Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.054
Filter
1.
Orphanet J Rare Dis ; 19(1): 270, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020416

ABSTRACT

BACKGROUND: Adrenomyeloneuropathy (AMN) is a neurodegenerative disease phenotype of X-linked adrenoleukodystrophy (ALD), resulting in progressive myeloneuropathy causing spastic paraparesis, sensory ataxia, and bowel/bladder symptoms. We conducted a retrospective cohort study using two large administrative databases to characterize mortality and the burden of illness in adult men with AMN in the US. RESULTS: Healthcare resource use was assessed using a national commercial insurance claims database (2006-2021). Males with AMN ages 18-64 years and no evidence of cerebral ALD or other peroxisomal disorders were included and 1:4 matched on demographic characteristics to individuals without AMN. All study participants were followed for as long as observable. Patients with AMN were also identified in the Medicare Limited Dataset (2017-2022); mortality and age at death were compared with all Medicare enrollees. We identified 303 commercially insured men with AMN. Compared with non-AMN, individuals with AMN had significantly more inpatient hospital admissions (0.44 vs. 0.04 admissions/patient/year), outpatient clinic (8.88 vs. 4.1 visits/patient/year), outpatient hospital (5.33 vs. 0.99 visits/patient/year), and home healthcare visits (4.66 vs. 0.2 visits/patient/year), durable medical equipment claims (0.7 vs. 0.1 claims/patient/year), and prescription medication fills (18.1 vs. 5.4 fills/patient/year) (all p < 0.001). Average length-of-stay per hospitalization was also longer in AMN (8.88 vs. 4.3 days; p < 0.001). Rates of comorbidities were significantly more common in AMN compared to controls, including peripheral vascular disease (4.6% vs. 0.99%), chronic pulmonary disease (6.3% vs. 2.6%), and liver disease (5.6% vs. 0.88%), all p < 0.001. Among individuals age < 65 with Medicare disability coverage, mortality rates were 5.3x higher for adult AMN males (39.3% vs. 7.4%) and the age at death significantly younger (47.0 ± 11.3 vs. 56.5 ± 7.8 years), both p < 0.001. Among Medicare beneficiaries ages ≥ 65 mortality rates were 2.2x higher for men with AMN vs. those without AMN (48.6% vs. 22.4%), p < 0.001. CONCLUSION: AMN imposes a substantial and underrecognized health burden on men, with higher healthcare utilization, greater medical comorbidity, higher mortality rates, and younger age at death.


Subject(s)
Adrenoleukodystrophy , Cost of Illness , Humans , Male , Adrenoleukodystrophy/mortality , Retrospective Studies , Adult , Middle Aged , Young Adult , Adolescent , Cohort Studies
2.
Ital J Pediatr ; 50(1): 124, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956688

ABSTRACT

BACKGROUND: Addison's disease and X-linked adrenoleukodystrophy (X-ALD) (Addison's-only) are two diseases that need to be identified. Addison's disease is easy to diagnose clinically when only skin and mucosal pigmentation symptoms are present. However, X-ALD (Addison's-only) caused by ABCD1 gene variation is ignored, thus losing the opportunity for early treatment. This study described two patients with initial clinical diagnosis of Addison's disease. However, they rapidly developed neurological symptoms triggered by infection. After further genetic testing, the two patients were diagnosed with X-ALD. METHODS: We retrospectively analyzed X-ALD patients admitted to our hospital. Clinical features, laboratory test results, and imaging data were collected. Whole-exome sequencing was used in molecular genetics. RESULTS: Two patients were included in this study. Both of them had significantly increased adrenocorticotropic hormone level and skin and mucosal pigmentation. They were initially clinically diagnosed with Addison's disease and received hydrocortisone treatment. However, both patients developed progressive neurological symptoms following infectious disease. Further brain magnetic resonance imaging was completed, and the results suggested demyelinating lesions. Molecular genetics suggested variations in the ABCD1 gene, which were c.109_110insGCCA (p.C39Pfs*156), c.1394-2 A > C (NM_000033), respectively. Therefore, the two patients were finally diagnosed with X-ALD, whose classification had progressed from X-ALD (Addison's-only) to childhood cerebral adrenoleukodystrophy (CCALD). Moreover, the infection exacerbates the demyelinating lesions and accelerates the onset of neurological symptoms. Neither the two variation sites in this study had been previously reported, which extends the ABCD1 variation spectrum. CONCLUSIONS: Patients with only symptoms of adrenal insufficiency cannot be simply clinically diagnosed with Addison's disease. Being alert to the possibility of ABCD1 variation is necessary, and complete genetic testing is needed as soon as possible to identify X-ALD (Addison's-only) early to achieve regular monitoring of the disease and receive treatment early. In addition, infection, as a hit factor, may aggravate demyelinating lesions of CCALD. Thus, patients should be protected from external environmental factors to delay the progression of cerebral adrenoleukodystrophy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1 , Adrenoleukodystrophy , Humans , Adrenoleukodystrophy/diagnosis , Adrenoleukodystrophy/genetics , Male , Retrospective Studies , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Child , Diagnostic Errors , Magnetic Resonance Imaging , Addison Disease/diagnosis , Addison Disease/genetics
3.
Mol Genet Genomic Med ; 12(7): e2499, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39051462

ABSTRACT

BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder attributed to ABCD1 mutations. Case reports with predominant brainstem involvement are rare. CASE PRESENTATION: In this study, we reported a plateau male worker of X-ALD characterized by progressive weakness accompanied by gait instability, mild nystagmus, and constipation. After 2 years of onset, a brain Magnetic Resonance Image (MRI) scan showed no abnormality but genetic analysis revealed a heterozygous mutation (c.1534G>A) in the ABCD1 gene. After 7 years of onset, although the patient was given aggressive dietary and symptomatic treatment in the course of the disease, a brain MRI scan showed predominantly brainstem damage, but serum concentrations of very long-chain fatty acids were normal, and he had been bedridden for almost 2 years with severe bladder dysfunction, forcing him to undergo cystostomy. The patient was discharged with improved urinary retention and renal function. CONCLUSIONS: We reported an X-ALD patient with a novel ABCD1 variation characterized by brainstem damage and retrospectively summarized the clinical manifestation, MRI features, and genetic features of X-ALD patients with brainstem damage.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1 , Adrenoleukodystrophy , Brain Stem , Mutation, Missense , Humans , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/pathology , Adrenoleukodystrophy/diagnosis , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Male , Brain Stem/pathology , Brain Stem/diagnostic imaging , Adult , Magnetic Resonance Imaging
4.
Brain ; 147(6): 2069-2084, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38763511

ABSTRACT

The peroxisomal disease adrenoleukodystrophy (X-ALD) is caused by loss of the transporter of very-long-chain fatty acids (VLCFAs), ABCD1. An excess of VLCFAs disrupts essential homeostatic functions crucial for axonal maintenance, including redox metabolism, glycolysis and mitochondrial respiration. As mitochondrial function and morphology are intertwined, we set out to investigate the role of mitochondrial dynamics in X-ALD models. Using quantitative 3D transmission electron microscopy, we revealed mitochondrial fragmentation in corticospinal axons in Abcd1- mice. In patient fibroblasts, an excess of VLCFAs triggers mitochondrial fragmentation through the redox-dependent phosphorylation of DRP1 (DRP1S616). The blockade of DRP1-driven fission by the peptide P110 effectively preserved mitochondrial morphology. Furthermore, mRNA inhibition of DRP1 not only prevented mitochondrial fragmentation but also protected axonal health in a Caenorhabditis elegans model of X-ALD, underscoring DRP1 as a potential therapeutic target. Elevated levels of circulating cell-free mtDNA in patients' CSF align this leukodystrophy with primary mitochondrial disorders. Our findings underscore the intricate interplay between peroxisomal dysfunction, mitochondrial dynamics and axonal integrity in X-ALD, shedding light on potential avenues for therapeutic intervention.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1 , Adrenoleukodystrophy , Dynamins , Mitochondrial Dynamics , Adrenoleukodystrophy/metabolism , Adrenoleukodystrophy/pathology , Adrenoleukodystrophy/genetics , Animals , Mitochondrial Dynamics/physiology , Humans , Mice , Dynamins/metabolism , Dynamins/genetics , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Caenorhabditis elegans , Mitochondria/metabolism , Mitochondria/pathology , Axons/pathology , Axons/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Male , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Disease Models, Animal , Pyramidal Tracts/pathology , Pyramidal Tracts/metabolism , Peptide Fragments , GTP Phosphohydrolases
5.
J Lipid Res ; 65(6): 100567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795862

ABSTRACT

Lipids play pivotal roles in an extensive range of metabolic and physiological processes. In recent years, the convergence of trapped ion mobility spectrometry and MS has enabled 4D-lipidomics, a highly promising technology for comprehensive lipid analysis. 4D-lipidomics assesses lipid annotations across four distinct dimensions-retention time, collisional cross section, m/z (mass-to-charge ratio), and MS/MS spectra-providing a heightened level of confidence in lipid annotation. These advantages prove particularly valuable when investigating complex disorders involving lipid metabolism, such as adrenoleukodystrophy (ALD). ALD is characterized by the accumulation of very-long-chain fatty acids (VLCFAs) due to pathogenic variants in the ABCD1 gene. A comprehensive 4D-lipidomics strategy of ALD fibroblasts demonstrated significant elevations of various lipids from multiple classes. This indicates that the changes observed in ALD are not confined to a single lipid class and likely impacts a broad spectrum of lipid-mediated physiological processes. Our findings highlight the incorporation of mainly saturated and monounsaturated VLCFA variants into a range of lipid classes, encompassing phosphatidylcholines, triacylglycerols, and cholesterol esters. These include ultra-long-chain fatty acids with a length of up to thirty carbon atoms. Lipid species containing C26:0 and C26:1 were the most frequently detected VLCFA lipids in our study. Furthermore, we report a panel of 121 new candidate biomarkers in fibroblasts, exhibiting significant differentiation between controls and individuals with ALD. In summary, this study demonstrates the capabilities of a 4D-lipid profiling workflow in unraveling novel insights into the intricate lipid modifications associated with metabolic disorders like ALD.


Subject(s)
Adrenoleukodystrophy , Ion Mobility Spectrometry , Lipidomics , Adrenoleukodystrophy/metabolism , Adrenoleukodystrophy/genetics , Humans , Lipidomics/methods , Lipids/analysis , Lipid Metabolism
6.
Mol Ther ; 32(7): 2190-2206, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38796705

ABSTRACT

X-linked adrenoleukodystrophy (ALD), an inherited neurometabolic disorder caused by mutations in ABCD1, which encodes the peroxisomal ABC transporter, mainly affects the brain, spinal cord, adrenal glands, and testes. In ALD patients, very-long-chain fatty acids (VLCFAs) fail to enter the peroxisome and undergo subsequent ß-oxidation, resulting in their accumulation in the body. It has not been tested whether in vivo base editing or prime editing can be harnessed to ameliorate ALD. We developed a humanized mouse model of ALD by inserting a human cDNA containing the pathogenic variant into the mouse Abcd1 locus. The humanized ALD model showed increased levels of VLCFAs. To correct the mutation, we tested both base editing and prime editing and found that base editing using ABE8e(V106W) could correct the mutation in patient-derived fibroblasts at an efficiency of 7.4%. Adeno-associated virus (AAV)-mediated systemic delivery of NG-ABE8e(V106W) enabled robust correction of the pathogenic variant in the mouse brain (correction efficiency: ∼5.5%), spinal cord (∼5.1%), and adrenal gland (∼2%), leading to a significant reduction in the plasma levels of C26:0/C22:0. This established humanized mouse model and the successful correction of the pathogenic variant using a base editor serve as a significant step toward treating human ALD disease.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1 , Adrenoleukodystrophy , Dependovirus , Disease Models, Animal , Gene Editing , Genetic Therapy , Animals , Adrenoleukodystrophy/therapy , Adrenoleukodystrophy/genetics , Mice , Humans , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Adenine , Mutation , Fibroblasts/metabolism , Fatty Acids/metabolism , Brain/metabolism , Brain/pathology
7.
Medicine (Baltimore) ; 103(16): e37874, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640304

ABSTRACT

RATIONALE: X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene leading to very long chain fatty acid (VLCFA) accumulation. The disease demonstrates a spectrum of phenotypes including adrenomyeloneuropathy (AMN). We aimed to identify the genetic basis of disease in a patient presenting with AMN features in order to confirm the diagnosis, expand genetic knowledge of ABCD1 mutations, and elucidate potential genotype-phenotype associations to inform management. PATIENT CONCERNS: A 29-year-old male presented with a 4-year history of progressive spastic paraplegia, weakness of lower limbs, fecal incontinence, sexual dysfunction, hyperreflexia, and positive Babinski and Chaddock signs. DIAGNOSES: Neuroimaging revealed brain white matter changes and spinal cord thinning. Significantly elevated levels of hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) suggested very long chain fatty acids (VLCFA) metabolism disruption. Genetic testing identified a novel hemizygous ABCD1 mutation c.249dupC (p.F83fs). These findings confirmed a diagnosis of X-linked ALD with an AMN phenotype. INTERVENTIONS: The patient received dietary counseling to limit VLCFA intake. Monitoring for adrenal insufficiency and consideration of Lorenzo's oil were advised. Genetic counseling and testing were offered to at-risk relatives. OUTCOMES: At present, the patient continues to experience progressive paraplegia. Adrenal function remains normal thus far without steroid replacement. Family members have undergone predictive testing. LESSONS: This case expands the known mutation spectrum of ABCD1-linked X-ALD, providing insight into potential genotype-phenotype correlations. A thoughtful diagnostic approach integrating clinical, biochemical and genetic data facilitated diagnosis. Findings enabled genetic counseling for at-risk relatives regarding this X-linked disorder.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1 , Adrenal Insufficiency , Adrenoleukodystrophy , Adult , Humans , Male , Adrenoleukodystrophy/diagnosis , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/metabolism , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Fatty Acids, Nonesterified/metabolism , Mutation , Paraplegia/genetics , Phenotype
8.
Pediatr Transplant ; 28(3): e14735, 2024 May.
Article in English | MEDLINE | ID: mdl-38602169

ABSTRACT

OBJECTIVE: We investigated the safety and efficacy of haploidentical stem cell transplantation (SCT) in pediatric patients with X-linked adrenoleukodystrophy (ALD). METHODS: A retrospective analysis of transplantation data from 29 cases of ALD, treated between December 2014 and April 2022, was conducted. Neurologic function scores (NFS) were assessed. The conditioning regimen was busulfan 9.6 mg/kg, cyclophosphamide 200 mg/kg, and fludarabine 90 mg/m2 (BFC). Graft-versus-host disease prophylaxis consisted of anti-human thymocyte globulin, cyclosporine A, mycophenolate mofetil, and short course of methotrexate. RESULTS: Among the 29 cases, 14 cases (NFS = 0) were asymptomatic, and 15 (NFS ≥ 1) were symptomatic. The median age at SCT was 8 years (range: 4-16 years); the median follow-up time was 1058 days (range: 398-3092 days); 28 cases were father donors and 1 case was a grandfather donor. Hematopoietic reconstitution was successful in all patients, and all of them achieved complete donor chimerism at the time of engraftment. The leading cause of death was still primary disease progression (n = 4). Survival free of major functional disabilities was 100% in asymptomatic patients versus 66.67% in the symptomatic group (p = .018). CONCLUSION: BFC regimen used in haploidentical SCT was administered safely without major transplant-related complications even in symptomatic patients, and neurological symptoms were stabilized after SCT.


Subject(s)
Adrenoleukodystrophy , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Vidarabine/analogs & derivatives , Humans , Child , Child, Preschool , Adolescent , Busulfan/therapeutic use , Retrospective Studies , Graft vs Host Disease/etiology , Transplantation Conditioning/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Cyclophosphamide/therapeutic use , Antilymphocyte Serum/therapeutic use , Adrenoleukodystrophy/therapy , Adrenoleukodystrophy/complications
9.
JAMA Neurol ; 81(5): 549-550, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38436991

ABSTRACT

This case report studies a 12-year-old boy with a family history of X-linked adrenal leukodystrophy and his 8-year-old younger brother.


Subject(s)
Adrenoleukodystrophy , Humans , Male , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/diagnosis , Heterozygote , Karyotype , ATP Binding Cassette Transporter, Subfamily D, Member 1
11.
JBI Evid Synth ; 22(7): 1262-1302, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38533650

ABSTRACT

OBJECTIVE: This review aimed to synthesize the experiences of patients with metachromatic leukodystrophy, adrenoleukodystrophy, or Krabbe disease and the experiences of their families. INTRODUCTION: Leukodystrophies are metabolic diseases caused by genetic mutations. There are multiple forms of the disease, varying in age of onset and symptoms. The progression of leukodystrophies worsens central nervous system symptoms and significantly affects the lives of patients and their families. INCLUSION CRITERIA: Qualitative studies on the experiences of patients with leukodystrophies and their family members were included. These experiences included treatments such as enzyme replacement therapy and hematopoietic stem cell transplantation; effects of tracheostomy and gastrostomy; burdens on the family, coordinating care within the health care system, and family planning due to genetic disorders. This review considered studies in any setting. METHODS: MEDLINE (Ovid), CINAHL Plus (EBSCOhost), APA PsycINFO (EBSCOhost), Scopus, and MedNar databases were searched on November 18, 2022. Study selection, critical appraisal, data extraction, and data synthesis were conducted in accordance with the JBI methodology for systematic reviews of qualitative evidence, and synthesized findings were evaluated according to the ConQual approach. RESULTS: Eleven studies were eligible for synthesis, and 45 findings were extracted corresponding with participants' voices. Of these findings, 40 were unequivocal and 5 were credible. The diseases in the included studies were metachromatic leukodystrophy and adrenoleukodystrophy; no studies were identified for patients with Krabbe disease and their families. These findings were grouped into 11 categories and integrated into 3 synthesized findings, including i) providing care by family members and health care providers as physical symptoms progress, which relates to the effects of the characteristics of progressive leukodystrophies; ii) building medical teamwork to provide appropriate support services, comprising categories related to the challenges experienced with the health care system for patients with leukodystrophy and their families; and iii) coordinating family functions to accept and cope with the disease, which included categories related to family psychological difficulties and role divisions within the family. According to the ConQual criteria, the second synthesized finding had a low confidence level, and the first and third synthesized findings had a very low confidence level. CONCLUSIONS: The synthesized findings of this review provide evidence on the experiences of patients with metachromatic leukodystrophy or adrenoleukodystrophy and their families. These findings indicate that there are challenges in managing a patient's physical condition and coordinating the health care system and family functions. REVIEW REGISTRATION: PROSPERO CRD42022318805. SUPPLEMENTAL DIGITAL CONTENT: A Japanese-language version of the abstract of this review is available [ http://links.lww.com/SRX/A49 ].


Subject(s)
Adrenoleukodystrophy , Family , Leukodystrophy, Globoid Cell , Leukodystrophy, Metachromatic , Humans , Leukodystrophy, Metachromatic/genetics , Leukodystrophy, Metachromatic/psychology , Leukodystrophy, Metachromatic/therapy , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/therapy , Adrenoleukodystrophy/psychology , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/therapy , Leukodystrophy, Globoid Cell/psychology , Family/psychology , Qualitative Research , Hematopoietic Stem Cell Transplantation/psychology , Enzyme Replacement Therapy
13.
Orphanet J Rare Dis ; 19(1): 138, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549180

ABSTRACT

Although the pathology of X-linked adrenoleukodystrophy (ALD) is well described, it represents the end-stage of neurodegeneration. It is still unclear what cell types are initially involved and what their role is in the disease process. Revisiting the seminal post-mortem studies from the 1970s can generate new hypotheses on pathophysiology. This review describes (histo)pathological changes of the brain and spinal cord in ALD. It aims at integrating older works with current insights and at providing an overarching theory on the pathophysiology of ALD. The data point to an important role for axons and glia in the pathology of both the myelopathy and leukodystrophy of ALD. In-depth pathological analyses with new techniques could help further unravel the sequence of events behind the pathology of ALD.


Subject(s)
Adrenoleukodystrophy , Spinal Cord Diseases , Humans , Adrenoleukodystrophy/pathology , Axons/metabolism , Axons/pathology
14.
Orphanet J Rare Dis ; 19(1): 127, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504253

ABSTRACT

BACKGROUND: Adrenoleukodystrophy (ALD) is a multifaceted, X-linked, neurodegenerative disorder that comprises several clinical phenotypes. ALD affects patients through a variety of physical, emotional, social, and other disease-specific factors that collectively contribute to disease burden. To facilitate clinical care and research, it is important to identify which symptoms are most common and relevant to individuals with any subtype of ALD. METHODS: We conducted semi-structured qualitative interviews and an international cross-sectional study to determine the most prevalent and important symptoms of ALD. Our study included adult participants with a diagnosis of ALD who were recruited from national and international patient registries. Responses were categorized by age, sex, disease phenotype, functional status, and other demographic and clinical features. RESULTS: Seventeen individuals with ALD participated in qualitative interviews, providing 1709 direct quotes regarding their symptomatic burden. One hundred and nine individuals participated in the cross-sectional survey study, which inquired about 182 unique symptoms representing 24 distinct symptomatic themes. The symptomatic themes with the highest prevalence in the overall ALD sample cohort were problems with balance (90.9%), limitations with mobility or walking (87.3%), fatigue (86.4%), and leg weakness (86.4%). The symptomatic themes with the highest impact scores (on a 0-4 scale with 4 being the most severe) were trouble getting around (2.35), leg weakness (2.25), and problems with balance (2.21). A higher prevalence of symptomatic themes was associated with functional disability, employment disruption, and speech impairment. CONCLUSIONS: There are many patient-relevant symptoms and themes that contribute to disease burden in individuals with ALD. These symptoms, identified by those having ALD, present key targets for further research and therapeutic development.


Subject(s)
Adrenoleukodystrophy , Adult , Humans , Cross-Sectional Studies , Adrenoleukodystrophy/diagnosis , Phenotype , Surveys and Questionnaires , Patient Reported Outcome Measures
15.
J Lipid Res ; 65(3): 100516, 2024 03.
Article in English | MEDLINE | ID: mdl-38320654

ABSTRACT

The gold-standard diagnostic test for peroxisomal disorders (PDs) is plasma concentration analysis of very long-chain fatty acids (VLCFAs). However, this method's time-consuming nature and limitations in cases which present normal VLCFA levels necessitates alternative approaches. The analysis of C26:0-lysophosphatydylcholine (C26:0-LPC) in dried blood spot samples by tandem-mass spectrometry (MS/MS) has successfully been implemented in certain newborn screening programs to diagnose X-linked adrenoleukodystrophy (ALD). However, the diagnostic potential of very long-chain LPCs concentrations in plasma remains poorly understood. This study sought to evaluate the diagnostic performance of C26:0-LPC and other very long-chain LPCs, comparing them to VLCFA analysis in plasma. The study, which included 330 individuals affected by a peroxisomal ß-oxidation deficiency and 407 control individuals, revealed that C26:0- and C24:0-LPC concentrations demonstrated the highest diagnostic accuracy (98.8% and 98.4%, respectively), outperforming VLCFA when C26:0/C22:0 and C24:0/C22:0 ratios were combined (98.1%). Combining C24:0- and C26:0-LPC gave the highest sensitivity (99.7%), with ALD females exhibiting notably higher sensitivity compared with the VLCFA ratio combination (98.7% vs. 93.5%, respectively). In contrast, C22:0-LPC exhibited suboptimal performance, primarily due to its low sensitivity (75%), but we identified a potential use to help distinguish between ALD and Zellweger spectrum disorders. In summary, MS/MS analysis of plasma C24:0- and C26:0-LPC concentrations represents a rapid and straightforward approach to diagnose PDs, demonstrating superior diagnostic accuracy, particularly in ALD females, compared with conventional VLCFA biomarkers. We strongly recommend integrating very-long chain LPC plasma analysis in the diagnostic evaluation of individuals suspected of having a PD.


Subject(s)
Adrenoleukodystrophy , Lysophosphatidylcholines , Infant, Newborn , Female , Humans , Tandem Mass Spectrometry , Adrenoleukodystrophy/diagnosis , Neonatal Screening/methods , Biomarkers , Fatty Acids, Nonesterified , Fatty Acids
16.
Med Sci (Basel) ; 12(1)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38390857

ABSTRACT

Leukodystrophies, a group of rare demyelinating disorders, mainly affect the CNS. Clinical presentation of different types of leukodystrophies can be nonspecific, and thus, imaging techniques like MRI can be used for a more definitive diagnosis. These diseases are characterized as cerebral lesions with characteristic demyelinating patterns which can be used as differentiating tools. In this review, we talk about these MRI study findings for each leukodystrophy, associated genetics, blood work that can help in differentiation, emerging diagnostics, and a follow-up imaging strategy. The leukodystrophies discussed in this paper include X-linked adrenoleukodystrophy, metachromatic leukodystrophy, Krabbe's disease, Pelizaeus-Merzbacher disease, Alexander's disease, Canavan disease, and Aicardi-Goutières Syndrome.


Subject(s)
Adrenoleukodystrophy , Leukodystrophy, Globoid Cell , Leukodystrophy, Metachromatic , Neurodegenerative Diseases , Pelizaeus-Merzbacher Disease , Humans , Leukodystrophy, Metachromatic/diagnostic imaging , Leukodystrophy, Metachromatic/pathology , Leukodystrophy, Globoid Cell/diagnostic imaging , Leukodystrophy, Globoid Cell/pathology , Adrenoleukodystrophy/diagnostic imaging , Adrenoleukodystrophy/genetics
17.
Pediatr Neurol ; 152: 87-92, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237318

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) can not only infect the respiratory system but also affect the nervous system through the release of inflammatory factors. Our study aimed to investigate the effect of COVID-19 infection on cerebral adrenoleukodystrophy (ALD). METHODS: Changes in the neurological symptoms of cerebral ALD after infection with COVID-19 from January 2022 to February 2023 were retrospectively analyzed. The primary assessment indicator was the Neurologic Function Scale (NFS) score. RESULTS: A total of 17 male patients with cerebral ALD were enrolled, with a median age of 101 months (80 to 151 months). Among them, 11 (11 of 17, 64.7%) developed an exacerbation of neurological symptoms after COVID-19 infection. Two patients with NFS = 0 started presenting with neurological symptoms after infection. Fifteen patients were in the advanced stage (NFS >1 and/or Loes score >9), of which nine did not progress to major functional disabilities (MFDs). Seven of the nine patients (77.8%) experienced an increase in NFS scores, ranging from 1 to 9 points, within two weeks of COVID-19 infection, with four of them experiencing MFDs. For the other six patients who had progressed to MFDs, there was not much room for further degeneration, so the NFS score did not increase after COVID-19 infection. No deaths related to COVID-19 infection occurred. CONCLUSIONS: COVID-19 infection may aggravate neurological symptoms of cerebral ALD, particularly among patients who have not yet progressed to MFDs. Therefore, COVID-19 may accelerate the course of cerebral ALD, so protecting patients from infection is essential for maintaining the stability of the disease.


Subject(s)
Adrenoleukodystrophy , COVID-19 , Hematopoietic Stem Cell Transplantation , Humans , Male , Child , Adrenoleukodystrophy/complications , Adrenoleukodystrophy/diagnosis , Retrospective Studies , COVID-19/complications , Brain
18.
Stem Cell Res ; 74: 103298, 2024 02.
Article in English | MEDLINE | ID: mdl-38176367

ABSTRACT

X-linked adrenoleukodystrophy is a metabolic disease associated with mutations in the ABCD1 gene (ATP-binding cassette subfamily D). Numerous pathogenic variants in this gene lead to a wide spectrum of symptoms, including adrenal insufficiency, slowly progressive dying-back axonopathy and demyelination of the central nervous system in specific phenotypes. The induced pluripotent stem cell line was derived from a patient diagnosed with x-ALD. Due to the complexity of developing working therapy based on animal models, it's crucial to obtain the cell model directly from patients. Peripheral blood mononuclear cells (PBMCs) isolated from the donor's whole blood were reprogrammed into induced pluripotent stem cells and then characterized. Expression of pluripotency markers SSEA4, TRA-1-60, SOX2, OCT4 is proven quantitatively and qualitatively, iPSCs demonstrate the ability to differentiate into three germ layers and the absence of Sendai virus expression factors.


Subject(s)
Adrenoleukodystrophy , Animals , Humans , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/metabolism , Leukocytes, Mononuclear/metabolism , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily D, Member 1/metabolism , Mutation , Phenotype
19.
Dev Growth Differ ; 66(1): 21-34, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38239149

ABSTRACT

Inherited leukodystrophies are genetic disorders characterized by abnormal white matter in the central nervous system. Although individually rare, there are more than 400 distinct types of leukodystrophies with a cumulative incidence of 1 in 4500 live births. The pathophysiology of most leukodystrophies is poorly understood, there are treatments for only a few, and there is significant morbidity and mortality, suggesting a critical need for improvements in this field. A variety of animal, cell, and induced pluripotent stem cell-derived models have been developed for leukodystrophies, but with significant limitations in all models. Many leukodystrophies lack animal models, and extant models often show no or mixed recapitulation of key phenotypes. Zebrafish (Danio rerio) have become increasingly used as disease models for studying leukodystrophies due to their early onset of disease phenotypes and conservation of molecular and neurobiological mechanisms. Here, we focus on reviewing new zebrafish disease models for leukodystrophy or models with recent progress. This includes discussion of leukodystrophy with vanishing white matter disease, X-linked adrenoleukodystrophy, Zellweger spectrum disorders and peroxisomal disorders, PSAP deficiency, metachromatic leukodystrophy, Krabbe disease, hypomyelinating leukodystrophy-8/4H leukodystrophy, Aicardi-Goutières syndrome, RNASET2-deficient cystic leukoencephalopathy, hereditary diffuse leukoencephalopathy with spheroids-1 (CSF1R-related leukoencephalopathy), and ultra-rare leukodystrophies. Zebrafish models offer important potentials for the leukodystrophy field, including testing of new variants in known genes; establishing causation of newly discovered genes; and early lead compound identification for therapies. There are also unrealized opportunities to use humanized zebrafish models which have been sparsely explored.


Subject(s)
Adrenoleukodystrophy , Leukodystrophy, Globoid Cell , Leukodystrophy, Metachromatic , Leukoencephalopathies , Animals , Zebrafish/genetics , Leukodystrophy, Metachromatic/genetics , Leukodystrophy, Metachromatic/therapy , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/therapy , Adrenoleukodystrophy/genetics , Leukoencephalopathies/therapy
20.
J Med Case Rep ; 18(1): 25, 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38245786

ABSTRACT

BACKGROUND: This article presents a case study of two white male siblings of 24 and 31 years of age of self-reported Ukrainian ethnicity diagnosed with adrenomyeloneuropathy (AMN) associated with a novel splice site mutation in the ABCD1 gene. AMN represents a form of X-linked adrenoleukodystrophy (X-ALD) characterized by demyelination of the spinal cord and peripheral nerves. The case also presents the first adult haematopoietic stem cell transplant (HSCT) for adrenomyeloneuropathy in Ukraine. The rarity of this mutation and its cerebral involvement and the treatment make this case noteworthy and underscore the significance of reporting it to contribute to the existing medical knowledge. CASE PRESENTATION: The patients of 24 and 31 years initially exhibited progressive gait disturbance, lower extremity pain, and urinary incontinence, with the older sibling experiencing more advanced symptoms of speech, hearing, and vision disturbances. A comprehensive genetic analysis identified an unreported splice site mutation in exon 3 of the ABCD1 gene, leading to the manifestation of AMN. The inheritance pattern was consistent with X-linked recessive transmission. The article also outlines the clinical features, magnetic resonance imaging (MRI), and nerve conduction study (NCS) findings. Moreover, it discusses the genetic profile of the affected individuals and female carriers within the family. The younger sibling underwent HSCT, which was complicated by mediastinal lymph node and lung tuberculosis, adding to the complexity of managing adult ALD patients. CONCLUSIONS: This report emphasizes the importance of genetic testing in diagnosing and comprehending the underlying mechanisms of rare genetic disorders, such as AMN with cerebral involvement. The identification of a novel splice site mutation expands our understanding of the genetic landscape of this condition. Additionally, the challenges and complications encountered during the hematopoietic stem cell transplant procedure underscore the need for cautious consideration and personalized approaches in adult ALD patients.


Subject(s)
Adrenoleukodystrophy , Hematopoietic Stem Cell Transplantation , Adult , Humans , Male , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/therapy , Adrenoleukodystrophy/diagnosis , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Ethnicity , Phenotype , Siblings , Ukraine
SELECTION OF CITATIONS
SEARCH DETAIL