Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.288
Filter
1.
CNS Neurosci Ther ; 30(6): e14808, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887205

ABSTRACT

OBJECTIVE: Phenylethanolamine N-methyltransferase (PNMT)-expressing neurons in the nucleus tractus solitarii (NTS) contribute to the regulation of autonomic functions. However, the neural circuits linking these neurons to other brain regions remain unclear. This study aims to investigate the connectivity mechanisms of the PNMT-expressing neurons in the NTS (NTSPNMT neurons). METHODS: The methodologies employed in this study included a modified rabies virus-based retrograde neural tracing technique, conventional viral anterograde tracing, and immunohistochemical staining procedures. RESULTS: A total of 43 upstream nuclei projecting to NTSPNMT neurons were identified, spanning several key brain regions including the medulla oblongata, pons, midbrain, cerebellum, diencephalon, and telencephalon. Notably, dense projections to the NTSPNMT neurons were observed from the central amygdaloid nucleus, paraventricular nucleus of the hypothalamus, area postrema, and the gigantocellular reticular nucleus. In contrast, the ventrolateral medulla, lateral parabrachial nucleus, and lateral hypothalamic area were identified as the primary destinations for axon terminals originating from NTSPNMT neurons. Additionally, reciprocal projections were evident among 21 nuclei, primarily situated within the medulla oblongata. CONCLUSION: Our research findings demonstrate that NTSPNMT neurons form extensive connections with numerous nuclei, emphasizing their essential role in the homeostatic regulation of vital autonomic functions.


Subject(s)
Neurons , Phenylethanolamine N-Methyltransferase , Solitary Nucleus , Animals , Phenylethanolamine N-Methyltransferase/metabolism , Phenylethanolamine N-Methyltransferase/genetics , Solitary Nucleus/enzymology , Solitary Nucleus/metabolism , Solitary Nucleus/cytology , Neurons/metabolism , Neurons/enzymology , Male , Efferent Pathways/enzymology , Afferent Pathways/enzymology , Rats, Sprague-Dawley , Brain Mapping/methods , Rats
2.
Brain Res Bull ; 213: 110981, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777132

ABSTRACT

INTRODUCTION: The medial prefrontal cortex (mPFC) forms output pathways through projection neurons, inversely receiving adjacent and long-range inputs from other brain regions. However, how afferent neurons of mPFC are affected by chronic stress needs to be clarified. In this study, the effects of chronic restraint stress (CRS) on the distribution density of mPFC dendrites/dendritic spines and the projections from the cortex and subcortical brain regions to the mPFC were investigated. METHODS: In the present study, C57BL/6 J transgenic (Thy1-YFP-H) mice were subjected to CRS to establish an animal model of depression. The infralimbic (IL) of mPFC was selected as the injection site of retrograde AAV using stereotactic technique. The effects of CRS on dendrites/dendritic spines and afferent neurons of the mPFC IL were investigaed by quantitatively assessing the distribution density of green fluorescent (YFP) positive dendrites/dendritic spines and red fluorescent (retrograde AAV recombinant protein) positive neurons, respectively. RESULTS: The results revealed that retrograde tracing virus labeled neurons were widely distributed in ipsilateral and contralateral cingulate cortex (Cg1), second cingulate cortex (Cg2), prelimbic cortex (PrL), infralimbic cortex, medial orbital cortex (MO), and dorsal peduncular cortex (DP). The effects of CRS on the distribution density of mPFC red fluorescence positive neurons exhibited regional differences, ranging from rostral to caudal or from top to bottom. Simultaneously, CRS resulted a decrease in the distribution density of basal, proximal and distal dendrites, as well as an increase in the loss of dendritic spines of the distal dendrites in the IL of mPFC. Furthermore, varying degrees of red retrograde tracing virus fluorescence signals were observed in other cortices, amygdala, hippocampus, septum/basal forebrain, hypothalamus, thalamus, mesencephalon, and brainstem in both ipsilateral and contralateral brain. CRS significantly reduced the distribution density of red fluorescence positive neurons in other cortices, hippocampus, septum/basal forebrain, hypothalamus, and thalamus. Conversely, CRS significantly increased the distribution density of red fluorescence positive neurons in amygdala. CONCLUSION: Our results suggest a possible mechanism that CRS leads to disturbances in synaptic plasticity by affecting multiple inputs to the mPFC, which is characterized by a decrease in the distribution density of dendrites/dendritic spines in the IL of mPFC and a reduction in input neurons of multiple cortices to the IL of mPFC as well as an increase in input neurons of amygdala to the IL of mPFC, ultimately causing depression-like behaviors.


Subject(s)
Depression , Mice, Inbred C57BL , Mice, Transgenic , Prefrontal Cortex , Restraint, Physical , Stress, Psychological , Animals , Prefrontal Cortex/pathology , Prefrontal Cortex/metabolism , Stress, Psychological/pathology , Stress, Psychological/metabolism , Mice , Depression/pathology , Male , Dendritic Spines/pathology , Disease Models, Animal , Afferent Pathways , Dendrites/pathology , Dendrites/metabolism , Neurons, Afferent/pathology , Neurons, Afferent/metabolism , Brain/pathology , Brain/metabolism
3.
Exp Brain Res ; 242(6): 1481-1493, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702470

ABSTRACT

The anterior (DA) and posterior parts of the deltoid (DP) show alternating contraction during shoulder flexion and extension movements. It is expected that an inhibitory spinal reflex between the DA and DP exists. In this study, spinal reflexes between the DA and DP were examined in healthy human subjects using post-stimulus time histogram (PSTH) and electromyogram averaging (EMG-A). Electrical conditioning stimulation was delivered to the axillary nerve branch that innervates the DA (DA nerve) and DP (DP nerve) with the intensity below the motor threshold. In the PSTH study, the stimulation to the DA and DP nerves inhibited (decrease in the firing probability) 31 of 54 DA motor units and 31 of 51 DP motor units. The inhibition was not provoked by cutaneous stimulation. The central synaptic delay of the inhibition between the DA and DP nerves was 1.5 ± 0.5 ms and 1.4 ± 0.4 ms (mean ± SD) longer than those of the homonymous facilitation of the DA and DP, respectively. In the EMG-A study, conditioning stimulation to the DA and DP nerves inhibited the rectified and averaged EMG of the DP and DA, respectively. The inhibition diminished with tonic vibration stimulation to the DA and DP and recovered 20-30 min after vibration removal. These findings suggest that oligo(di or tri)-synaptic inhibition mediated by group Ia afferents between the DA and DP exists in humans.


Subject(s)
Deltoid Muscle , Electric Stimulation , Electromyography , Neural Inhibition , Humans , Male , Adult , Deltoid Muscle/physiology , Deltoid Muscle/innervation , Female , Neural Inhibition/physiology , Young Adult , Vibration , Afferent Pathways/physiology
4.
Auton Neurosci ; 253: 103181, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696917

ABSTRACT

Respiratory interoception is one of the internal bodily systems that is comprised of different types of somatic and visceral sensations elicited by different patterns of afferent input and respiratory motor drive mediating multiple respiratory modalities. Respiratory interoception is a complex system, having multiple afferents grouped into afferent clusters and projecting into both discriminative and affective centers that are directly related to the behavioral assessment of breathing. The multi-afferent system provides a spectrum of input that result in the ability to interpret the different types of respiratory interceptive sensations. This can result in a response, commonly reported as breathlessness or dyspnea. Dyspnea can be differentiated into specific modalities. These respiratory sensory modalities lead to a general sensation of an Urge-to-Breathe, driven by a need to compensate for the modulation of ventilation that has occurred due to factors that have affected breathing. The multiafferent system for respiratory interoception can also lead to interpretation of the sensory signals resulting in respiratory related sensory experiences, including the Urge-to-Cough and Urge-to-Swallow. These behaviors are modalities that can be driven through the differentiation and integration of multiple afferent input into the respiratory neural comparator. Respiratory sensations require neural somatic and visceral interoceptive elements that include gated attention and detection leading to respiratory modality discrimination with subsequent cognitive decision and behavioral compensation. Studies of brain areas mediating cortical and subcortical respiratory sensory pathways are summarized and used to develop a model of an integrated respiratory neural network mediating respiratory interoception.


Subject(s)
Interoception , Humans , Interoception/physiology , Animals , Respiration , Afferent Pathways/physiology
6.
Elife ; 122024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634460

ABSTRACT

Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.


Subject(s)
Drosophila , Neurons , Animals , Grooming/physiology , Afferent Pathways , Neurons/physiology , Brain , Drosophila melanogaster/physiology
7.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612402

ABSTRACT

The dorsal root ganglion (DRG) serves as a pivotal site for managing chronic pain through dorsal root ganglion stimulation (DRG-S). In recent years, the DRG-S has emerged as an attractive modality in the armamentarium of neuromodulation therapy due to its accessibility and efficacy in alleviating chronic pain refractory to conventional treatments. Despite its therapeutic advantages, the precise mechanisms underlying DRG-S-induced analgesia remain elusive, attributed in part to the diverse sensory neuron population within the DRG and its modulation of both peripheral and central sensory processing pathways. Emerging evidence suggests that DRG-S may alleviate pain by several mechanisms, including the reduction of nociceptive signals at the T-junction of sensory neurons, modulation of pain gating pathways within the dorsal horn, and regulation of neuronal excitability within the DRG itself. However, elucidating the full extent of DRG-S mechanisms necessitates further exploration, particularly regarding its supraspinal effects and its interactions with cognitive and affective networks. Understanding these mechanisms is crucial for optimizing neurostimulation technologies and improving clinical outcomes of DRG-S for chronic pain management. This review provides a comprehensive overview of the DRG anatomy, mechanisms of action of the DRG-S, and its significance in neuromodulation therapy for chronic pain.


Subject(s)
Chronic Pain , Humans , Chronic Pain/therapy , Ganglia, Spinal , Pain Management , Afferent Pathways , Sensory Receptor Cells
8.
J Hand Surg Am ; 49(6): 603-606, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38456864

ABSTRACT

The sensory-collapse test (formerly the scratch-collapse test) is a physical examination finding describing a momentary inhibition of external shoulder rotation following light stimulation of an injured nerve in the ipsilateral limb. Similar to other physical examination tests designed to interrogate nerve compression, such as the Phalen or Tinel tests, its test characteristics demonstrate variation. There remains speculation about the test's existence and anatomic basis. The literature of mammalian reflex physiology was reviewed with an emphasis on the sensory pathways from the upper extremity, the extrapyramidal system, and newly discovered pathways and concepts of nociception. A clear reflex pathway is described connecting the stimulus within an injured nerve through the afferent pathways in the fasciculus cuneatus in the spinal cord directly to the lateral reticulospinal tract, resulting in the inhibition of extensor muscles in the proximal limb (eg, shoulder) and activation of the limb flexors by acting upon alpha and gamma motor neurons. The sensory-collapse test represents a reflex pathway that teleologically provides a mechanism to protect an injured nerve by withdrawal toward the trunk and away from the noxious environment.


Subject(s)
Reflex , Humans , Reflex/physiology , Nerve Compression Syndromes/physiopathology , Nociception/physiology , Peripheral Nerve Injuries/physiopathology , Afferent Pathways/physiology
9.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542511

ABSTRACT

Pulmonary fibrosis results from the deposition and proliferation of extracellular matrix components in the lungs. Despite being an airway disorder, pulmonary fibrosis also has notable effects on the pulmonary vasculature, with the development and severity of pulmonary hypertension tied closely to patient mortality. Furthermore, the anatomical proximity of blood vessels, the alveolar epithelium, lymphatic tissue, and airway spaces highlights the need to identify shared pathogenic mechanisms and pleiotropic signaling across various cell types. Sensory nerves and their transmitters have a variety of effects on the various cell types within the lungs; however, their effects on many cell types and functions during pulmonary fibrosis have not yet been investigated. This review highlights the importance of gaining a new understanding of sensory nerve function in the context of pulmonary fibrosis as a potential tool to limit airway and vascular dysfunction.


Subject(s)
Hypertension, Pulmonary , Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/metabolism , Lung/metabolism , Afferent Pathways , Hypertension, Pulmonary/metabolism , Respiratory Mucosa/metabolism
10.
Neurophysiol Clin ; 54(1): 102940, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38382141

ABSTRACT

BACKGROUND: The mechanism of Short-Latency Afferent Inhibition (SAI) is relatively well understood. In contrast, Long-Latency Afferent Inhibition (LAI) has not been as extensively studied as SAI, and its underlying mechanism remains unclear. OBJECTIVE/HYPOTHESIS: This study had two primary objectives: first, to determine the optimal ISIs for LAI measured by amplitude changes (A-LAI) using high-resolution ISI ranges; and second, to compare measurements of LAI by threshold-tracking (T-LAI). METHODS: Twenty-eight healthy volunteers (12 males aged 24- 45 years) participated in the study. Paired peripheral electrical and transcranial magnetic stimulation (TMS) stimuli (TS1mv) were applied at varying (ISIs)- 100, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000 ms. RESULTS: Both A-LAI and T-LAI showed that LAI decreased progressively from a peak at 200 or 250 ms to 1000 ms. Using the A-LAI method, pronounced inhibition was observed at three specific ISIs: 100 ms, 250 ms and 450 ms. When A-LAI values were converted to equivalent threshold changes, they did not differ significantly from T-LAI. Reliability at distinguishing individuals, as indicated by intraclass correlation coefficient (ICC) was greater for A-LAI, with a peak value of 0.82 at 250 ms. CONCLUSION(S): The study demonstrates that ISIs of 100 ms and 250 ms can be reliably used in amplitude measurement LAI. The study demonstrates that both LAI measurements record a similar decline of inhibition with increasing ISI.


Subject(s)
Neural Inhibition , Transcranial Magnetic Stimulation , Male , Humans , Afferent Pathways/physiology , Reproducibility of Results , Neural Inhibition/physiology , Reaction Time/physiology , Evoked Potentials, Motor/physiology
11.
J Neurosci Methods ; 405: 110081, 2024 May.
Article in English | MEDLINE | ID: mdl-38369028

ABSTRACT

BACKGROUND: Existing methods identify only ≈10 Aδ-fibers in human sensory nerves per recording. This study examines methods to increase the detection of Aδ-fibers. NEW METHOD: Two to 20 averages of 500 replicate responses to epidermal nerve stimulation are obtained. Pairs of different averages are constructed. Each pair is analyzed with algorithms applied to amplitude and frequency to detect replication of responses to stimulation as "simultaneous similarities in two averages" (SS2AVs) at ≥99.5th percentile of control. In a pair of averages the latencies of amplitude and frequency SS2AVs for the same response to stimulation may differ by ≤0.25 ms. Therefore, Aδ-fibers are identified by the 0.25 ms moving sum of SS2AV latencies of the pairs of averages. RESULTS: Increasing averages increases pairs of different averages and detection of Aδ-fibers: from 2 to 10 Aδ-fibers with two averages (one pair) to >50 Aδ-fibers with 12-20 averages (66-190 pairs). COMPARISON WITH EXISTING METHOD(S): Existing methods identify ≤10 Aδ-fibers in 10 averages/45 pairs with the medians of amplitude and frequency algorithms applied to all 45 pairs. This study identifies Aδ-fibers (i) by applying these algorithms at the 99.5th percentile of control, (ii) to each pair of averages and (iii) by the 0.25 ms sum of algorithm identified events (SS2AVs) in all pairs. These three changes significantly increase the detection of Aδ-fibers, e.g., in 10 averages/45pairs from 10 to 45. CONCLUSIONS: Three modifications of existing methods can increase the detection of Aδ-fibers to an amount suitable (>50 with ≥12 averages) for statistical comparison of different nerves.


Subject(s)
Nerve Fibers, Myelinated , Nerve Fibers, Unmyelinated , Humans , Nerve Fibers, Unmyelinated/physiology , Afferent Pathways
12.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256202

ABSTRACT

Homeostatic maintenance is essential for pulp function. Disrupting pulp homeostasis may lead to pulp degeneration, such as fibrosis and calcifications. Sensory nerves constitute a crucial component of the dental pulp. However, the precise involvement of sensory nerves in pulp homeostasis remains uncertain. In this study, we observed the short-term and long-term histological changes in the dental pulp after inferior alveolar nerve transection. Additionally, we cultured primary dental pulp cells (DPCs) from the innervated and denervated groups and compared indicators of cellular senescence and cellular function. The results revealed that pulp fibrosis occurred at 2 w after the operation. Furthermore, the pulp area, as well as the height and width of the pulp cavity, showed accelerated reductions after sensory denervation. Notably, the pulp area at 16 w after the operation was comparable to that of 56 w old rats. Sensory denervation induced excessive extracellular matrix (ECM) deposition and increased predisposition to mineralization. Furthermore, sensory denervation promoted the senescence of DPCs. Denervated DPCs exhibited decelerated cell proliferation, arrest in the G2/M phase of the cell cycle, imbalance in the synthesis and degradation of ECM, and enhanced mineralization. These findings indicate that sensory nerves play an essential role in pulp homeostasis maintenance and dental pulp cell fate decisions, which may provide novel insights into the prevention of pulp degeneration.


Subject(s)
Calcinosis , Dental Pulp Diseases , Animals , Rats , Dental Pulp , Afferent Pathways , Homeostasis , Fibrosis , Denervation
13.
Eur J Neurosci ; 59(8): 2087-2101, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38234172

ABSTRACT

Understanding how inhibitory pathways influence motor cortical activity during fatiguing contractions may provide valuable insight into mechanisms associated with multiple sclerosis (MS) muscle activation. Short-latency afferent inhibition (SAI) reflects inhibitory interactions between the somatosensory cortex and the motor cortex, and although SAI is typically reduced with MS, it is unknown how SAI is regulated during exercise-induced fatigue. The current study examined how SAI modulates motor evoked potentials (MEPs) during fatiguing contractions. Fourteen people with relapsing-remitting MS (39 ± 6 years, nine female) and 10 healthy individuals (36 ± 6 years, six female) participated. SAI was induced by stimulation of the median nerve that was paired with TMS over the motor representation of the abductor pollicis brevis. A contraction protocol was employed that depressed force generating capacity using a sustained 3-min 15% MVC, immediately followed by a low-intensity (15% MVC) intermittent contraction protocol so that MEP and SAI could be measured during the rest phases of each duty cycle. Similar force, electromyography and MEP responses were observed between groups. However, the MS group had significantly reduced SAI during the contraction protocol compared to the healthy control group (p < .001). Despite the MS group reporting greater scores on the Fatigue Severity Scale and Modified Fatigue Impact Scale, these scales did not correlate with inhibitory measures. As there were no between-group differences in SSEPs, MS-related SAI differences during the fatiguing contractions were most likely associated with disease-related changes in central integration.


Subject(s)
Multiple Sclerosis , Muscle Fatigue , Humans , Female , Neural Inhibition/physiology , Transcranial Magnetic Stimulation/methods , Evoked Potentials, Motor/physiology , Muscle, Skeletal/physiology , Electromyography , Muscle Contraction/physiology , Electric Stimulation , Afferent Pathways/physiology
14.
Cerebellum ; 23(2): 284-328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36690829

ABSTRACT

Olov Oscarsson's review on the functional organization of spinocerebellar paths is a prime demonstration of the great skills and huge knowledge base of the electrophysiologists of his era working on communication systems in the brain. Oscarsson describes and characterizes in detail no less than ten different communication lines between the spinal cord and the cerebellum. As such, his work proved to be a highly fertile basis for ongoing physiological and anatomical research. However, even after 50 years of continuing cerebellar research, many questions are still open and even care must be taken that the differentiation in spinocerebellar paths, so carefully demonstrated by Oscarsson, is not lost in present-day research.


Subject(s)
Cerebellum , Olivary Nucleus , Neural Pathways/anatomy & histology , Cerebellum/physiology , Afferent Pathways , Olivary Nucleus/physiology , Purkinje Cells/physiology
15.
J Neurosci ; 44(6)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37968120

ABSTRACT

In higher sensory brain regions, slow oscillations (0.5-5 Hz) associated with quiet wakefulness and attention modulate multisensory integration, predictive coding, and perception. Although often assumed to originate via thalamocortical mechanisms, the extent to which subcortical sensory pathways are independently capable of slow oscillatory activity is unclear. We find that in the first station for auditory processing, the cochlear nucleus, fusiform cells from juvenile mice (of either sex) generate robust 1-2 Hz oscillations in membrane potential and exhibit electrical resonance. Such oscillations were absent prior to the onset of hearing, intrinsically generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) and persistent Na+ conductances (NaP) interacting with passive membrane properties, and reflected the intrinsic resonance properties of fusiform cells. Cx36-containing gap junctions facilitated oscillation strength and promoted pairwise synchrony of oscillations between neighboring neurons. The strength of oscillations were strikingly sensitive to external Ca2+, disappearing at concentrations >1.7 mM, due in part to the shunting effect of small-conductance calcium-activated potassium (SK) channels. This effect explains their apparent absence in previous in vitro studies of cochlear nucleus which routinely employed high-Ca2+ extracellular solution. In contrast, oscillations were amplified in reduced Ca2+ solutions, due to relief of suppression by Ca2+ of Na+ channel gating. Our results thus reveal mechanisms for synchronous oscillatory activity in auditory brainstem, suggesting that slow oscillations, and by extension their perceptual effects, may originate at the earliest stages of sensory processing.


Subject(s)
Calcium , Cochlear Nucleus , Mice , Animals , Calcium/metabolism , Cochlear Nucleus/physiology , Neurons/physiology , Membrane Potentials/physiology , Afferent Pathways/physiology
16.
J Comp Neurol ; 532(2): e25546, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37837642

ABSTRACT

The distal colon and rectum (colorectum) are innervated by spinal and vagal afferent pathways. The central circuits into which vagal and spinal afferents relay colorectal nociceptive information remain to be comparatively assessed. To address this, regional colorectal retrograde tracing and colorectal distension (CRD)-evoked neuronal activation were used to compare the circuits within the dorsal vagal complex (DVC) and dorsal horn (thoracolumbar [TL] and lumbosacral [LS] spinal levels) into which vagal and spinal colorectal afferents project. Vagal afferent projections were observed in the nucleus tractus solitarius (NTS), area postrema (AP), and dorsal motor nucleus of the vagus (DMV), labeled from the rostral colorectum. In the NTS, projections were opposed to catecholamine and pontine parabrachial nuclei (PbN)-projecting neurons. Spinal afferent projections were labeled from rostral through to caudal aspects of the colorectum. In the dorsal horn, the number of neurons activated by CRD was linked to pressure intensity, unlike in the DVC. In the NTS, 13% ± 0.6% of CRD-activated neurons projected to the PbN. In the dorsal horn, at the TL spinal level, afferent input was associated with PbN-projecting neurons in lamina I (LI), with 63% ± 3.15% of CRD-activated neurons in LI projecting to the PbN. On the other hand, at the LS spinal level, only 18% ± 0.6% of CRD-activated neurons in LI projected to the PbN. The collective data identify differences in the central neuroanatomy that support the disparate roles of vagal and spinal afferent signaling in the facilitation and modulation of colorectal nociceptive responses.


Subject(s)
Colorectal Neoplasms , Vagus Nerve , Mice , Animals , Afferent Pathways/physiology , Neurons , Spinal Cord Dorsal Horn , Colorectal Neoplasms/metabolism , Spinal Cord/metabolism , Neurons, Afferent/physiology
17.
Trends Cogn Sci ; 28(3): 237-251, 2024 03.
Article in English | MEDLINE | ID: mdl-38036309

ABSTRACT

Survival is a fundamental physiological drive, and neural circuits have evolved to prioritize actions that meet the energy demands of the body. This fine-tuning of goal-directed actions based on metabolic states ('allostasis') is deeply rooted in our brain, and hindbrain nuclei orchestrate the vital communication between the brain and body through the vagus nerve. Despite mounting evidence for vagal control of allostatic behavior in animals, its broader function in humans is still contested. Based on stimulation studies, we propose that the vagal afferent pathway supports transitions between survival modes by gating the integration of ascending bodily signals, thereby regulating reward-seeking. By reconceptualizing vagal signals as catalysts for goal-directed behavior, our perspective opens new avenues for theory-driven translational work in mental disorders.


Subject(s)
Brain , Goals , Animals , Humans , Afferent Pathways/physiology , Brain/physiology , Motivation , Vagus Nerve/physiology
18.
Clin Neurophysiol ; 157: 15-24, 2024 01.
Article in English | MEDLINE | ID: mdl-38016262

ABSTRACT

OBJECTIVE: To compressively investigate sensorimotor integration in the cranial-cervical muscles in healthy adults. METHODS: Short- (SAI) and long-latency afferent (LAI) inhibition were probed in the anterior digastric (AD), the depressor anguli oris (DAO) and upper trapezius (UT) muscles. A transcranial magnetic stimulation pulse over primary motor cortex was preceded by peripheral stimulation delivered to the trigeminal, facial and accessory nerves using interstimulus intervals of 15-25 ms and 100-200 ms for SAI and LAI respectively. RESULTS: In the AD, both SAI and LAI were detected following trigeminal nerve stimulation, but not following facial nerve stimulation. In the DAO, SAI was observed only following trigeminal nerve stimulation, while LAI depended only on facial nerve stimulation, only at an intensity suprathreshold for the compound motor action potential (cMAP). In the UT we could only detect LAI following accessory nerve stimulation at an intensity suprathreshold for a cMAP. CONCLUSIONS: The results suggest that integration of sensory inputs with motor output is profoundly influenced by the type of sensory afferent involved and by the functional role played by the target muscle. SIGNIFICANCE: Data indicate the importance of taking into account the sensory receptors involved as well as the function of the target muscle when studying sensorimotor integration, both in physiological and neurological conditions.


Subject(s)
Evoked Potentials, Motor , Neural Inhibition , Adult , Humans , Neural Inhibition/physiology , Reaction Time/physiology , Evoked Potentials, Motor/physiology , Skull , Neck Muscles , Transcranial Magnetic Stimulation , Afferent Pathways/physiology , Electric Stimulation
19.
Semin Cell Dev Biol ; 156: 228-243, 2024 03 15.
Article in English | MEDLINE | ID: mdl-37558522

ABSTRACT

The communication between the gut and brain is crucial for regulating various essential physiological functions, such as energy balance, fluid homeostasis, immune response, and emotion. The vagal sensory pathway plays an indispensable role in connecting the gut to the brain. Recently, our knowledge of the vagal gut-brain axis has significantly advanced through molecular genetic studies, revealing a diverse range of vagal sensory cell types with distinct peripheral innervations, response profiles, and physiological functions. Here, we review the current understanding of how vagal sensory neurons contribute to gut-brain communication. First, we highlight recent transcriptomic and genetic approaches that have characterized different vagal sensory cell types. Then, we focus on discussing how different subtypes encode numerous gut-derived signals and how their activities are translated into physiological and behavioral regulations. The emerging insights into the diverse cell types and functional properties of vagal sensory neurons have paved the way for exciting future directions, which may provide valuable insights into potential therapeutic targets for disorders involving gut-brain communication.


Subject(s)
Brain , Vagus Nerve , Afferent Pathways/physiology , Brain/physiology , Vagus Nerve/physiology , Sensory Receptor Cells , Gene Expression Profiling
20.
J Neuropathol Exp Neurol ; 83(1): 20-29, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38102789

ABSTRACT

Neural plasticity occurs within the central and peripheral nervous systems after spinal cord injury (SCI). Although central alterations have extensively been studied, it is largely unknown whether afferent and efferent fibers in pelvic viscera undergo similar morphological changes. Using a rat spinal cord transection model, we conducted immunohistochemistry to investigate afferent and efferent innervations to the kidney, colon, and bladder. Approximately 3-4 weeks after injury, immunostaining demonstrated that tyrosine hydroxylase (TH)-labeled postganglionic sympathetic fibers and calcitonin gene-related peptide (CGRP)-immunoreactive sensory terminals sprout in the renal pelvis and colon. Morphologically, sprouted afferent or efferent projections showed a disorganized structure. In the bladder, however, denser CGRP-positive primary sensory fibers emerged in rats with SCI, whereas TH-positive sympathetic efferent fibers did not change. Numerous CGRP-positive afferents were observed in the muscle layer and the lamina propria of the bladder following SCI. TH-positive efferent inputs displayed hypertrophy with large diameters, but their innervation patterns were sustained. Collectively, afferent or efferent inputs sprout widely in the pelvic organs after SCI, which may be one of the morphological bases underlying functional adaptation or maladaptation.


Subject(s)
Calcitonin Gene-Related Peptide , Spinal Cord Injuries , Rats , Animals , Viscera , Spinal Cord Injuries/complications , Immunohistochemistry , Spinal Cord , Afferent Pathways
SELECTION OF CITATIONS
SEARCH DETAIL
...