tests were used to assess the increase in mean log-10 neutralising antibody titres between day 29 and day 43 (after the second vaccination) for the primary SARS-CoV-2 targets of interest. This trial is registered at ClinicalTrials.gov, NCT04784767, and is closed to new participants. FINDINGS: Between April 7, and June 29, 2021, 29 participants were enrolled in the study. 20 individuals were assigned to receive 25 µg SpFN/ALFQ, four to 50 µg SpFN/ALFQ, and five to placebo. Neutralising antibody responses peaked at day 43, 2 weeks after the second dose. Neutralisation activity against multiple omicron subvariants decayed more slowly than against the D614G or beta variants until 5 months after second vaccination for both dose groups. CD4+ T-cell responses were elicited 4 weeks after the first dose and were boosted after a second dose of SpFN/ALFQ for both dose groups. Neutralising antibody titres against early omicron subvariants and clade 1 sarbecoviruses were detectable after two immunisations and peaked after the third immunisation for both dose groups. Neutralising antibody titres against XBB.1.5 were detected after three vaccinations. Passive IgG transfer from vaccinated volunteers into Syrian golden hamsters controlled replication of SARS-CoV-1 after challenge. INTERPRETATION: SpFN/ALFQ was well tolerated and elicited robust and durable binding antibody and neutralising antibody titres against a broad panel of SARS-CoV-2 variants and other sarbecoviruses. FUNDING: US Department of Defense, Defense Health Agency.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ferritins , Lipid A , Liposomes , Nanoparticles , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Double-Blind Method , Adult , Male , Female , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Nanoparticles/administration & dosage , Lipid A/analogs & derivatives , Lipid A/administration & dosage , Lipid A/pharmacology , Lipid A/immunology , Liposomes/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Saponins/administration & dosage , Saponins/immunology , Saponins/pharmacology , Saponins/adverse effects , Antibodies, Viral/blood , Middle Aged , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Adjuvants, Vaccine/administration & dosage , Antibodies, Neutralizing/blood , Young Adult , Nanovaccines
7.
EMBO Mol Med ; 16(6): 1451-1483, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750307

ABSTRACT

Although protein subunit vaccines generally have acceptable safety profiles with precise antigenic content, limited immunogenicity can lead to unsatisfactory humoral and cellular immunity and the need for vaccine adjuvants and delivery system. Herein, we assess a vaccine adjuvant system comprising Quillaja Saponaria-21(QS-21) and cobalt porphyrin polymeric micelles that enabling the display of His-tagged antigen on its surface. The nanoscale micelles promote antigen uptake and dendritic cell activation to induce robust cytotoxic T lymphocyte response and germinal center formation. Using the recombinant protein antigens from influenza A and rabies virus, the micelle adjuvant system elicited robust antiviral responses and protected mice from lethal challenge. In addition, this system could be combined with other antigens to induce high titers of neutralizing antibodies in models of three highly pathogenic viral pathogens: Ebola virus, Marburg virus, and Nipah virus. Collectively, our results demonstrate this polymeric micelle adjuvant system can be used as a potent nanoplatform for developing antiviral vaccine countermeasures that promote humoral and cellular immunity.


Subject(s)
Viral Vaccines , Animals , Mice , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Micelles , Adjuvants, Vaccine/administration & dosage , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology , Antibodies, Viral/immunology , Rabies virus/immunology , Dendritic Cells/immunology , Polymers/chemistry , Female , Mice, Inbred C57BL , Influenza A virus/immunology , Mice, Inbred BALB C
8.
Hum Vaccin Immunother ; 20(1): 2346963, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38745461

ABSTRACT

COVID-19, caused by SARS-CoV-2, and meningococcal disease, caused by Neisseria meningitidis, are relevant infectious diseases, preventable through vaccination. Outer membrane vesicles (OMVs), released from Gram-negative bacteria, such as N. meningitidis, present adjuvant characteristics and may confer protection against meningococcal disease. Here, we evaluated in mice the humoral and cellular immune response to different doses of receptor binding domain (RBD) of SARS-CoV-2 adjuvanted by N. meningitidis C:2a:P1.5 OMVs and aluminum hydroxide, as a combined preparation for these pathogens. The immunization induced IgG antibodies of high avidity for RBD and OMVs, besides IgG that recognized the Omicron BA.2 variant of SARS-CoV-2 with intermediary avidity. Cellular immunity showed IFN-γ and IL-4 secretion in response to RBD and OMV stimuli, demonstrating immunologic memory and a mixed Th1/Th2 response. Offspring presented transferred IgG of similar levels and avidity as their mothers. Humoral immunity did not point to the superiority of any RBD dose, but the group immunized with a lower antigenic dose (0.5 µg) had the better cellular response. Overall, OMVs enhanced RBD immunogenicity and conferred an immune response directed to N. meningitidis too.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , Neisseria meningitidis , SARS-CoV-2 , Animals , Mice , Immunoglobulin G/blood , Neisseria meningitidis/immunology , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Immunity, Cellular , Immunity, Humoral , Mice, Inbred BALB C , Meningococcal Infections/prevention & control , Meningococcal Infections/immunology , Spike Glycoprotein, Coronavirus/immunology , Adjuvants, Vaccine/administration & dosage , Aluminum Hydroxide/administration & dosage , Aluminum Hydroxide/immunology , Immunization/methods , Antibody Affinity , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Immunologic Memory , Th1 Cells/immunology
9.
Microbes Infect ; 26(5-6): 105346, 2024.
Article in English | MEDLINE | ID: mdl-38670217

ABSTRACT

Vaccine adjuvants, such as liposome-based cationic adjuvant formulations (CAFs), are able to boost immune responses and, by incorporation of distinct immunomodulators, steer immunity towards a desired direction in mice, non-human primates and humans, while less studied in pigs. Here we used commercial pigs to investigate polarizing adjuvant effects of CAFs with immunomodulators: C-type lectin receptor ligands trehalose-6,6'-dibehenate and monomycolyl glycerol, toll-like receptor 3 ligand Poly(I:C) or retinoic acid. Vaccines were formulated with a recombinant Chlamydia model protein antigen and administered via three injection routes. All adjuvants significantly increased antigen-specific IgG in serum, compared to non-adjuvanted antigen. Administering the vaccines through intramuscular and intraperitoneal routes induced significantly higher antigen-specific IgG and IgA serum antibodies, than the perirectal route. Although immunizations triggered cell-mediated immunity, no significant differences between adjuvants or injection sites were detected. Genes depicting T cell subtypes revealed only minor differences. Our findings suggest that specific signatures of the tested adjuvant immunomodulation do not translate well from mice to pigs in standard two-dose immunizations. This study provides new insights into immune responses to CAFs in pigs, and highlights that adjuvant development should ideally be carried out in the intended species of interest or in models with high predictive validity/translational value.


Subject(s)
Adjuvants, Immunologic , Immunoglobulin G , Liposomes , Animals , Liposomes/immunology , Liposomes/administration & dosage , Swine , Adjuvants, Immunologic/administration & dosage , Immunoglobulin G/blood , Immunoglobulin A/blood , Immunoglobulin A/immunology , Antibodies, Bacterial/blood , Adjuvants, Vaccine/administration & dosage , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Poly I-C/administration & dosage , Poly I-C/immunology , Chlamydia/immunology , Tretinoin/administration & dosage , Tretinoin/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/administration & dosage , Immunomodulating Agents/administration & dosage , Immunomodulating Agents/pharmacology , Immunomodulating Agents/immunology , Immunity, Cellular , Glycolipids
10.
Front Immunol ; 15: 1331474, 2024.
Article in English | MEDLINE | ID: mdl-38650939

ABSTRACT

Malaria remains a global health challenge, necessitating the development of effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf) malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we evaluated the murine immunogenicity of a recombinant PvCSP incorporating prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both formulations induced prolonged IgG responses, with IgG1 dominance by the Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart. Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed an antibody-secreting cell- and MBC-differentiating gene expression profile. Biological processes such as antibody folding and secretion were highlighted by the Poly I:C-adjuvanted vaccination. These findings underscore the potential of Poly I:C to strengthen immune responses against Pv malaria.


Subject(s)
Adjuvants, Vaccine , Aluminum Hydroxide , Immunogenicity, Vaccine , Malaria Vaccines , Malaria, Vivax , Plasmodium vivax , Poly I-C , Protozoan Proteins , Poly I-C/administration & dosage , Plasmodium vivax/immunology , Immunity, Humoral , Immunity, Cellular , Protozoan Proteins/immunology , Malaria Vaccines/chemistry , Malaria Vaccines/immunology , Aluminum Hydroxide/administration & dosage , Immunoglobulin G/blood , Male , Animals , Plasma Cells/immunology , Female , Mice, Inbred C57BL , Recombinant Proteins/immunology , Vaccination , Adjuvants, Vaccine/administration & dosage , Malaria, Vivax/prevention & control
11.
J Fish Dis ; 47(7): e13945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523313

ABSTRACT

The extensive growth of intensive fish farming has led to a massive spread of infectious diseases. Nervous necrosis virus (NNV) is the causative agent of the viral encephalo- and retinopathy disease which has become a major threat for fish farming all over the globe. The devastating mortality rates recorded in disease outbreaks, especially when infected specimens are at early stages of development, have a high economic impact on the sector. Currently, vaccines are the most cost-effective preventing tool in the fight against viruses. Inactivated vaccines have the advantage of simplicity in their development at the same time as present the antigen in a similar manner than the natural infection in the host. Nevertheless, they usually trigger weaker immune responses needing adjuvants to boost their effectiveness. In this work, we have intraperitoneally vaccinated Senegalese sole juveniles (Solea senegalensis) with a previously designed inactivated vaccine against NNV based on binary ethylenimine (BEI), mixed or not with an oil-adjuvant. Our results demonstrated the potential activation of different immune pathways when the vaccine was administered alone compared to the oil-adjuvanted vaccine, both resulting in an equivalent partial improvement in survival following a NNV challenge. However, whilst the vaccine alone led to a significant increase in specific antibodies, in the adjuvanted version those antibodies were kept basal although with a slight improvement in their neutralization capacity. At transcriptional level, neither vaccine (adjuvanted or not) triggered the immune system activation during the vaccination period. However, after NNV infection, the BEI-inactivated vaccines alone and oil-adjuvanted both elicited the stimulation of antiviral responsive genes (rtp3, herc4), antigen presentation molecules (mhcii) and T-cell markers (cd8a) in the head-kidney. Additionally, the oil-adjuvanted vaccine appears to stimulate mediator cytokines (il6) and B-cell markers (ight and ighm). Surprisingly, when the adjuvant was administered alone, fish showed the highest survival rates concomitantly with a lack of NNV-IgM production, pointing to the possible induction of different immune pathways than the B-cell responses via antibodies by the adjuvant. Since this combined vaccine did not succeed in the full extension of protection against the pathogen, further studies should be performed focusing on unravelling the molecular mechanisms through which adjuvants trigger the immune response, both independently and when added to a vaccine antigen.


Subject(s)
Fish Diseases , Flatfishes , Nodaviridae , RNA Virus Infections , Vaccines, Inactivated , Viral Vaccines , Animals , Fish Diseases/prevention & control , Fish Diseases/virology , Fish Diseases/immunology , Flatfishes/immunology , Flatfishes/virology , Nodaviridae/immunology , RNA Virus Infections/veterinary , RNA Virus Infections/prevention & control , RNA Virus Infections/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccination/veterinary , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Vaccine/administration & dosage
12.
Clin Infect Dis ; 78(6): 1757-1768, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38537255

ABSTRACT

INTRODUCTION: A surge of human influenza A(H7N9) cases began in 2016 in China from an antigenically distinct lineage. Data are needed about the safety and immunogenicity of 2013 and 2017 A(H7N9) inactivated influenza vaccines (IIVs) and the effects of AS03 adjuvant, prime-boost interval, and priming effects of 2013 and 2017 A(H7N9) IIVs. METHODS: Healthy adults (n = 180), ages 19-50 years, were enrolled into this partially blinded, randomized, multicenter phase 2 clinical trial. Participants were randomly assigned to 1 of 6 vaccination groups evaluating homologous versus heterologous prime-boost strategies with 2 different boost intervals (21 vs 120 days) and 2 dosages (3.75 or 15 µg of hemagglutinin) administered with or without AS03 adjuvant. Reactogenicity, safety, and immunogenicity measured by hemagglutination inhibition and neutralizing antibody titers were assessed. RESULTS: Two doses of A(H7N9) IIV were well tolerated, and no safety issues were identified. Although most participants had injection site and systemic reactogenicity, these symptoms were mostly mild to moderate in severity; injection site reactogenicity was greater in vaccination groups receiving adjuvant. Immune responses were greater after an adjuvanted second dose, and with a longer interval between prime and boost. The highest hemagglutination inhibition geometric mean titer (95% confidence interval) observed against the 2017 A(H7N9) strain was 133.4 (83.6-212.6) among participants who received homologous, adjuvanted 3.75 µg + AS03/2017 doses with delayed boost interval. CONCLUSIONS: Administering AS03 adjuvant with the second H7N9 IIV dose and extending the boost interval to 4 months resulted in higher peak antibody responses. These observations can broadly inform strategic approaches for pandemic preparedness. Clinical Trials Registration. NCT03589807.


Subject(s)
Antibodies, Viral , Immunization, Secondary , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Vaccines, Inactivated , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/adverse effects , Adult , Male , Female , Middle Aged , Influenza A Virus, H7N9 Subtype/immunology , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Antibodies, Viral/blood , Influenza, Human/prevention & control , Influenza, Human/immunology , Young Adult , Immunization Schedule , Hemagglutination Inhibition Tests , United States , Immunogenicity, Vaccine , Antibodies, Neutralizing/blood , Polysorbates/administration & dosage , Polysorbates/adverse effects , alpha-Tocopherol/administration & dosage , alpha-Tocopherol/adverse effects , Squalene/administration & dosage , Squalene/adverse effects , Squalene/immunology , Healthy Volunteers , Drug Combinations , Adjuvants, Vaccine/administration & dosage , Vaccination/methods , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects
13.
N Engl J Med ; 386(22): 2084-2096, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35507508

ABSTRACT

BACKGROUND: Coronavirus-like particles (CoVLP) that are produced in plants and display the prefusion spike glycoprotein of the original strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are combined with an adjuvant (Adjuvant System 03 [AS03]) to form the candidate vaccine. METHODS: In this phase 3, multinational, randomized, placebo-controlled trial conducted at 85 centers, we assigned adults (≥18 years of age) in a 1:1 ratio to receive two intramuscular injections of the CoVLP+AS03 vaccine or placebo 21 days apart. The primary objective of the trial was to determine the efficacy of the CoVLP+AS03 vaccine in preventing symptomatic coronavirus disease 2019 (Covid-19) beginning at least 7 days after the second injection, with the analysis performed after the detection of at least 160 cases. RESULTS: A total of 24,141 volunteers participated in the trial; the median age of the participants was 29 years. Covid-19 was confirmed by polymerase-chain-reaction assay in 165 participants in the intention-to-treat population; all viral samples that could be sequenced contained variants of the original strain. Vaccine efficacy was 69.5% (95% confidence interval [CI], 56.7 to 78.8) against any symptomatic Covid-19 caused by five variants that were identified by sequencing. In a post hoc analysis, vaccine efficacy was 78.8% (95% CI, 55.8 to 90.8) against moderate-to-severe disease and 74.0% (95% CI, 62.1 to 82.5) among the participants who were seronegative at baseline. No severe cases of Covid-19 occurred in the vaccine group, in which the median viral load for breakthrough cases was lower than that in the placebo group by a factor of more than 100. Solicited adverse events were mostly mild or moderate and transient and were more frequent in the vaccine group than in the placebo group; local adverse events occurred in 92.3% and 45.5% of participants, respectively, and systemic adverse events in 87.3% and 65.0%. The incidence of unsolicited adverse events was similar in the two groups up to 21 days after each dose (22.7% and 20.4%) and from day 43 through day 201 (4.2% and 4.0%). CONCLUSIONS: The CoVLP+AS03 vaccine was effective in preventing Covid-19 caused by a spectrum of variants, with efficacy ranging from 69.5% against symptomatic infection to 78.8% against moderate-to-severe disease. (Funded by Medicago; ClinicalTrials.gov number, NCT04636697.).


Subject(s)
Adjuvants, Vaccine , COVID-19 Vaccines , COVID-19 , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Adjuvants, Immunologic/therapeutic use , Adjuvants, Vaccine/administration & dosage , Adjuvants, Vaccine/adverse effects , Adjuvants, Vaccine/therapeutic use , Adult , Antibodies, Viral , COVID-19/genetics , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Double-Blind Method , Humans , Injections, Intramuscular , SARS-CoV-2/genetics , Vaccination
14.
Int J Mol Sci ; 23(3)2022 Feb 06.
Article in English | MEDLINE | ID: mdl-35163772

ABSTRACT

The SARS-CoV-2 pandemic caused a massive health and societal crisis, although the fast development of effective vaccines reduced some of the impact. To prepare for future respiratory virus pandemics, a pan-viral prophylaxis could be used to control the initial virus outbreak in the period prior to vaccine approval. The liposomal vaccine adjuvant CAF®09b contains the TLR3 agonist polyinosinic:polycytidylic acid, which induces a type I interferon (IFN-I) response and an antiviral state in the affected tissues. When testing CAF09b liposomes as a potential pan-viral prophylaxis, we observed that intranasal administration of CAF09b liposomes to mice resulted in an influx of innate immune cells into the nose and lungs and upregulation of IFN-I-related gene expression. When CAF09b liposomes were administered prior to challenge with mouse-adapted influenza A/Puerto Rico/8/1934 virus, it protected from severe disease, although the virus was still detectable in the lungs. However, when CAF09b liposomes were administered after influenza challenge, the mice had a similar disease course to controls. In conclusion, CAF09b may be a suitable candidate as a pan-viral prophylactic treatment for epidemic viruses, but must be administered prior to virus exposure to be effective.


Subject(s)
Adjuvants, Vaccine/therapeutic use , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Orthomyxoviridae Infections/prevention & control , Vaccine Development/methods , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/therapeutic use , Adjuvants, Vaccine/administration & dosage , Adjuvants, Vaccine/chemistry , Adjuvants, Vaccine/pharmacology , Administration, Intranasal , Animals , COVID-19/prevention & control , COVID-19 Vaccines/chemical synthesis , COVID-19 Vaccines/therapeutic use , Cells, Cultured , Chick Embryo , Gene Expression Regulation/drug effects , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/pharmacology , Interferon Type I/genetics , Liposomes/chemistry , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Primary Prevention/methods , SARS-CoV-2/immunology
15.
Virology ; 566: 56-59, 2022 01.
Article in English | MEDLINE | ID: mdl-34864488

ABSTRACT

BACKGROUND: Recombinant protein subunit vaccination is considered to be a safe, fast and reliable technique when combating emerging and re-emerging diseases such as coronavirus disease 2019 (COVID-19). Typically, such subunit vaccines require the addition of adjuvants to attain adequate immunogenicity. AS01, which contains adjuvants MPL and saponin QS21, is a liposome-based vaccine adjuvant system that is one of the leading candidates. However, the adjuvant effect of AS01 in COVID-19 vaccines is not well described yet. METHODS: In this study, we utilized a mixture of AS01 as the adjuvant for an S1 protein-based COVID-19 vaccine. RESULTS: The adjuvanted vaccine induced robust immunoglobulin G (IgG) binding antibody and virus-neutralizing antibody responses. Importantly, two doses induced similar levels of IgG binding antibody and neutralizing antibody responses compared with three doses and the antibody responses weakened only slightly over time up to six weeks after immunization. CONCLUSION: These results suggested that two doses may be enough for a clinical vaccine strategy design using MPL & QS21 adjuvanted recombinant protein, especially in consideration of the limited production capacity of COVID-19 vaccine in a public health emergency.


Subject(s)
Antigens, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Lipid A/analogs & derivatives , SARS-CoV-2/immunology , Saponins/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Vaccine/administration & dosage , Animals , Antibodies, Neutralizing , Antibodies, Viral/metabolism , Antibody Formation , COVID-19/virology , Dose-Response Relationship, Immunologic , Drug Combinations , Female , HEK293 Cells , Humans , Immunization , Immunogenicity, Vaccine , Lipid A/administration & dosage , Lipid A/immunology , Mice, Inbred BALB C , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Saponins/administration & dosage
16.
Lancet Infect Dis ; 22(1): 73-84, 2022 01.
Article in English | MEDLINE | ID: mdl-34563277

ABSTRACT

BACKGROUND: Improved seasonal influenza vaccines for older adults that can induce broadly cross-reactive antibodies and enhanced T-cell responses, particularly against A H3N2 viruses, while avoiding egg-adaptive antigenic changes, are needed. We aimed to show that the Matrix-M-adjuvanted quadrivalent nanoparticle influenza vaccine (qNIV) was immunologically non-inferior to a licensed, standard-dose quadrivalent inactivated influenza vaccine (IIV4) in older adults. METHODS: This was a phase 3 randomised, observer-blinded, active-comparator controlled trial done across 19 US community-based clinical research sites during the 2019-20 influenza season. Participants were clinically stable and community-dwelling, aged at least 65 years, and were randomised in a 1:1 ratio using an interactive web response system to receive a single intramuscular dose of qNIV or IIV4. The primary objective was to describe safety and show that qNIV was immunologically non-inferior to IIV4. The primary outcomes were adverse events by treatment group and comparative haemagglutination-inhibiting antibody responses (assayed with egg-propagated virus) on day 28, summarised in terms of the ratio of geometric mean titres (GMTRqNIV/IIV4) and seroconversion rate (SCR) difference between participants receiving qNIV or IIV4 for all four vaccine homologous influenza strains. The immunogenicity outcome was measured in the per-protocol population. Non-inferiority was shown if the lower bound of the two-sided 95% CI on the GMTRqNIV/IIV4 was at least 0·67 and the lower bound of the two-sided 95% CI on the SCR difference -was at least -10%. The study is registered with clinicaltrials.gov, NCT04120194, and is active and not recruiting. FINDINGS: 2742 adults were assessed for eligibility and 2654 were enrolled and randomised between Oct 14, 2019, and Oct 25, 2019; 1333 participants were randomised to the qNIV group and 1319 to the IIV4 group (two participants withdrew consent before being assigned to a group). qNIV showed immunological non-inferiority to IIV4: GMTRqNIV/IIV4 for the four vaccine homologous influenza strains was A/Brisbane 1·09 (95% CI 1·03 to 1·15), A/Kansas 1·19 (1·11 to 1·27), B/Maryland 1·03 (0·99 to 1·07), and B/Phuket 1·23 (1·16 to 1·29); and SCR difference was A/Brisbane 5·0 (95% CI 1·9 to 8·1), A/Kansas 7·3 (3·6 to 11·1), B/Maryland 0·5 (-1·9 to 2·9), and B/Phuket 8·5 (5·0 to 11·9). 659 (49·4%) of 1333 of participants in the qNIV group and 551 (41·8%) of 1319 participants in the IIV4 group had at least one treatment-emergent adverse event. More solicited adverse events were reported by participants in the qNIV group (551 [41·3%] of 1333) than in the IIV4 group (420 [31·8%] of 1319), and were comprised primarily of mild to moderate transient injection site pain (341 [25·6%] in the qNIV group vs 212 [16·1%] in the IIV4 group). INTERPRETATION: qNIV was well tolerated and produced qualitatively and quantitatively enhanced humoral and cellular immune response in older adults compared with IIV4. qNIV might enhance the effectiveness of seasonal influenza vaccination, and future studies to show clinical efficacy are planned. FUNDING: Novavax.


Subject(s)
Adjuvants, Vaccine/administration & dosage , Antibodies, Viral/blood , Immunogenicity, Vaccine , Influenza Vaccines/immunology , Influenza Vaccines/standards , Influenza, Human/prevention & control , Nanoparticles/administration & dosage , Saponins/administration & dosage , Aged , Female , Hemagglutination Inhibition Tests , Humans , Influenza Vaccines/administration & dosage , Influenza, Human/immunology , Male , Nanoparticles/chemistry , Saponins/chemistry , Seasons
17.
Oncol Rep ; 47(1)2022 Jan.
Article in English | MEDLINE | ID: mdl-34779494

ABSTRACT

The incidence of cancer, which is the second leading cause of mortality globally, continues to increase, although continued efforts are being made to identify effective treatments with fewer side­effects. Previous studies have reported that chronic microinflammation, which occurs in diseases, including diabetes, along with weakened immune systems, may ultimately lead to cancer development. Chemotherapy, radiotherapy and surgery are the mainstream approaches to treatment; however, they all lead to immune system weakness, which in turn increases the metastatic spread. The aim of the present review was to provide evidence of a biological response modifier ß­glucan [ß­glucan vaccine adjuvant approach to treating cancer via immune enhancement (B­VACCIEN)] and its beneficial effects, including vaccine­adjuvant potential, balancing metabolic parameters (including blood glucose and lipid levels), increasing peripheral blood cell cytotoxicity against cancer and alleviating chemotherapy side effects in animal models. This suggests its value as a potential strategy to provide long­term prophylaxis in immunocompromised individuals or genetically prone to cancer.


Subject(s)
Adjuvants, Vaccine/administration & dosage , Immunocompromised Host/immunology , Neoplasms/immunology , Neoplasms/prevention & control , beta-Glucans/immunology , Animals , Humans
18.
Lancet ; 399(10319): 36-49, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34883053

ABSTRACT

BACKGROUND: Given the importance of flexible use of different COVID-19 vaccines within the same schedule to facilitate rapid deployment, we studied mixed priming schedules incorporating an adenoviral-vectored vaccine (ChAdOx1 nCoV-19 [ChAd], AstraZeneca), two mRNA vaccines (BNT162b2 [BNT], Pfizer-BioNTech, and mRNA-1273 [m1273], Moderna) and a nanoparticle vaccine containing SARS-CoV-2 spike glycoprotein and Matrix-M adjuvant (NVX-CoV2373 [NVX], Novavax). METHODS: Com-COV2 is a single-blind, randomised, non-inferiority trial in which adults aged 50 years and older, previously immunised with a single dose of ChAd or BNT in the community, were randomly assigned (in random blocks of three and six) within these cohorts in a 1:1:1 ratio to receive a second dose intramuscularly (8-12 weeks after the first dose) with the homologous vaccine, m1273, or NVX. The primary endpoint was the geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentrations measured by ELISA in heterologous versus homologous schedules at 28 days after the second dose, with a non-inferiority criterion of the GMR above 0·63 for the one-sided 98·75% CI. The primary analysis was on the per-protocol population, who were seronegative at baseline. Safety analyses were done for all participants who received a dose of study vaccine. The trial is registered with ISRCTN, number 27841311. FINDINGS: Between April 19 and May 14, 2021, 1072 participants were enrolled at a median of 9·4 weeks after receipt of a single dose of ChAd (n=540, 47% female) or BNT (n=532, 40% female). In ChAd-primed participants, geometric mean concentration (GMC) 28 days after a boost of SARS-CoV-2 anti-spike IgG in recipients of ChAd/m1273 (20 114 ELISA laboratory units [ELU]/mL [95% CI 18 160 to 22 279]) and ChAd/NVX (5597 ELU/mL [4756 to 6586]) was non-inferior to that of ChAd/ChAd recipients (1971 ELU/mL [1718 to 2262]) with a GMR of 10·2 (one-sided 98·75% CI 8·4 to ∞) for ChAd/m1273 and 2·8 (2·2 to ∞) for ChAd/NVX, compared with ChAd/ChAd. In BNT-primed participants, non-inferiority was shown for BNT/m1273 (GMC 22 978 ELU/mL [95% CI 20 597 to 25 636]) but not for BNT/NVX (8874 ELU/mL [7391 to 10 654]), compared with BNT/BNT (16 929 ELU/mL [15 025 to 19 075]) with a GMR of 1·3 (one-sided 98·75% CI 1·1 to ∞) for BNT/m1273 and 0·5 (0·4 to ∞) for BNT/NVX, compared with BNT/BNT; however, NVX still induced an 18-fold rise in GMC 28 days after vaccination. There were 15 serious adverse events, none considered related to immunisation. INTERPRETATION: Heterologous second dosing with m1273, but not NVX, increased transient systemic reactogenicity compared with homologous schedules. Multiple vaccines are appropriate to complete primary immunisation following priming with BNT or ChAd, facilitating rapid vaccine deployment globally and supporting recognition of such schedules for vaccine certification. FUNDING: UK Vaccine Task Force, Coalition for Epidemic Preparedness Innovations (CEPI), and National Institute for Health Research. NVX vaccine was supplied for use in the trial by Novavax.


Subject(s)
Adjuvants, Vaccine/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Immunization, Secondary/adverse effects , Immunization, Secondary/methods , Immunogenicity, Vaccine , mRNA Vaccines/administration & dosage , 2019-nCoV Vaccine mRNA-1273/administration & dosage , 2019-nCoV Vaccine mRNA-1273/immunology , Aged , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , ChAdOx1 nCoV-19/administration & dosage , ChAdOx1 nCoV-19/immunology , Female , Humans , Male , Middle Aged , Single-Blind Method , United Kingdom , Vaccination/adverse effects , Vaccination/methods , mRNA Vaccines/immunology
19.
Front Immunol ; 12: 769088, 2021.
Article in English | MEDLINE | ID: mdl-34868027

ABSTRACT

Vaccine adjuvants from natural resources have been utilized for enhancing vaccine efficacy against infectious diseases. This study examined the potential use of catechins, polyphenolic materials derived from green tea, as adjuvants for subunit and inactivated vaccines. Previously, catechins have been documented to have irreversible virucidal function, with the possible applicability in the inactivated viral vaccine platform. In a mouse model, the coadministration of epigallocatechin-3-gallate (EGCG) with influenza hemagglutinin (HA) antigens induced high levels of neutralizing antibodies, comparable to that induced by alum, providing complete protection against the lethal challenge. Adjuvant effects were observed for all types of HA antigens, including recombinant full-length HA and HA1 globular domain, and egg-derived inactivated split influenza vaccines. The combination of alum and EGCG further increased neutralizing (NT) antibody titers with the corresponding hemagglutination inhibition (HI) titers, demonstrating a dose-sparing effect. Remarkably, EGCG induced immunoglobulin isotype switching from IgG1 to IgG2a (approximately >64-700 fold increase), exerting a more balanced TH1/TH2 response compared to alum. The upregulation of IgG2a correlated with significant enhancement of antibody-dependent cellular cytotoxicity (ADCC) function (approximately 14 fold increase), providing a potent effector-mediated protection in addition to NT and HI. As the first report on a novel class of vaccine adjuvants with built-in virucidal activities, the results of this study will help improve the efficacy and safety of vaccines for pandemic preparedness.


Subject(s)
Catechin/analogs & derivatives , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Vaccine/administration & dosage , Alum Compounds/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Catechin/administration & dosage , Catechin/immunology , Dogs , Drug Synergism , Female , Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/physiology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Mice, Inbred BALB C , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology
20.
Drug Deliv ; 28(1): 2594-2602, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34866536

ABSTRACT

It is urgently needed to develop novel adjuvants for improving the safety and efficacy of vaccines. Metal-organic frameworks (MOFs), with high surface area, play an important role in drug delivery. With perfect biocompatibility and green preparation process, the γ-cyclodextrin metal-organic framework (γ-CD-MOF) fabricated with cyclodextrin and potassium suitable for antigen delivery. In this study, we modified γ-CD-MOF with span-85 to fabricate the SP-γ-CD-MOF as animal vaccine adjuvants. The ovalbumin (OVA) as the model antigen was encapsulated into particles to investigate the immune response. SP-γ-CD-MOF displayed excellent biocompatibility in vitro and in vivo. After immunization, SP-γ-CD-MOF loaded with OVA could induce high antigen-specific IgG titers and cytokine secretion. Meanwhile, SP-γ-CD-MOF also significantly improved the proliferation of spleen cells and activated and matured the bone marrow dendritic cells (BMDCs). The study showed the potential of SP-γ-CD-MOF in vaccine adjuvants and provided a novel idea for the development of vaccine adjuvants.


Subject(s)
Adjuvants, Vaccine/pharmacology , Metal-Organic Frameworks/chemistry , Ovalbumin/pharmacology , gamma-Cyclodextrins/chemistry , Adjuvants, Vaccine/administration & dosage , Animals , Animals, Outbred Strains , Bone Marrow Cells/drug effects , Cell Survival/drug effects , Chemistry, Pharmaceutical , Cytokines/drug effects , Female , Hemolysis/drug effects , Immunoglobulin G/drug effects , Mice , Ovalbumin/administration & dosage , RAW 264.7 Cells , Random Allocation , Spleen/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...