Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 377
Filter
1.
Ecotoxicol Environ Saf ; 280: 116507, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38838465

ABSTRACT

Triclosan (TCS) is a broad-spectrum antibiotic widely used in various personal care products. Research has found that exposure to TCS can cause toxic effects on organisms including neurotoxicity, cardiotoxicity, disorders of lipid metabolism, and abnormal vascular development, and the corresponding toxic mechanisms are gradually delving into the level of abnormal expression of miRNA regulating gene expression. Although the downstream mechanism of TCS targeting miRNA abnormal expression to induce toxicity is gradually improving, its upstream mechanism is still in a fog. Starting from the abnormal expression data of circRNA in zebrafish larvae induced by TCS, this study conducted a hierarchical analysis of the expression levels of all circRNAs, differential circRNAs, and trend circRNAs, and identified 29 key circRNA events regulating miRNA abnormal expression. In combination with GO and KEGG, the effects of TCS exposure were analyzed from the function and signaling pathway of the corresponding circRNA host gene. Furthermore, based on existing literature evidence about the biological toxicity induced by TCS targeting miRNA as data support, a competing endogenous RNAs (ceRNA) network characterizing the regulatory relationship between circRNA and miRNA was constructed and optimized. Finally, a comprehensive Adverse Outcome Pathway (AOP) framework of multiple levels of events including circRNA, miRNA, mRNA, pathway, and toxicity endpoints was established to systematically elucidate the toxic mechanism of TCS. Moreover, the rationality of the AOP framework was verified from the expression level of miRNA and adverse outcomes such as neurotoxicity, cardiotoxicity, oxidative stress, and inflammatory response by knockdown of circRNA48. This paper not only provides the key circRNA events for exploring the upstream mechanism of miRNA regulating gene expression but also provides an AOP framework for comprehensively demonstrating the toxicity mechanism of TCS on zebrafish, which is a theoretical basis for subsequent hazard assessment and prevention and control of TCS.


Subject(s)
MicroRNAs , RNA, Circular , Triclosan , Zebrafish , Animals , Zebrafish/genetics , RNA, Circular/genetics , MicroRNAs/genetics , Triclosan/toxicity , Adverse Outcome Pathways , Water Pollutants, Chemical/toxicity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Larva/drug effects , Larva/genetics
2.
J Hazard Mater ; 473: 134607, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38761765

ABSTRACT

Paraquat (PQ) exposure is strongly associated with neurotoxicity. However, research on the neurotoxicity mechanisms of PQ varies in terms of endpoints of toxic assessment, resulting in a great challenge to understand the early neurotoxic effects of PQ. In this study, we developed an adverse outcome pathway (AOP) to investigate PQ-induced neuro-immunotoxicity from an immunological perspective, combining of traditional toxicology methods and computer simulations. In vivo, PQ can microstructurally lead to an early synaptic loss in the brain mice, which is a large degree regarded as a main reason for cognitive impairment to mice behavior. Both in vitro and in vivo demonstrated synapse loss is caused by excessive activation of the complement C1q/C3-CD11b pathway, which mediates microglial phagocytosis dysfunction. Additionally, the interaction between PQ and C1q was validated by molecular simulation docking. Our findings extend the AOP framework related to PQ neurotoxicity from a neuro-immunotoxic perspective, highlighting C1q activation as the initiating event for PQ-induced neuro-immunotoxicity. In addition, downstream complement cascades induce abnormal microglial phagocytosis, resulting in reduced synaptic density and subsequent non-motor dysfunction. These findings deepen our understanding of neurotoxicity and provide a theoretical basis for ecological risk assessment of PQ.


Subject(s)
Complement C1q , Computer Simulation , Microglia , Paraquat , Phagocytosis , Paraquat/toxicity , Animals , Complement C1q/immunology , Complement C1q/metabolism , Phagocytosis/drug effects , Microglia/drug effects , Adverse Outcome Pathways , Male , Neurotoxicity Syndromes/immunology , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/etiology , Mice , Brain/drug effects , Herbicides/toxicity , CD11b Antigen/metabolism , Complement C3/metabolism , Molecular Docking Simulation , Synapses/drug effects , Mice, Inbred C57BL
3.
Int J Radiat Biol ; 100(7): 982-995, 2024.
Article in English | MEDLINE | ID: mdl-38718325

ABSTRACT

PURPOSE: The Organisation for Economic Co-operation and Development (OECD) Adverse Outcome Pathway (AOP) Development Programme is being explored in the radiation field, as an overarching framework to identify and prioritize research needs that best support strengthening of radiation risk assessment and risk management strategies. To advance the use of AOPs, an international horizon-style exercise (HSE) was initiated through the Radiation/Chemical AOP Joint Topical Group (JTG) formed by the OECD Nuclear Energy Agency (NEA) High-Level Group on Low Dose Research (HLG-LDR) under the auspices of the Committee on Radiological Protection and Public Health (CRPPH). The intent of the HSE was to identify key research questions for consideration in AOP development that would help to reduce uncertainties in estimating the health risks following exposures to low dose and low dose-rate ionizing radiation. The HSE was conducted in several phases involving the solicitation of relevant questions, a collaborative review of open-ended candidate questions and an elimination exercise that led to the selection of 25 highest priority questions for the stated purpose. These questions were further ranked by over 100 respondents through an international survey. This final set of questions was judged to provide insights into how the OECD's AOP approach can be put into practice to meet the needs of hazard and risk assessors, regulators, and researchers. This paper examines the 25 priority questions in the context of hazard/risk assessment framework for ionizing radiation. CONCLUSION: By addressing the 25 priority questions, it is anticipated that constructed AOPs will have a high level of specificity, making them valuable tools for simplifying and prioritizing complex biological processes for use in developing revised radiation hazard and risk assessment strategies.


Subject(s)
Adverse Outcome Pathways , Humans , Risk Assessment , Radiation Protection/methods , Internationality , Radiation Injuries/prevention & control , Radiation Injuries/etiology
4.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791241

ABSTRACT

Drug induced fatty liver disease (DIFLD) is a form of drug-induced liver injury (DILI), which can also be included in the more general metabolic dysfunction-associated steatotic liver disease (MASLD), which specifically refers to the accumulation of fat in the liver unrelated to alcohol intake. A bi-directional relationship between DILI and MASLD is likely to exist: while certain drugs can cause MASLD by acting as pro-steatogenic factors, MASLD may make hepatocytes more vulnerable to drugs. Having a pre-existing MASLD significantly heightens the likelihood of experiencing DILI from certain medications. Thus, the prevalence of steatosis within DILI may be biased by pre-existing MASLD, and it can be concluded that the genuine true incidence of DIFLD in the general population remains unknown. In certain individuals, drug-induced steatosis is often accompanied by concomitant injury mechanisms such as oxidative stress, cell death, and inflammation, which leads to the development of drug-induced steatohepatitis (DISH). DISH is much more severe from the clinical point of view, has worse prognosis and outcome, and resembles MASH (metabolic-associated steatohepatitis), as it is associated with inflammation and sometimes with fibrosis. A literature review of clinical case reports allowed us to examine and evaluate the clinical features of DIFLD and their association with specific drugs, enabling us to propose a classification of DIFLD drugs based on clinical outcomes and pathological severity: Group 1, drugs with low intrinsic toxicity (e.g., ibuprofen, naproxen, acetaminophen, irinotecan, methotrexate, and tamoxifen), but expected to promote/aggravate steatosis in patients with pre-existing MASLD; Group 2, drugs associated with steatosis and only occasionally with steatohepatitis (e.g., amiodarone, valproic acid, and tetracycline); and Group 3, drugs with a great tendency to transit to steatohepatitis and further to fibrosis. Different mechanisms may be in play when identifying drug mode of action: (1) inhibition of mitochondrial fatty acid ß-oxidation; (2) inhibition of fatty acid transport across mitochondrial membranes; (3) increased de novo lipid synthesis; (4) reduction in lipid export by the inhibition of microsomal triglyceride transfer protein; (5) induction of mitochondrial permeability transition pore opening; (6) dissipation of the mitochondrial transmembrane potential; (7) impairment of the mitochondrial respiratory chain/oxidative phosphorylation; (8) mitochondrial DNA damage, degradation and depletion; and (9) nuclear receptors (NRs)/transcriptomic alterations. Currently, the majority of, if not all, adverse outcome pathways (AOPs) for steatosis in AOP-Wiki highlight the interaction with NRs or transcription factors as the key molecular initiating event (MIE). This perspective suggests that chemical-induced steatosis typically results from the interplay between a chemical and a NR or transcription factors, implying that this interaction represents the primary and pivotal MIE. However, upon conducting this exhaustive literature review, it became evident that the current AOPs tend to overly emphasize this interaction as the sole MIE. Some studies indeed support the involvement of NRs in steatosis, but others demonstrate that such NR interactions alone do not necessarily lead to steatosis. This view, ignoring other mitochondrial-related injury mechanisms, falls short in encapsulating the intricate biological mechanisms involved in chemically induced liver steatosis, necessitating their consideration as part of the AOP's map road as well.


Subject(s)
Chemical and Drug Induced Liver Injury , Fatty Liver , Humans , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/chemically induced , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/etiology , Adverse Outcome Pathways , Liver/pathology , Liver/metabolism , Liver/drug effects , Oxidative Stress
5.
Sci Total Environ ; 934: 173420, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38777049

ABSTRACT

Toxicological studies have demonstrated the hepatic toxicity of several bisphenol analogs (BPs), a prevalent type of endocrine disruptor. The development of Adverse Outcome Pathway (AOP) has substantially contributed to the rapid risk assessment for human health. However, the lack of in vitro and in vivo data for the emerging BPs has limited the hazard assessment of these synthetic chemicals. Here, we aimed to develop a new strategy to rapidly predict BPs' hepatotoxicity using network analysis coupled with machine learning models. Considering the structural and functional similarities shared by BPs with Bisphenol A (BPA), we first integrated hepatic disease related genes from multiple databases into BPA-Gene-Phenotype-hepatic toxicity network and subjected it to the computational AOP (cAOP). Through cAOP network and conventional machine learning approaches, we scored the hepatotoxicity of 20 emerging BPs and provided new insights into how BPs' structure features contributed to biologic functions with limited experimental data. Additionally, we assessed the interactions between emerging BPs and ESR1 using molecular docking and proposed an AOP framework wherein ESR1 was a molecular initiating event. Overall, our study provides a computational approach to predict the hepatotoxicity of emerging BPs.


Subject(s)
Benzhydryl Compounds , Endocrine Disruptors , Machine Learning , Phenols , Phenols/toxicity , Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Humans , Molecular Docking Simulation , Liver/drug effects , Adverse Outcome Pathways , Risk Assessment
6.
Environ Res ; 252(Pt 3): 119045, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38704014

ABSTRACT

Endocrine disrupting compounds (EDCs) pose a significant ecological risk, particularly in aquatic ecosystems. EDCs have become a focal point in ecotoxicology, and their identification and regulation have become a priority. Zooplankton have gained global recognition as bioindicators, benefiting from rigorous standardization and regulatory validation processes. This review aims to provide a comprehensive summary of zooplankton-based adverse outcome pathways (AOPs) with a focus on EDCs as toxicants and the utilisation of freshwater zooplankton as bioindicators in ecotoxicological assessments. This review presents case studies in which zooplankton have been used in the development of AOPs, emphasizing the identification of molecular initiating events (MIEs) and key events (KEs) specific to zooplankton exposed to EDCs. Zooplankton-based AOPs may become an important resource for understanding the intricate processes by which EDCs impair the endocrine system. Furthermore, the data sources, experimental approaches, advantages, and challenges associated with zooplankton-based AOPs are discussed. Zooplankton-based AOPs framework can provide vital tools for consolidating toxicological knowledge into a structured toxicity pathway of EDCs, offering a transformative platform for facilitating enhanced risk assessment and chemical regulation.


Subject(s)
Adverse Outcome Pathways , Endocrine Disruptors , Water Pollutants, Chemical , Zooplankton , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Zooplankton/drug effects , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
7.
Toxicology ; 504: 153794, 2024 May.
Article in English | MEDLINE | ID: mdl-38580097

ABSTRACT

Endocrine disruptors (EDs) pose a serious threat to human health and the environment and require a comprehensive evaluation to be identified. The identification of EDs require a substantial amount of data, both in vitro and in vivo, due to the current scientific criteria in the EU. At the same time, the EU strives to reduce animal testing due to concerns regarding animal welfare and sensitivity of animal studies to adequately detect adverse effects relevant for human health. Perfluorooctane sulfonic acid (PFOS) is a persistent organic pollutant that is suspected to be an ED based on academic research, however it is not identified as such from a regulatory perspective. It has previously been shown that PFOS has the potential to cause neurotoxicity as well as affect the thyroid system, and it is known that specific thyroid hormone levels are critical in the development of the brain during. In this work, the aim was to evaluate a mechanism-based approach to identify ED properties of PFOS based on the Adverse Outcome Pathway (AOP) framework and using New Approach Methods (NAMs), by comparing this approach to an ED assessment based on the currently available guidance document. An AOP network (AOPN) was generated for the thyroid modality, and AOPs leading to developmental neurotoxicity (DNT) were identified. A literature search and screening process based on the AOPN, and systematic review methodology, was performed, followed by a rigorous Weight-of-Evidence (WoE) assessment. Evidence was mapped back onto the AOPN used for the literature search, to identify possible endocrine Modes-of-Action (MoAs) for PFOS and data gaps in the two assessments. It could be concluded that PFOS fulfils the criteria for ED classification in the standard ED assessment, but not in the mechanism-based assessment. The need for quantitative information, such as quantitative AOPs, for the mechanism-based approach is discussed. The possibility of a directly neurotoxic alternative MoA was also highlighted based on available in vitro data. Opportunities and challenges with implementing AOPs and NAMs into the regulatory assessment of EDs, and assessing hazard in the Next Generation Risk Assessment, is discussed. This case study exploring the mechanism-based approach to ED identification represents an important step toward more accurate and predictive assessment of EDs based on AOPs and NAMs, and to the Next Generation Risk Assessment (NGRA) concept.


Subject(s)
Adverse Outcome Pathways , Alkanesulfonic Acids , Endocrine Disruptors , Fluorocarbons , Animals , Humans , Alkanesulfonic Acids/toxicity , Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Risk Assessment/methods
8.
J Immunotoxicol ; 21(1): 2332177, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38578203

ABSTRACT

Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.


Subject(s)
Adverse Outcome Pathways , Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Liver Diseases , Humans , Interleukin-2 , Chemical and Drug Induced Liver Injury/diagnosis , Pharmaceutical Preparations
9.
Toxicology ; 505: 153814, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677583

ABSTRACT

The field of chemical toxicity testing is undergoing a transition to overcome the limitations of in vivo experiments. This evolution involves implementing innovative non-animal approaches to improve predictability and provide a more precise understanding of toxicity mechanisms. Adverse outcome pathway (AOP) networks are pivotal in organizing existing mechanistic knowledge related to toxicological processes. However, these AOP networks are dynamic and require regular updates to incorporate the latest data. Regulatory challenges also persist due to concerns about the reliability of the information they offer. This study introduces a generic Weight-of-Evidence (WoE) scoring method, aligned with the tailored Bradford-Hill criteria, to quantitatively assess the confidence levels in key event relationships (KERs) within AOP networks. We use the previously published AOP network on chemical-induced liver steatosis, a prevalent form of human liver injury, as a case study. Initially, the existing AOP network is optimized with the latest scientific information extracted from PubMed using the free SysRev platform for artificial intelligence (AI)-based abstract inclusion and standardized data collection. The resulting optimized AOP network, constructed using Cytoscape, visually represents confidence levels through node size (key event, KE) and edge thickness (KERs). Additionally, a Shiny application is developed to facilitate user interaction with the dataset, promoting future updates. Our analysis of 173 research papers yielded 100 unique KEs and 221 KERs among which 72 KEs and 170 KERs, respectively, have not been previously documented in the prior AOP network or AOP-wiki. Notably, modifications in de novo lipogenesis, fatty acid uptake and mitochondrial beta-oxidation, leading to lipid accumulation and liver steatosis, garnered the highest KER confidence scores. In conclusion, our study delivers a generic methodology for developing and assessing AOP networks. The quantitative WoE scoring method facilitates in determining the level of support for KERs within the optimized AOP network, offering valuable insights into its utility in both scientific research and regulatory contexts. KERs supported by robust evidence represent promising candidates for inclusion in an in vitro test battery for reliably predicting chemical-induced liver steatosis within regulatory frameworks.


Subject(s)
Adverse Outcome Pathways , Fatty Liver , Humans , Fatty Liver/chemically induced , Animals , Chemical and Drug Induced Liver Injury/etiology , Toxicity Tests/methods , Artificial Intelligence
10.
Sci Total Environ ; 926: 172015, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38547973

ABSTRACT

Parabens are esters of p-hydroxybenzoic acid, which have been used as preservatives and considered safe for nearly a century, until the last two decades when concerns began to be raised about their association with cancers. Knowledge of the mode of action of parabens on the metastatic properties of different cancer cells is still very limited. In the present study, we investigated the effects of methylparaben (MP) and propylparaben (PP) on cell invasion and/or migration in multiple human cancerous and noncancerous cells, including hepatocellular carcinoma cells (HepG2), cervical carcinoma cells (HeLa), breast carcinoma cells (MCF-7), and human placental trophoblasts (HTR-8/SVneo). MP and PP at concentrations in a range of 5-500 µg/L significantly promoted the invasion of four cell lines, with a minimum effective concentration of 5 µg/L. MP and PP up-regulated the expression levels and enzymatic activities of matrix metalloproteinase 2 and 9 (MMP2 and MMP9), as well as altered the expression of the tissue inhibitors of metalloproteinase 1 and 2 (TIMP1 and TIMP2) in four cell lines, suggesting MMPs/TIMPs as potential key events (KEs) for paraben-induced cell invasion. Activation of the p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal protein kinases 1/2 (JNK1/2) signaling pathways was required for MP- and PP-promoted invasion of four cell lines, suggesting MAPK signaling pathways as candidates for KEs in cancer or noncancerous cells response to paraben exposure. This study showed for the first time that the two widely used parabens, MP and PP, promoted invasive capacity of multiple human cells through a common mode of action. This study provides evidence for the establishment of a potential cancer-associated AOP for parabens based on pathway-specific mechanism(s), which contributes towards assessing the health risks of these environmental chemicals.


Subject(s)
Adverse Outcome Pathways , Neoplasms , Humans , Female , Pregnancy , Parabens/toxicity , Matrix Metalloproteinase 2 , Placenta , p38 Mitogen-Activated Protein Kinases
11.
Environ Pollut ; 347: 123716, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38458526

ABSTRACT

Parabens are widely used as antibacterial preservatives in foods and personal care products. The knowledge about the modes of toxic action of parabens on development and reproduction remain very limited. The present study attempted to establish a development and reproduction-associated adverse outcome pathway (AOP) by evaluating the effects of methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP) on the biosynthesis of gonadotropins, which are key hormones for development and reproduction. MP and BP significantly upregulated the mRNA and protein levels of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in pituitary gonadotropic cells in a concentration-dependent manner. Activation of gonadotropin-releasing hormone receptor (GnRHR) was required for gonadotropin biosynthesis induced by BP, but not MP. Molecular docking data further demonstrated the higher binding efficiency of BP to human GnRHR than that of MP, suggesting GnRHR as a potential molecular initiative event (MIE) for BP-induced gonadotropin production. L-type voltage-gated calcium channels (VGCCs) were found to be another candidate for MIE in gonadotropic cells response to both MP and BP exposure. The calcium-dependent activation of extracellular signal-regulated kinase 1 (ERK1) and ERK2 was subsequently required for MP- and BP-induced activation of GnRHR and L-type VGCCs pathways. In summary, MP and BP promoted gonadotropin biosynthesis through their interactions with cellular macromolecules GnRHR, L-type VGCCs, and subsequent key event ERK1/2. This is the first study to report the direct interference of parabens with gonadotropin biosynthesis and establish a potential AOP based on pathway-specific mechanism, which contributes to the effective screening of environmental chemicals with developmental and reproductive health risks.


Subject(s)
Adverse Outcome Pathways , Parabens , Humans , Parabens/toxicity , Parabens/metabolism , Molecular Docking Simulation , Gonadotropins , Follicle Stimulating Hormone , Reproduction , Gonadotropin-Releasing Hormone
12.
J Hazard Mater ; 469: 134066, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38522193

ABSTRACT

The neurotoxicity induced by dioxins has been recognized as a serious concern to sensitive population living near waste incineration plants. However, investigating the intracellular neurotoxicity of dioxin in humans and the corresponding mitigation strategies has been barely studied. Thus, a domestic waste incineration plant was selected in this study to characterize the neurotoxicity risks of sensitive populations by estimating the ratio of dioxin in human cells using membrane structure dynamics simulation; and constructing a complete dioxin neurotoxicity adverse outcome pathway considering the binding process of AhR/ARNT dimer protein and dioxin response element (DRE). Six dioxins with high neurotoxicity risk were identified. According to the composite neurotoxicity risk analysis, the highest composite neurotoxicity risk appeared when the six dioxins were jointly exposed. Dietary schemes were designed using 1/2 partial factor experimental design to mitigate the composite neurotoxicity risk of six dioxins and No. 16 was screened as the optimum combination which can effectively alleviate the composite neurotoxicity risk by 29.52%. Mechanism analysis shows that the interaction between AhR/ARNT dimer protein and DRE was inhibited under the optimal dietary scheme. This study provides theoretical feasibility and reference significance for assessing composite toxicity risks of pollutants and safety mitigation measures for toxic effects.


Subject(s)
Adverse Outcome Pathways , Dioxins , Polychlorinated Dibenzodioxins , Refuse Disposal , Humans , Dioxins/toxicity , Dioxins/chemistry , Vulnerable Populations , Incineration , Polychlorinated Dibenzodioxins/analysis
13.
Expert Opin Drug Saf ; 23(4): 425-438, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430529

ABSTRACT

INTRODUCTION: The evaluation of the potential carcinogenicity is a key consideration in the risk assessment of chemicals. Predictive toxicology is currently switching toward non-animal approaches that rely on the mechanistic understanding of toxicity. AREAS COVERED: Adverse outcome pathways (AOPs) present toxicological processes, including chemical-induced carcinogenicity, in a visual and comprehensive manner, which serve as the conceptual backbone for the development of non-animal approaches eligible for hazard identification. The current review provides an overview of the available AOPs leading to liver cancer and discusses their use in advanced testing of liver carcinogenic chemicals. Moreover, the challenges related to their use in risk assessment are outlined, including the exploitation of available data, the need for semantic ontologies, and the development of quantitative AOPs. EXPERT OPINION: To exploit the potential of liver cancer AOPs in the field of risk assessment, 3 immediate prerequisites need to be fulfilled. These include developing human relevant AOPs for chemical-induced liver cancer, increasing the number of AOPs integrating quantitative toxicodynamic and toxicokinetic data, and developing a liver cancer AOP network. As AOPs and other areas in the field continue to evolve, liver cancer AOPs will progress into a reliable and robust tool serving future risk assessment and management.


Subject(s)
Adverse Outcome Pathways , Liver Neoplasms , Humans , Risk Assessment , Liver Neoplasms/chemically induced
14.
Sci Total Environ ; 920: 170968, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38367714

ABSTRACT

Cadmium is a prominent toxic heavy metal that contaminates both terrestrial and aquatic environments. Owing to its high biological half-life and low excretion rates, cadmium causes a variety of adverse biological outcomes. Adverse outcome pathway (AOP) networks were envisioned to systematically capture toxicological information to enable risk assessment and chemical regulation. Here, we leveraged AOP-Wiki and integrated heterogeneous data from four other exposome-relevant resources to build the first AOP network relevant for inorganic cadmium-induced toxicity. From AOP-Wiki, we filtered 309 high confidence AOPs, identified 312 key events (KEs) associated with inorganic cadmium from five exposome-relevant databases using a data-centric approach, and thereafter, curated 30 cadmium relevant AOPs (cadmium-AOPs). By constructing the undirected AOP network, we identified a large connected component of 18 cadmium-AOPs. Further, we analyzed the directed network of 59 KEs and 82 key event relationships (KERs) in the largest component using graph-theoretic approaches. Subsequently, we mined published literature using artificial intelligence-based tools to provide auxiliary evidence of cadmium association for all KEs in the largest component. Finally, we performed case studies to verify the rationality of cadmium-induced toxicity in humans and aquatic species. Overall, cadmium-AOP network constructed in this study will aid ongoing research in systems toxicology and chemical exposome.


Subject(s)
Adverse Outcome Pathways , Humans , Cadmium/toxicity , Artificial Intelligence , Risk Assessment , Databases, Factual
15.
Environ Sci Technol ; 58(9): 4083-4091, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38373277

ABSTRACT

Emerging studies implicate fine particulate matter (PM2.5) and its organic components (OCs) as urgent hazard factors for lung cancer progression in nonsmokers. Establishing the adverse outcome pathway (AOP)-directed nontargeted identification method, this study aimed to explore whether PM2.5 exposure in coal-burning areas promoted lung tumor metastasis and how we identify its effective OCs to support traceability and control of regional PM2.5 pollution. First, we used a nude mouse model of lung cancer for PM2.5 exposure and found that the exposure significantly promoted the hematogenous metastases of A549-Luc cells in lung tissues and the adverse outcomes (AOs), with key events (KEs) including the changed expression of epithelial-mesenchymal transition (EMT) markers, such as suppression of E-cad and increased expression of Fib. Subsequently, using AOs and KEs as adverse outcome directors, we identified a total of 35 candidate chemicals based on the in vitro model and nontargeted analysis. Among them, tributyl phosphate (C12H27O4P), 2-bromotetradecane (C14H29Br), and methyl decanoate (C11H22O2) made greater contributions to the AOs. Finally, we clarified the interactions between these OCs and EMT-activating transcription factors (EMT-ATFs) as the molecular initiation event (MIE) to support the feasibility of the above identification strategy. The present study updates a new framework for identifying tumor metastasis-promoting OCs in PM2.5 and provides solid data for screening out chemicals that need priority control in polluted areas posing higher lung cancer risk.


Subject(s)
Adverse Outcome Pathways , Air Pollutants , Lung Neoplasms , Animals , Mice , Particulate Matter , Lung Neoplasms/pathology , Lung , Epithelial-Mesenchymal Transition
16.
Sci Rep ; 14(1): 4741, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413641

ABSTRACT

Adverse Outcome Pathway (AOP) is a useful tool to glean mode of action (MOE) of a chemical. However, in order to use it for the purpose of risk assessment, an AOP needs to be quantified using in vitro or in vivo data. Majority of quantitative AOPs developed so far, were for single exposure to progressively higher doses. Limited attempts were made to include time in the modeling. Here as a proof-of concept, we developed a hypothetical AOP, and quantified it using a virtual dataset for six repeated exposures using a Bayesian Network Analysis (BN) framework. The virtual data was generated using realistic assumptions. Effects of each exposure were analyzed separately using a static BN model and analyzed in combination using a dynamic BN (DBN) model. Our work shows that the DBN model can be used to calculate the probability of adverse outcome when other upstream KEs were observed earlier. These probabilities can help in identification of early indicators of AO. In addition, we also developed a data driven AOP pruning technique using a lasso-based subset selection, and show that the causal structure of AOP is itself dynamic and changes over time. This proof-of-concept study revealed the possibility for expanding the applicability of the AOP framework to incorporate biological dynamism in toxicity appearance by repeated insults.


Subject(s)
Adverse Outcome Pathways , Bayes Theorem , Risk Assessment , Probability
17.
Environ Sci Technol ; 58(8): 3714-3725, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38350648

ABSTRACT

Chemicals mainly exist in ecosystems as mixtures, and understanding and predicting their effects are major challenges in ecotoxicology. While the adverse outcome pathway (AOP) and toxicokinetic-toxicodynamic (TK-TD) models show promise as mechanistic approaches in chemical risk assessment, there is still a lack of methodology to incorporate the AOP into a TK-TD model. Here, we describe a novel approach that integrates the AOP and TK-TD models to predict mixture toxicity using metal mixtures (specifically Cd-Cu) as a case study. We preliminarily constructed an AOP of the metal mixture through temporal transcriptome analysis together with confirmatory bioassays. The AOP revealed that prolonged exposure time activated more key events and adverse outcomes, indicating different modes of action over time. We selected a potential key event as a proxy for damage and used it as a measurable parameter to replace the theoretical parameter (scaled damage) in the TK-TD model. This refined model, which connects molecular responses to organism outcomes, effectively predicts Cd-Cu mixture toxicity over time and can be extended to other metal mixtures and even multicomponent mixtures. Overall, our results contribute to a better understanding of metal mixture toxicity and provide insights for integrating the AOP and TK-TD models to improve risk assessment for chemical mixtures.


Subject(s)
Adverse Outcome Pathways , Animals , Cadmium/toxicity , Models, Biological , Toxicokinetics , Ecosystem , Zebrafish , Larva
18.
Environ Sci Process Impacts ; 26(3): 611-621, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38329146

ABSTRACT

Pesticides due to their extensive use have entered the soil and water environment through various pathways, causing great harm to the environment. Herbicides and insecticides are common pesticides with long-term biological toxicity and bioaccumulation, which can harm the human body. The concept of the adverse outcome pathway (AOP) involves systematically analyzing the response levels of chemical mixtures to health-related indicators at the molecular and cellular levels. The AOP correlates the structures of chemical pollutants, toxic molecular initiation events and adverse outcomes of biological toxicity, providing a new model for toxicity testing, prediction, and evaluation of pollutants. Therefore, typical pesticides including diquat (DIQ), cyanazine (CYA), dipterex (DIP), propoxur (PRO), and oxamyl (OXA) were selected as research objects to explore the combined toxicity of typical pesticides on Chlorella pyrenoidosa (C. pyrenoidosa) and their adverse outcome pathways (AOPs). The mixture systems of pesticides were designed by the direct equipartition ray (EquRay) method and uniform design ray (UD-Ray) method. The toxic effects of single pesticides and their mixtures were systematically investigated by the time-dependent microplate toxicity analysis (t-MTA) method. The interactions of their mixtures were analyzed by the concentration addition model (CA) and the deviation from the CA model (dCA). The toxicity data showed a good concentration-effect relationship; the toxicities of five pesticides were different and the order was CYA > DIQ > OXA > PRO > DIP. Binary, ternary and quaternary mixture systems exhibited antagonism, while quinary mixture systems exhibited an additive effect. The AOP of pesticides showed that an excessive accumulation of peroxide in green algae cells led to a decline in stress resistance, inhibition of the synthesis of chlorophyll and protein in algal cells, destruction of the cellular structure, and eventually led to algal cell death.


Subject(s)
Adverse Outcome Pathways , Chlorella , Environmental Pollutants , Insecticides , Pesticides , Water Pollutants, Chemical , Humans , Pesticides/toxicity , Propoxur/pharmacology , Water Pollutants, Chemical/pharmacology
19.
Ecotoxicol Environ Saf ; 272: 116022, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38309230

ABSTRACT

Micro/nanoplastics (MNPs) have emerged as a significant environmental concern due to their widespread distribution and potential adverse effects on human health and the environment. In this study, to integrate exposure and toxicity pathways of MNPs, a comprehensive review of the occurrence, toxicokinetics (absorption, distribution, and excretion [ADE]), and toxicity of MNPs were investigated using the aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) frameworks. Eighty-five papers were selected: 34 papers were on detecting MNPs in environmental samples, 38 papers were on the ADE of MNPs in humans and fish, and 36 papers were related to MNPs toxicity using experimental models. This review not only summarizes individual studies but also presents a preliminary AEP-AOP framework. This framework offers a comprehensive overview of pathways, enabling a clearer visualization of intricate processes spanning from environmental media, absorption, distribution, and molecular effects to adverse outcomes. Overall, this review emphasizes the importance of integrating exposure and toxicity pathways of MNPs by utilizing AEP-AOP to comprehensively understand their impacts on human and ecological organisms. The findings contribute to highlighting the need for further research to fill the existing knowledge gaps in this field and the development of more effective strategies for the safe management of MNPs.


Subject(s)
Adverse Outcome Pathways , Animals , Humans , Microplastics/toxicity , Toxicokinetics , Fishes , Models, Theoretical , Plastics
20.
Environ Int ; 184: 108474, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38350256

ABSTRACT

Human health risk assessment is historically built upon animal testing, often following Organisation for Economic Co-operation and Development (OECD) test guidelines and exposure assessments. Using combinations of human relevant in vitro models, chemical analysis and computational (in silico) approaches bring advantages compared to animal studies. These include a greater focus on the human species and on molecular mechanisms and kinetics, identification of Adverse Outcome Pathways and downstream Key Events as well as the possibility of addressing susceptible populations and additional endpoints. Much of the advancement and progress made in the Next Generation Risk Assessment (NGRA) have been primarily focused on new approach methodologies (NAMs) and physiologically based kinetic (PBK) modelling without incorporating human biomonitoring (HBM). The integration of toxicokinetics (TK) and PBK modelling is an essential component of NGRA. PBK models are essential for describing in quantitative terms the TK processes with a focus on the effective dose at the expected target site. Furthermore, the need for PBK models is amplified by the increasing scientific and regulatory interest in aggregate and cumulative exposure as well as interactions of chemicals in mixtures. Since incorporating HBM data strengthens approaches and reduces uncertainties in risk assessment, here we elaborate on the integrated use of TK, PBK modelling and HBM in chemical risk assessment highlighting opportunities as well as challenges and limitations. Examples are provided where HBM and TK/PBK modelling can be used in both exposure assessment and hazard characterization shifting from external exposure and animal dose/response assays to animal-free, internal exposure-based NGRA.


Subject(s)
Adverse Outcome Pathways , Models, Biological , Animals , Humans , Toxicokinetics , Biological Monitoring , Risk Assessment/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...