Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Syst Appl Microbiol ; 47(2-3): 126507, 2024 May.
Article in English | MEDLINE | ID: mdl-38703419

ABSTRACT

Deep-sea hydrothermal vents host archaeal and bacterial thermophilic communities, including taxonomically and functionally diverse Thermoproteota. Despite their prevalence in high-temperature submarine communities, Thermoproteota are chronically under-represented in genomic databases and issues have emerged regarding their nomenclature, particularly within the Aeropyrum-Thermodiscus-Caldisphaera. To resolve some of these problems, we identified 47 metagenome-assembled genomes (MAGs) within this clade, from 20 previously published deep-sea hydrothermal vent and submarine volcano metagenomes, and 24 MAGs from public databases. Using phylogenomic analysis, Genome Taxonomy Database Toolkit (GTDB-Tk) taxonomic assessment, 16S rRNA gene phylogeny, average amino acid identity (AAI) and functional gene patterns, we re-evaluated of the taxonomy of the Aeropyrum-Thermodiscus-Caldisphaera. At least nine genus-level clades were identified with two or more MAGs. In accordance with SeqCode requirements and recommendations, we propose names for three novel genera, viz. Tiamatella incendiivivens, Hestiella acidicharens and Calypsonella navitae. A fourth genus was also identified related to Thermodiscus maritimus, for which no available sequenced genome exists. We propose the novel species Thermodiscus eudorianus to describe our high-quality Thermodiscus MAG, which represents the type genome for the genus. All three novel genera and T. eudorianus are likely anaerobic heterotrophs, capable of fermenting protein-rich carbon sources, while some Tiamatella, Calypsonella and T. eudorianus may also reduce polysulfides, thiosulfate, sulfur and/or selenite, and the likely acidophile, Hestiella, may reduce nitrate and/or perchlorate. Based on phylogenomic evidence, we also propose the family Acidilobaceae be amended to include Caldisphaera, Aeropyrum, Thermodiscus and Stetteria and the novel genera described here.


Subject(s)
Hydrothermal Vents , Metagenome , Phylogeny , RNA, Ribosomal, 16S , Hydrothermal Vents/microbiology , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Genome, Bacterial/genetics , Archaea/genetics , Archaea/classification , DNA, Bacterial/genetics , Aeropyrum/genetics , Aeropyrum/classification , Genomics , DNA, Archaeal/genetics , Bacteria/genetics , Bacteria/classification , Genome, Archaeal
2.
Nat Commun ; 14(1): 666, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36750723

ABSTRACT

Conjugation is a major mechanism of horizontal gene transfer promoting the spread of antibiotic resistance among human pathogens. It involves establishing a junction between a donor and a recipient cell via an extracellular appendage known as the mating pilus. In bacteria, the conjugation machinery is encoded by plasmids or transposons and typically mediates the transfer of cognate mobile genetic elements. Much less is known about conjugation in archaea. Here, we determine atomic structures by cryo-electron microscopy of three conjugative pili, two from hyperthermophilic archaea (Aeropyrum pernix and Pyrobaculum calidifontis) and one encoded by the Ti plasmid of the bacterium Agrobacterium tumefaciens, and show that the archaeal pili are homologous to bacterial mating pili. However, the archaeal conjugation machinery, known as Ced, has been 'domesticated', that is, the genes for the conjugation machinery are encoded on the chromosome rather than on mobile genetic elements, and mediates the transfer of cellular DNA.


Subject(s)
Aeropyrum , Agrobacterium tumefaciens , Conjugation, Genetic , DNA, Archaeal , Pyrobaculum , Agrobacterium tumefaciens/genetics , Bacterial Proteins/genetics , Cryoelectron Microscopy , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Gene Transfer, Horizontal , Plasmids , Aeropyrum/genetics , Pyrobaculum/genetics
3.
Extremophiles ; 26(3): 34, 2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36372831

ABSTRACT

Virus capsid proteins have various applications in diverse fields such as biotechnology, electronics, and medicine. In this study, the major capsid protein of bacilliform clavavitus APBV1, which infects the hyperthermophilic archaeon Aeropyrum pernix, was successfully expressed in Escherichia coli. The gene product was expressed as a histidine-tagged protein in E. coli and purified to homogeneity using single-step nickel affinity chromatography. The purified recombinant protein self-assembled to form bacilliform virus-like particles at room temperature. The particles exhibited tolerance against high concentrations of organic solvents and protein denaturants. In addition, we succeeded in fabricating functional nanoparticles with amine functional groups on the surface of ORF6-81 nanoparticles. These robust protein nanoparticles can potentially be used as a scaffold in nanotechnological applications.


Subject(s)
Aeropyrum , Nanostructures , Aeropyrum/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Archaea/metabolism
4.
Microbiol Spectr ; 9(2): e0018621, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34585946

ABSTRACT

Little is known regarding the DNA methyltransferases (MTases) in hyperthermophilic archaea. In this study, we focus on an MTase from Aeropyrum pernix K1, a hyperthermophilic archaeon that is found in hydrothermal vents and whose optimum growth temperature is 90°C to 95°C. From genomic sequence analysis, A. pernix K1 has been predicted to have a restriction-modification system (R-M system). The restriction endonuclease from A. pernix K1 (known as ApeKI from New England BioLabs Inc. [catalog code R06435]) has been described previously, but the properties of the MTase from A. pernix K1 (M.ApeKI) have not yet been clarified. Thus, we demonstrated the properties of M.ApeKI. In this study, M.ApeKI was expressed in Escherichia coli strain JM109 and affinity purified using its His tag. The recognition sequence of M.ApeKI was determined by methylation activity and bisulfite sequencing (BS-seq). High-performance liquid chromatography (HPLC) was used to detect the position of the methyl group in methylated cytosine. As a result, it was clarified that M.ApeKI adds the methyl group at the C-5 position of the second cytosine in 5'-GCWGC-3'. Moreover, we also determined that the MTase optimum temperature was over 70°C and that it is strongly tolerant to high temperatures. M.ApeKI is the first highly thermostable DNA (cytosine-5)-methyltransferase to be evaluated by experimental evidence. IMPORTANCE In general, thermophilic bacteria with optimum growth temperatures over or equal to 60°C have been predicted to include only N4-methylcytosine or N6-methyladenine as methylated bases in their DNA, because 5-methylcytosine is susceptible to deamination by heat. However, from this study, A. pernix K1, with an optimum growth temperature at 95°C, was demonstrated to produce a DNA (cytosine-5)-methyltransferase. Thus, A. pernix K1 presumably has 5-methylcytosine in its DNA and may produce an original repair system for the expected C-to-T mutations. M.ApeKI was demonstrated to be tolerant to high temperatures; thus, we expect that M.ApeKI may be valuable for the development of a novel analysis system or epigenetic editing tool.


Subject(s)
Aeropyrum/enzymology , DNA Methylation/genetics , DNA-Cytosine Methylases/metabolism , Aeropyrum/genetics , Aeropyrum/metabolism , Amino Acid Sequence , DNA-Cytosine Methylases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression/genetics , Hot Temperature , Hydrothermal Vents/microbiology
5.
Appl Environ Microbiol ; 86(17)2020 08 18.
Article in English | MEDLINE | ID: mdl-32561587

ABSTRACT

Pernisine is a subtilisin-like protease that was originally identified in the hyperthermophilic archaeon Aeropyrum pernix, which lives in extreme marine environments. Pernisine shows exceptional stability and activity due to the high-temperature conditions experienced by A. pernix Pernisine is of interest for industrial purposes, as it is one of the few proteases that has demonstrated prion-degrading activity. Like other extracellular subtilisins, pernisine is synthesized in its inactive pro-form (pro-pernisine), which needs to undergo maturation to become proteolytically active. The maturation processes of mesophilic subtilisins have been investigated in detail; however, less is known about the maturation of their thermophilic homologs, such as pernisine. Here, we show that the structure of pro-pernisine is disordered in the absence of Ca2+ ions. In contrast to the mesophilic subtilisins, pro-pernisine requires Ca2+ ions to adopt the conformation suitable for its subsequent maturation. In addition to several Ca2+-binding sites that have been conserved from the thermostable Tk-subtilisin, pernisine has an additional insertion sequence with a Ca2+-binding motif. We demonstrate the importance of this insertion for efficient folding and stabilization of pernisine during its maturation. Moreover, analysis of the pernisine propeptide explains the high-temperature requirement for pro-pernisine maturation. Of note, the propeptide inhibits the pernisine catalytic domain more potently at high temperatures. After dissociation, the propeptide is destabilized at high temperatures only, which leads to its degradation and finally to pernisine activation. Our data provide new insights into and understanding of the thermostable subtilisin autoactivation mechanism.IMPORTANCE Enzymes from thermophilic organisms are of particular importance for use in industrial applications, due to their exceptional stability and activity. Pernisine, from the hyperthermophilic archaeon Aeropyrum pernix, is a proteolytic enzyme that can degrade infective prion proteins and thus has a potential use for disinfection of prion-contaminated surfaces. Like other subtilisin-like proteases, pernisine needs to mature through an autocatalytic process to become an active protease. In the present study, we address the maturation of pernisine and show that the process is regulated specifically at high temperatures by the propeptide. Furthermore, we demonstrate the importance of a unique Ca2+-binding insertion for stabilization of mature pernisine. Our results provide a novel understanding of thermostable subtilisin autoactivation, which might advance the development of these enzymes for commercial use.


Subject(s)
Aeropyrum/genetics , Archaeal Proteins/genetics , Peptide Hydrolases/genetics , Aeropyrum/enzymology , Amino Acid Sequence , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Binding Sites , Molecular Conformation , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism
6.
Proc Natl Acad Sci U S A ; 115(40): 10034-10039, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30224495

ABSTRACT

The modified mevalonate pathway is believed to be the upstream biosynthetic route for isoprenoids in general archaea. The partially identified pathway has been proposed to explain a mystery surrounding the lack of phosphomevalonate kinase and diphosphomevalonate decarboxylase by the discovery of a conserved enzyme, isopentenyl phosphate kinase. Phosphomevalonate decarboxylase was considered to be the missing link that would fill the vacancy in the pathway between mevalonate 5-phosphate and isopentenyl phosphate. This enzyme was recently discovered from haloarchaea and certain Chroloflexi bacteria, but their enzymes are close homologs of diphosphomevalonate decarboxylase, which are absent in most archaea. In this study, we used comparative genomic analysis to find two enzymes from a hyperthermophilic archaeon, Aeropyrum pernix, that can replace phosphomevalonate decarboxylase. One enzyme, which has been annotated as putative aconitase, catalyzes the dehydration of mevalonate 5-phosphate to form a previously unknown intermediate, trans-anhydromevalonate 5-phosphate. Then, another enzyme belonging to the UbiD-decarboxylase family, which likely requires a UbiX-like partner, converts the intermediate into isopentenyl phosphate. Their activities were confirmed by in vitro assay with recombinant enzymes and were also detected in cell-free extract from A. pernix These data distinguish the modified mevalonate pathway of A. pernix and likely, of the majority of archaea from all known mevalonate pathways, such as the eukaryote-type classical pathway, the haloarchaea-type modified pathway, and another modified pathway recently discovered from Thermoplasma acidophilum.


Subject(s)
Aconitate Hydratase , Aeropyrum , Archaeal Proteins , Carboxy-Lyases , Mevalonic Acid/metabolism , Terpenes/metabolism , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , Aeropyrum/genetics , Aeropyrum/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism
7.
Nucleic Acids Res ; 46(18): 9617-9624, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30202863

ABSTRACT

RNA 2'-phosphotransferase Tpt1 converts an internal RNA 2'-monophosphate to a 2'-OH via a two-step NAD+-dependent mechanism in which: (i) the 2'-phosphate attacks the C1″ of NAD+ to expel nicotinamide and form a 2'-phospho-ADP-ribosylated RNA intermediate; and (ii) the ADP-ribose O2″ attacks the phosphate of the RNA 2'-phospho-ADPR intermediate to expel the RNA 2'-OH and generate ADP-ribose 1″-2″ cyclic phosphate. Tpt1 is an essential component of the fungal tRNA splicing pathway that generates a unique 2'-PO4, 3'-5' phosphodiester splice junction during tRNA ligation. The wide distribution of Tpt1 enzymes in taxa that have no fungal-type RNA ligase raises the prospect that Tpt1 might catalyze reactions other than RNA 2'-phosphate removal. A survey of Tpt1 enzymes from diverse sources reveals that whereas all of the Tpt1 enzymes are capable of NAD+-dependent conversion of an internal RNA 2'-PO4 to a 2'-OH (the canonical Tpt1 reaction), a subset of Tpt1 enzymes also catalyzed NAD+-dependent ADP-ribosylation of an RNA or DNA 5'-monophosphate terminus. Aeropyrum pernix Tpt1 (ApeTpt1) is particularly adept in this respect. One-step synthesis of a 5'-phospho-ADP-ribosylated cap structure by ApeTpt1 (with no subsequent 5'-phosphotransferase step) extends the repertoire of the Tpt1 enzyme family and the catalogue of ADP-ribosylation reactions involving nucleic acid acceptors.


Subject(s)
Mutation , Phosphotransferases (Alcohol Group Acceptor)/genetics , RNA Caps/genetics , RNA, Fungal/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Aeropyrum/enzymology , Aeropyrum/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Genetic Complementation Test , NAD/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , RNA Ligase (ATP)/genetics , RNA Ligase (ATP)/metabolism , RNA Splicing , RNA, Fungal/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
8.
Mol Cell Biol ; 38(16)2018 08 15.
Article in English | MEDLINE | ID: mdl-29844065

ABSTRACT

Ribosomal stalk proteins recruit translation elongation GTPases to the factor-binding center of the ribosome. Initiation factor 5B (eIF5B in eukaryotes and aIF5B in archaea) is a universally conserved GTPase that promotes the joining of the large and small ribosomal subunits during translation initiation. Here we show that aIF5B binds to the C-terminal tail of the stalk protein. In the cocrystal structure, the interaction occurs between the hydrophobic amino acids of the stalk C-terminal tail and a small hydrophobic pocket on the surface of the GTP-binding domain (domain I) of aIF5B. A substitution mutation altering the hydrophobic pocket of yeast eIF5B resulted in a marked reduction in ribosome-dependent eIF5B GTPase activity in vitro In yeast cells, the eIF5B mutation affected growth and impaired GCN4 expression during amino acid starvation via a defect in start site selection for the first upstream open reading frame in GCN4 mRNA, as observed with the eIF5B deletion mutant. The deletion of two of the four stalk proteins diminished polyribosome levels (indicating defective translation initiation) and starvation-induced GCN4 expression, both of which were suppressible by eIF5B overexpression. Thus, the mutual interaction between a/eIF5B and the ribosomal stalk plays an important role in subunit joining during translation initiation in vivo.


Subject(s)
Eukaryotic Initiation Factors/metabolism , Ribosomal Proteins/metabolism , Aeropyrum/genetics , Aeropyrum/metabolism , Amino Acid Substitution , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Eukaryotic Initiation Factor-1/chemistry , Eukaryotic Initiation Factor-1/genetics , Eukaryotic Initiation Factor-1/metabolism , Eukaryotic Initiation Factors/chemistry , Eukaryotic Initiation Factors/genetics , Models, Molecular , Mutation , Peptide Chain Initiation, Translational , Phenotype , Protein Interaction Domains and Motifs , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
9.
Microbiology (Reading) ; 163(12): 1864-1879, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29139344

ABSTRACT

Disulfide bonds confer stability and activity to proteins. Bioinformatic approaches allow predictions of which organisms make protein disulfide bonds and in which subcellular compartments disulfide bond formation takes place. Such an analysis, along with biochemical and protein structural data, suggests that many of the extremophile Crenarachaea make protein disulfide bonds in both the cytoplasm and the cell envelope. We have sought to determine the oxidative folding pathways in the sequenced genomes of the Crenarchaea, by seeking homologues of the enzymes known to be involved in disulfide bond formation in bacteria. Some Crenarchaea have two homologues of the cytoplasmic membrane protein VKOR, a protein required in many bacteria for the oxidation of bacterial DsbAs. We show that the two VKORs of Aeropyrum pernix assume opposite orientations in the cytoplasmic membrane, when expressed in E. coli. One has its active cysteines oriented toward the E. coli periplasm (ApVKORo) and the other toward the cytoplasm (ApVKORi). Furthermore, the ApVKORo promotes disulfide bond formation in the E. coli cell envelope, while the ApVKORi promotes disulfide bond formation in the E. coli cytoplasm via a co-expressed archaeal protein ApPDO. Amongst the VKORs from different archaeal species, the pairs of VKORs in each species are much more closely related to each other than to the VKORs of the other species. The results suggest two independent occurrences of the evolution of the two topologically inverted VKORs in archaea. Our results suggest a mechanistic basis for the formation of disulfide bonds in the cytoplasm of Crenarchaea.


Subject(s)
Aeropyrum/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Disulfides/chemistry , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Aeropyrum/chemistry , Aeropyrum/genetics , Archaeal Proteins/genetics , Cell Membrane/chemistry , Cell Membrane/genetics , Cell Membrane/metabolism , Cysteine/chemistry , Cysteine/metabolism , Cytoplasm/chemistry , Cytoplasm/genetics , Cytoplasm/metabolism , Disulfides/metabolism , Membrane Proteins/genetics , Periplasm/genetics , Periplasm/metabolism , Protein Folding
10.
Extremophiles ; 20(5): 733-45, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27377295

ABSTRACT

O-Phosphoserine sulfhydrylase (OPSS) synthesizes cysteine from O-phospho-L-serine (OPS) and sulfide. We have determined the three-dimensional structures of OPSS from hyperthermophilic archaeon Aeropyrum pernix K1 (ApOPSS) in complex with aminoacrylate intermediate (AA) formed from pyridoxal 5'-phosphate with OPS or in complex with cysteine and compared them with that of ApOPSS. We found an orientational change of F225 at the active-site entrance and constructed an F225A mutant to examine its activities and AA stability and clarify the role of F225 in ApOPSS. The OPS and O-acetyl-L-serine (OAS) sulfhydrylase activities of the F225A mutant decreased by 4.2- and 15-fold compared to those of the wild-type (wt) ApOPSS, respectively. The ability of OPS and OAS to form AA also decreased by 12- and 27-fold, respectively. AA was less stable in the F225A mutant than in the wt ApOPSS. Simulated docking showed that leaving groups, such as phosphate and acetate, were oriented to the inside of the active site in the F225A mutant, whereas they were oriented to the entrance in the wt ApOPSS. These results suggest that F225 in ApOPSS plays important roles in maintaining the hydrophobic environment of AA from solvent water and in controlling the orientation of leaving groups.


Subject(s)
Aeropyrum/enzymology , Carbon-Oxygen Lyases/chemistry , Molecular Docking Simulation , Aeropyrum/genetics , Amino Acid Substitution , Carbon-Oxygen Lyases/genetics , Carbon-Oxygen Lyases/metabolism , Catalytic Domain
11.
Enzyme Microb Technol ; 91: 17-25, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27444325

ABSTRACT

A gene encoding NAD(P)H-dependent carbonyl reductase (CR) from the hyperthermophilic archaeon Aeropyrum pernix K1 was overexpressed in Escherichia coli. Its product was effectively purified and characterized. The expressed enzyme was the most thermostable CR found to date; the activity remained at approximately 75% of its activity after incubation for 10min up to 90°C. In addition, A. pernix CR exhibited high stability at a wider range of pH values and longer periods of storage compared with CRs previously identified from other sources. A. pernix CR catalyzed the reduction of various carbonyl compounds including ethyl 4-chloro-3-oxobutanoate and 9,10-phenanthrenequinone, similar to the CR from thyroidectomized (Tx) chicken fatty liver. However, A. pernix CR exhibited significantly higher Km values against several substrates than Tx chicken fatty liver CR. The three-dimensional structure of A. pernix CR was determined using the molecular replacement method at a resolution of 2.09Å, in the presence of NADPH. The overall fold of A. pernix CR showed moderate similarity to that of Tx chicken fatty liver CR; however, A. pernix CR had no active-site lid unlike Tx chicken fatty liver CR. Consequently, the active-site cavity in the A. pernix CR was much more solvent-accessible than that in Tx chicken fatty liver CR. This structural feature may be responsible for the enzyme's lower affinity for several substrates and NADPH. The factors contributing to the much higher thermostability of A. pernix CR were analyzed by comparing its structure with that of Tx chicken fatty liver CR. This comparison showed that extensive formation of the intrasubunit ion pair networks, and the presence of the strong intersubunit interaction, is likely responsible for A. pernix CR thermostability. Site-directed mutagenesis showed that Glu99 plays a major role in the intersubunit interaction. This is the first report regarding the characteristics and three-dimensional structure of hyperthermophilic archaeal CR.


Subject(s)
Aeropyrum/enzymology , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Aeropyrum/genetics , Alcohol Oxidoreductases/genetics , Amino Acid Sequence , Animals , Archaeal Proteins/genetics , Avian Proteins/chemistry , Avian Proteins/genetics , Avian Proteins/metabolism , Catalytic Domain , Chickens , Cloning, Molecular , Crystallography, X-Ray , Enzyme Stability , Genes, Archaeal , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Species Specificity
12.
Proteins ; 84(5): 712-7, 2016 May.
Article in English | MEDLINE | ID: mdl-26868175

ABSTRACT

Initiation factor 5B (IF5B) is a universally conserved translational GTPase that catalyzes ribosomal subunit joining. In eukaryotes, IF5B directly interacts via a groove in its domain IV with initiation factor 1A (IF1A), another universally conserved initiation factor, to accomplish efficient subunit joining. Here, we have determined the first structure of a crenarchaeal IF5B, which revealed that the archaea-specific region of IF5B (helix α15) binds and occludes the groove of domain IV. Therefore, archaeal IF5B cannot access IF1A in the same manner as eukaryotic IF5B. This fact suggests that different relationships between IF5B and IF1A exist in archaea and eukaryotes.


Subject(s)
Aeropyrum/genetics , Archaeal Proteins/ultrastructure , Eukaryotic Initiation Factors/ultrastructure , Aeropyrum/chemistry , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Crystallography, X-Ray , Eukaryotic Initiation Factors/chemistry , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Models, Molecular , Protein Conformation
13.
Biochim Biophys Acta ; 1857(2): 160-168, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26592143

ABSTRACT

Heme A is a prosthetic group unique for cytochrome a-type respiratory oxidases in mammals, plants and many microorganisms. The poorly understood integral membrane protein heme A synthase catalyzes the synthesis of heme A from heme O. In bacteria, but not in mitochondria, this enzyme contains one or two pairs of cysteine residues that are present in predicted hydrophilic polypeptide loops on the extracytoplasmic side of the membrane. We used heme A synthase from the eubacterium Bacillus subtilis and the hyperthermophilic archeon Aeropyrum pernix to investigate the functional role of these cysteine residues. Results with B. subtilis amino acid substituted proteins indicated the pair of cysteine residues in the loop connecting transmembrane segments I and II as being essential for catalysis but not required for binding of the enzyme substrate, heme O. Experiments with isolated A. pernix and B. subtilis heme A synthase demonstrated that a disulfide bond can form between the cysteine residues in the same loop and also between loops showing close proximity of the two loops in the folded enzyme protein. Based on the findings, we propose a classification scheme for the four discrete types of heme A synthase found so far in different organisms and propose that essential cysteinyls mediate transfer of reducing equivalents required for the oxygen-dependent catalysis of heme A synthesis from heme O.


Subject(s)
Aeropyrum/chemistry , Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Cysteine/chemistry , Cytochrome b Group/chemistry , Heme/analogs & derivatives , Membrane Proteins/chemistry , Aeropyrum/enzymology , Aeropyrum/genetics , Aeropyrum/metabolism , Amino Acid Sequence , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cysteine/metabolism , Cytochrome b Group/genetics , Cytochrome b Group/metabolism , Gene Expression , Heme/biosynthesis , Heme/chemistry , Heme/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Sequence Data , Mutation , Oxygen/chemistry , Oxygen/metabolism , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
14.
Environ Microbiol Rep ; 7(6): 936-45, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26332065

ABSTRACT

This study reports the ability of one hyperthermophilic and two thermophilic microorganisms to grow anaerobically by the reduction of chlorate and perchlorate. Physiological, genomic and proteome analyses suggest that the Crenarchaeon Aeropyrum pernix reduces perchlorate with a periplasmic enzyme related to nitrate reductases, but that it lacks a functional chlorite-disproportionating enzyme (Cld) to complete the pathway. Aeropyrum pernix, previously described as a strictly aerobic microorganism, seems to rely on the chemical reactivity of reduced sulfur compounds with chlorite, a mechanism previously reported for perchlorate-reducing Archaeoglobus fulgidus. The chemical oxidation of thiosulfate (in excessive amounts present in the medium) and the reduction of chlorite result in the release of sulfate and chloride, which are the products of a biotic-abiotic perchlorate reduction pathway in Ae. pernix. The apparent absence of Cld in two other perchlorate-reducing microorganisms, Carboxydothermus hydrogenoformans and Moorella glycerini strain NMP, and their dependence on sulfide for perchlorate reduction is consistent with the observations made on Ar. fulgidus. Our findings suggest that microbial perchlorate reduction at high temperature differs notably from the physiology of perchlorate- and chlorate-reducing mesophiles and that it is characterized by the lack of a chlorite dismutase and is enabled by a combination of biotic and abiotic reactions.


Subject(s)
Aeropyrum/metabolism , Chlorates/metabolism , Firmicutes/metabolism , Perchlorates/metabolism , Aeropyrum/genetics , Firmicutes/genetics , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Proteome , Thiosulfates/metabolism
15.
Article in English | MEDLINE | ID: mdl-23989144

ABSTRACT

Archaeal ribosomal protein L7Ae is a multifunctional RNA-binding protein that directs post-transcriptional modification of archaeal RNAs. The L7Ae protein from Aeropyrum pernix (Ap L7Ae), a member of the Crenarchaea, was found to have an extremely high melting temperature (>383 K). The crystal structure of Ap L7Ae has been determined to a resolution of 1.56 Å. The structure of Ap L7Ae was compared with the structures of two homologs: hyperthermophilic Methanocaldococcus jannaschii L7Ae and the mesophilic counterpart mammalian 15.5 kD protein. The primary stabilizing feature in the Ap L7Ae protein appears to be the large number of ion pairs and extensive ion-pair network that connects secondary-structural elements. To our knowledge, Ap L7Ae is among the most thermostable single-domain monomeric proteins presently observed.


Subject(s)
Aeropyrum/chemistry , Archaeal Proteins/chemistry , Ions/chemistry , RNA, Archaeal/chemistry , Ribosomal Proteins/chemistry , Aeropyrum/genetics , Aeropyrum/metabolism , Amino Acid Sequence , Animals , Archaeal Proteins/genetics , Binding Sites , Crystallography, X-Ray , Escherichia coli/genetics , Hot Temperature , Humans , Hydrogen Bonding , Methanocaldococcus/chemistry , Methanocaldococcus/genetics , Methanocaldococcus/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Stability , Protein Structure, Secondary , RNA, Archaeal/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Ribosomal Proteins/genetics , Sequence Alignment , Structural Homology, Protein
16.
Appl Environ Microbiol ; 79(19): 5891-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23872576

ABSTRACT

The increasing number of genome sequences of archaea and bacteria show their adaptation to different environmental conditions at the genomic level. Aeropyrum spp. are aerobic and hyperthermophilic archaea. Aeropyrum camini was isolated from a deep-sea hydrothermal vent, and Aeropyrum pernix was isolated from a coastal solfataric vent. To investigate the adaptation strategy in each habitat, we compared the genomes of the two species. Shared genome features were a small genome size, a high GC content, and a large portion of orthologous genes (86 to 88%). The genomes also showed high synteny. These shared features may have been derived from the small number of mobile genetic elements and the lack of a RecBCD system, a recombinational enzyme complex. In addition, the specialized physiology (aerobic and hyperthermophilic) of Aeropyrum spp. may also contribute to the entire-genome similarity. Despite having stable genomes, interference of synteny occurred with two proviruses, A. pernix spindle-shaped virus 1 (APSV1) and A. pernix ovoid virus 1 (APOV1), and clustered regularly interspaced short palindromic repeat (CRISPR) elements. Spacer sequences derived from the A. camini CRISPR showed significant matches with protospacers of the two proviruses infecting A. pernix, indicating that A. camini interacted with viruses closely related to APSV1 and APOV1. Furthermore, a significant fraction of the nonorthologous genes (41 to 45%) were proviral genes or ORFans probably originating from viruses. Although the genomes of A. camini and A. pernix were conserved, we observed nonsynteny that was attributed primarily to virus-related elements. Our findings indicated that the genomic diversification of Aeropyrum spp. is substantially caused by viruses.


Subject(s)
Aeropyrum/genetics , Aeropyrum/virology , Genetic Variation , Genome, Archaeal , Proviruses/genetics , Aeropyrum/isolation & purification , Base Composition , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , Hydrothermal Vents/microbiology , Molecular Sequence Data , Seawater/microbiology , Sequence Analysis, DNA , Synteny
17.
Biochem Biophys Res Commun ; 436(2): 230-4, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23726912

ABSTRACT

Cis-prenyltransferase from a hyperthermophilic archaeon Aeropyrum pernix was expressed in Escherichia coli and purified for characterization. Properties such as substrate specificity, product chain-length, thermal stability and cofactor requirement were investigated using the recombinant enzyme. In particular, the substrate specificity of the enzyme attracts interest because only dimethylallyl diphosphate and geranylfarnesyl diphosphate, both of which are unusual substrates for known cis-prenyltransferases, are likely available as an allylic primer substrate in A. pernix. From the enzymatic study, the archaeal enzyme was shown to be undecaprenyl diphosphate synthase that has anomalous substrate specificity, which results in a preference for geranylfarnesyl diphosphate. This means that the product of the enzyme, which is probably used as the precursor of the glycosyl carrier lipid, would have an undiscovered structure.


Subject(s)
Aeropyrum/enzymology , Alkyl and Aryl Transferases/metabolism , Archaeal Proteins/metabolism , Hot Temperature , Aeropyrum/genetics , Alkyl and Aryl Transferases/genetics , Archaeal Proteins/genetics , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Escherichia coli/genetics , Gefarnate/analogs & derivatives , Gefarnate/metabolism , Organophosphates/metabolism , Recombinant Proteins/metabolism , Substrate Specificity
18.
PLoS One ; 8(2): e58237, 2013.
Article in English | MEDLINE | ID: mdl-23469156

ABSTRACT

BACKGROUND: Architectural proteins have important roles in compacting and organising chromosomal DNA. There are two potential histone counterpart peptide sequences (Alba1 and Alba2) in the Aeropyrum pernix genome (APE1832.1 and APE1823). METHODOLOGY/PRINCIPAL FINDINGS: THESE TWO PEPTIDES WERE EXPRESSED AND THEIR INTERACTIONS WITH VARIOUS DNAS WERE STUDIED USING A COMBINATION OF VARIOUS EXPERIMENTAL TECHNIQUES: surface plasmon resonance, UV spectrophotometry, circular dichroism-spectropolarimetry, gel-shift assays, and isothermal titration calorimetry. CONCLUSIONS/SIGNIFICANCE: Our data indicate that there are significant differences in the properties of the Alba1 and Alba2 proteins. Both of these Alba proteins can thermally stabilise DNA polynucleotides, as seen from UV melting curves. Alba2 and equimolar mixtures of Alba1/Alba2 have greater effects on the thermal stability of poly(dA-dT).poly(dA-dT). Surface plasmon resonance sensorgrams for binding of Alba1, Alba2, and equimolar mixtures of Alba1/Alba2 to DNA oligonucleotides show different binding patterns. Circular dichroism indicates that Alba2 has a less-ordered secondary structure than Alba1. The secondary structures of the Alba proteins are not significantly influenced by DNA binding, even at high temperatures. Based on these data, we conclude that Alba1, Alba2, and equimolar mixtures of Alba1/Alba2 show different properties in their binding to various DNAs.


Subject(s)
Aeropyrum , Archaeal Proteins/metabolism , Chromatin/metabolism , DNA/metabolism , Aeropyrum/genetics , Amino Acid Sequence , Archaeal Proteins/chemistry , Base Sequence , DNA/chemistry , Models, Molecular , Molecular Sequence Data , Nucleic Acid Denaturation , Peptide Fragments/metabolism , Protein Binding , Protein Structure, Secondary , Transition Temperature
19.
FEBS J ; 280(6): 1475-90, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23332162

ABSTRACT

Thermostable nucleoside phosphorylases are attractive biocatalysts for the synthesis of modified nucleosides. Hence we report on the recombinant expression of three 'high molecular mass' purine nucleoside phosphorylases (PNPs) derived from the thermophilic bacteria Deinococcus geothermalis, Geobacillus thermoglucosidasius and from the hyperthermophilic archaeon Aeropyrum pernix (5'-methythioadenosine phosphorylase; ApMTAP). Thermostability studies, kinetic analysis and substrate specificities are reported. The PNPs were stable at their optimal temperatures (DgPNP, 55 °C; GtPNP, 70 °C; ApMTAP, activity rising to 99 °C). Substrate properties were investigated for natural purine nucleosides [adenosine, inosine and their C2'-deoxy counterparts (activity within 50-500 U·mg(-1))], analogues with 2'-amino modified 2'-deoxy-adenosine and -inosine (within 0.1-3 U·mg(-1)) as well as 2'-deoxy-2'-fluoroadenosine (9) and its C2'-arabino diastereomer (10, within 0.01-0.03 U·mg(-1)). Our results reveal that the structure of the heterocyclic base (e.g. adenine or hypoxanthine) can play a critical role in the phosphorolysis reaction. The implications of this finding may be helpful for reaction mechanism studies or optimization of reaction conditions. Unexpectedly, the diastereomeric 2'-deoxyfluoro adenine ribo- and arabino-nucleosides displayed similar substrate properties. Moreover, cytidine and 2'-deoxycytidine were found to be moderate substrates of the prepared PNPs, with substrate activities in a range similar to those determined for 2'-deoxyfluoro adenine nucleosides 9 and 10. C2'-modified nucleosides are accepted as substrates by all recombinant enzymes studied, making these enzymes promising biocatalysts for the synthesis of modified nucleosides. Indeed, the prepared PNPs performed well in preliminary transglycosylation reactions resulting in the synthesis of 2'-deoxyfluoro adenine ribo- and arabino- nucleosides in moderate yield (24%).


Subject(s)
Deinococcus/enzymology , Geobacillus/enzymology , Purine-Nucleoside Phosphorylase/isolation & purification , Aeropyrum/enzymology , Aeropyrum/genetics , Amino Acid Sequence , Cloning, Molecular , DNA, Bacterial/genetics , Deinococcus/genetics , Deoxyadenosines/metabolism , Enzyme Activation , Enzyme Assays , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Geobacillus/genetics , Glycosylation , Kinetics , Molecular Sequence Data , Phosphorylation , Purine Nucleosides/metabolism , Purine-Nucleoside Phosphorylase/genetics , Purine-Nucleoside Phosphorylase/metabolism , Pyrimidine Nucleosides/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Solubility , Substrate Specificity , Temperature
20.
Acta Biochim Biophys Sin (Shanghai) ; 44(12): 965-73, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23099882

ABSTRACT

Protein domain swapping is an efficient way in protein functional evolution in vivo and also has been proved to be an effective strategy to modify the function of the multi-domain proteins in vitro. To explore the potentials of domain swapping for alteration of the enzyme substrate specificities and the structure-function relationship of the homologous proteins, here we constructed two chimeras from a pair of thermophilic members of the α/ß hydrolase superfamily by grafting their functional domains to the conserved α/ß hydrolase fold domain: a carboxylesterase from Archaeoglobus fulgidus (AFEST) and an acylpeptide hydrolase from Aeropyrum pernix K1 (apAPH) and explored their activities on hydrolyze p-nitrophenyl esters (pNP) with different acyl chain lengths. We took two approaches to reduce the crossover disruptions when creating the chimeras: chose the residue which involved in the least contacts as the splicing site and optimized the newly formed domain interfaces of the chimeras by site-directed mutations. Characterizations of AAM7 and PAR showed that these chimeras inherited the thermophilic property of both parents. In the aspect of substrate specificity, AAM7 and PAR showed highest activity towards short chain length substrate pNPC4 and middle chain length substrate pNPC8, similar to parent AFEST and apAPH, respectively. These results suggested that the substrate-binding domain is the dominant factor on enzyme substrate specificity, and the optimization of the newly formed domain interface is an important guarantee for successful domain swapping of proteins with low-sequence homology.


Subject(s)
Archaeal Proteins/chemistry , Hydrolases/chemistry , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Aeropyrum/enzymology , Aeropyrum/genetics , Amino Acid Sequence , Amino Acids/chemistry , Amino Acids/genetics , Amino Acids/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Archaeoglobus fulgidus/enzymology , Archaeoglobus fulgidus/genetics , Binding Sites/genetics , Circular Dichroism , Crystallography, X-Ray , Enzyme Stability , Esters , Hydrogen-Ion Concentration , Hydrolases/genetics , Hydrolases/metabolism , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Nitrophenols/chemistry , Nitrophenols/metabolism , Protein Binding , Protein Conformation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Substrate Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...